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Abstract 

Chronic inflammatory systemic diseases are the result of the body’s immune imbalance, with a long course and recur-
ring episodes. Immunosuppressants are the main treatment, but not all patients respond well to it. Being capable of 
both self-renewal and differentiation into multiple tissue cells and low immunogenicity, mesenchymal stem cell is a 
promising treatment for chronic inflammatory systemic diseases. In this article, we describe the research progress and 
clinical application of mesenchymal stem cells in chronic inflammatory systemic diseases and look for influencing fac-
tors and biomarkers that can predict the outcome of patient with mesenchymal stem cell transplantation.
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Background
Chronic inflammatory systemic disease (CID) is a collec-
tive term for diseases that are characterized by prolonged 
inflammation lasting several months to years. They 
include rheumatoid arthritis, inflammatory bowel dis-
ease, systemic lupus erythematosus, etc. Due to a dam-
aged inflammation self-regulatory mechanism, patients 
with CID have repeated episodes of inflammation, result-
ing into simultaneous destruction and healing of tissues 
at the inflammation site [1]. Corticosteroids, immuno-
suppressants and monoclonal antibodies are used to treat 
immune diseases, but drug resistance and adverse reac-
tions limit their use. As stem cell therapy becomes more 
have gained attention due to their ease to obtain and 
lesser ethical requirements.

The International Society for Cell Therapy defines mes-
enchymal stem cells (MSC) as non-hematopoietic stem 

cells that are: (1) plastic adherent in standard culture 
conditions; (2) express CD73, CD90 and CD105 but lack 
CD11b, CD14, CD34, CD45 CD19 or CD79α and HLA-
DR antigens, and (3) differentiate into osteoblasts, adipo-
cytes and chondroblast in  vitro [2]. Mesenchymal stem 
cells are found in the bone marrow, umbilical cord blood, 
the placenta, adipose tissues, amniotic fluids, dental tis-
sues, skin, hair follicles and tonsils [3].

Mesenchymal stem cells are pluripotent progenitor 
cells capable of migration to injury and tumor sites, self-
renewal and differentiation into multiple tissues. They 
are strong immune modulators producing immunomod-
ulatory molecules such as indoleamine 2,3-dioxygenase 
(IDO) [4], TGF-β [5], PGE2 [6]and NO [7], or acting 
directly through PDL-1/PD-1 [8] PDL-1/B7-H1 [9] or 
ICAM-1/LFA-1 [10] ligand to influence immune cells’ 
proliferation, differentiation, maturation and polarization 
[11, 12]. The immunosuppressive mechanisms of MSC 
are shown in Fig. 1.

IFN-γ, a type II interferon, enhances both the immuno-
suppressive and migratory ability of MSC [13]. The IFN-γ 
produced by T cells promotes the expression of IDO in 
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MSC through IFNGR1/STAT and p38-MAPK signal-
ing [4, 14, 15]. Two types of IDO exist, IDO1 and IDO2. 
Autoreactive B cell responses are mediated by IDO2, 
while autoreactive T cell responses are indirectly affected 
by IDO1 expression [16]. IDO depletes tryptophan in 
local tissue microenvironments and generates kynure-
nines a immunoregulatory catabolites, thus activate 
GCN2 signaling pathway and mTOR signaling pathway 
[17, 18] and down-regulates the expression and activa-
tion of Vav1 protein [19]. This induces the conversion of 
naïve CD4(+)CD25(−) T cells into highly suppressive 
Treg; therefore, the modulation of IDO activity favors the 
interconversion between Treg cells and Th17 inflamma-
tory cells [20]. Certain studies, however, show that IDO 
inhibitors do not have effects on Treg and Th17 cells [21]. 
IDO also induces increased PDL-1 expression and upreg-
ulates different immunomodulatory exosome-derived 
miRNAs that are involved in the control of both T cell 
activation/anergy and monocyte differentiation, result-
ing into inhibition of T cell activity, induction of M2-like 

phenotypes in monocytes, and increased production of 
IL-10 [4, 8].

TNF-α could enhance the expression of IFN-γ recep-
tor (IFN-γR) via NF-κΒ signaling, in turn, enhanced 
responsiveness of MSC to IFN-γ stimulation activated 
STAT5 and p38-MAPK signaling [14]. However, studies 
have shown that TNF-α sometimes inhibits the immu-
nosuppressive ability of MSC by enhancing the expres-
sion of costimulatory molecules ICOSL and HLA-DR on 
the surface of dendritic cells, while reducing the expres-
sion of PDL-1/PD-1, IL-10 and TGF-β [22]. Transform-
ing growth factor beta (TGF-β) is a crucial cytokine for 
immune response regulation [23]. MSC secreted TGF-β 
skews macrophage polarization toward the M2-like phe-
notype through modulating the Akt/FoxO1 pathway, 
thus improving their phagocytic ability. It is also believed 
to up-regulate Treg cells [5, 21]. Phagocytosed apoptotic 
cells in turn release COX2 that promote MSC’s secre-
tion of PGE2 resulting into down regulation of Th17 cells 
[6, 21]. Nitric oxide (NO) from MSCs is involved in the 

Fig. 1 The immunosuppressive mechanisms of MSC MSCs activated by IFN-γ and other inflammatory factors regulate a variety of immune cells 
through secreting IDO, TGF-b, NO, PGE2 and other molecules, exosomes, and cell–cell connection, including T, B, NK and Macrophages. Among 
which T cells are the main target cells of MSC immunosuppression, can inhibit the polarization of naive T cells to pro-inflammatory cells Th1 or 
Th17, Tfh, and promote the differentiation of naive T cells to regulatory immune cells Treg, and indirectly through T cells Inhibit the proliferation and 
differentiation of B cells. In addition, MSC can directly inhibit the differentiation of B cells into plasma cells, promote the differentiation of B cells into 
Breg cells. MSCs promote the polarization of macrophages to the inflammation-suppressing phenotype M2, and inhibit maturation of DC
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suppression of STAT5 phosphorylation and T follicular 
helper (Tfh) cell expansion [7, 24].

Recently, B cells have become a major target for the 
treatment of immune disorders. Results of MSC and B 
cell co-cultivation show that MSCs support static B cell 
survival but do not induce B cell proliferation. In addi-
tion, they regulate B-cell function through directly pro-
moting B cells differentiation into IL-10 producing 
CD19+CD24hiCD38hi B cells, known as Brag cells; or 
by suppressing B cells via T helper or Tfh cells through 
repressing the differentiation of naive CD4(+) T cells 
into Tfh cells; or through releasing IDO and iNOS [7, 
25–27].

In addition, studies have found that exosomes derived 
from mesenchymal stem cells also play an important role 
in mesenchymal stem cell therapy. A study of interverte-
bral disc degeneration found out that BM-MSC-derived 
exosomes promote the growth and survival of host 
cells. At the same time, nucleus pulposus cells-derived 
exosomes promoted BM-MSC migration and induced 
its differentiation to a nucleus pulposus-like phenotype 
[28]. MSC-derived exosomes also promote macrophages 
switch to M2 phenotype [29]. Interestingly, MSC can 
mischievously transfer its own mitochondria into Th17 
cells and decrease their activity by increasing their oxy-
gen consumption [30]. In diseases such as rheumatoid 
arthritis (RA) and systemic lupus erythematosus (SLE), 
where the phenotype and function of MSC of the patients 
differ from those of healthy ones, MSC can be targets for 
treatment [31–34].

MSCs are currently the most widely used stem cells 
in clinical practice despite the inconsistent clinical out-
comes due to the difference in sources, dosages and tim-
ing [35]. This review seeks to answer the questions of 
which type of patients are suitable for MSC therapy, and 
what indicators can be used to monitor effectiveness of 
the treatment. Bone marrow and adipose tissues derived 
MSCs are popularly used, only a handful of studies have 
reported the use of placenta derived MSC. Studies also 
show that MSC pretreatment with IFN-γ or combined 
with IL-4/IL-25 has a better therapeutic effect [36–38]. 
In  vitro studies have shown that highly inflammatory 
synovial fluid (SF) could better stimulate the proliferation 
and immunosuppressive ability of MSC [39], suggesting 
that MSC can achieve the best effect when the inflamma-
tory factors in the patient’s body are increased or right in 
the course of the disease. MSC delivery methods include 
systemic delivery and local delivery. Intra-venous deliv-
ery is the most commonly used route of administration 
[40]. However, MSCs injected intravenously are some-
times enriched in the lung and spleen tissues, where 
they are easily recognized and eliminated by immune 
cells, leaving only a small number to reach the targeted 

organs [41]. Most of the current clinical research patients 
receive a single intravenous infusion of 1 ×  106  cells/kg, 
and only a small part of patients will undergo two to 
three infusions. The local injection dose of colon tissue is 
1 ×  107–1.2 ×  108 cells. Furthermore, a few dose-escalat-
ing trials have found no dose–response relationship [42, 
43]. As shown in Table  1, intravenous infusion of MSC 
is relatively safe, and serious adverse reactions related to 
treatment are rare. However, some adverse events occa-
sionally occur. Common adverse events in clinical studies 
include leukopenia, pneumonia, subcutaneous abscess, 
infection and fever. In refractory Crohn’s disease, the 
incidence of adverse reactions of local MSC transplanta-
tion is relatively high, including anal abscess, fever, fever, 
fistula or anal bleeding, colon infection and so on.

Given that the traditional managements of CID (anti-
inflammatory drugs/hormone therapy) do not benefit 
all patients, it is no surprise that MSC is being explored 
as a possible therapeutic alternative. However, we still 
know very little known about what happens when MSC 
are injected into the patient. This has made it difficult 
to associate with certainty their action to the healing of 
chronic inflammatory processes. Identification of bio-
markers that are associated with the action of MSC and 
their healing property on CID is extremely vital. This 
will enable objective assessment of the effectiveness of 
MSC therapy in chronic inflammatory systemic diseases 
and monitoring of any side effects thereof. In this mini 
review, we discuss the progress made in the mesenchy-
mal stem cell therapy of Rheumatoid Arthritis (RA), Sys-
temic Lupus Erythematosus (SLE), Inflammatory Bowel 
Disease (IBD) and explore the clinically significant bio-
markers that are associated with their prognosis.

Rheumatoid arthritis (RA)
Rheumatoid arthritis (RA) is a chronic inflammatory 
autoimmune disease characterized by synovial hyper-
plasia and edema. Its sequelae involves inflammatory 
cell infiltration of the synovium, cartilage damage and 
bone erosion due to the chronic inflammatory process 
[44]. A major factor in RA pathogenesis is the inflamma-
tion of intra-joint connective tissue called synovium. The 
inflammatory process is composed mostly of fibroblast-
like synoviocytes (FLS), macrophages and infiltrating 
lymphocytes [45], with the macrophages maintained in 
a delicate back and forth transition between pro-inflam-
matory M1 and anti-inflammatory M2 phenotypes [46]. 
Bone destruction is closely related to the imbalance 
between osteoclasts and osteoblasts. Intracellular sign-
aling pathways such as MAPK, Wnt, Hedgehog (Hh), 
Notch, Akt/mTOR, TGF-β/BMP are involved in regulat-
ing the proliferation and differentiation of osteoblasts. 
Highly inflammatory synovial fluid inhibits osteoblast 
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proliferation [47]. Osteoclastogenesis needs two factors, 
macrophage colony-stimulating factor (M-CSF) for pro-
liferation and survival, and receptor activator of NF-κB 
ligand (RANKL) for differentiation and function [48]. 
RANKL is a TNF superfamily member and an essential 
mediator of osteoclastogenesis, produced by osteoblasts, 
synovial fibroblasts and activated T cells [48]. Only Th17 
has been confirmed to be associated with proliferation 
and differentiation of osteoclasts in RA, thus promoting 
bone destruction [49].

Patient Activity Scale (PAS) or PASII, Routine Assess-
ment of Patient Index Data 3 (RAPID-3), Clinical Dis-
ease Activity Index (CDAI), Disease Activity Score with 
28-joint counts (ESR or CRP), Simplified Disease Activ-
ity Index (SDAI) are instruments to measure rheumatoid 
arthritis disease activity and to define remission [50]. RF 
(rheumatoid factor), ACPAs (anticitrullinated protein 
antibodies), ESR (erythrocyte sedimentation rate) and 
CRP (C-reactive protein) are used as RA classification 
criteria in clinical practice [51]. RA patients also present 
increase in other autoantibodies such as anti-carbamyl-
ated proteins, anti-peptidylarginine deiminase (PAD-4), 
anti-collagen type II, and anti-IgG hinge, as well as a vari-
ety of inflammatory factors, chemokines [52].

For RA disease, in addition to the immunosuppres-
sive function of MSC, other therapeutic mechanisms of 
MSC have also been explored. Recent pre-clinical study 
has discovered that hUCB-MSCs can promote the tran-
sition of macrophages tilting the equilibrium toward the 
formation of M2-type cells by the tumor necrosis fac-
tor (TNF)-α-mediated activation of cyclooxygenase-2 
and TNF-stimulated gene/protein 6 in hUCB-MSCs, a 
process that favors cartilage production and thus repair 
of inflammatory damages in RA [53]. In addition, MSC 
were observed in the cartilage tissue from day 11 and 
until 42  days after intravenous injection and differenti-
ated into cartilage and osteoblasts via MAPK and Wnt 
signals [54–56], while partially inhibiting osteoclast for-
mation via CD39-CD73-adenosine signals [57], thereby 
preventing bone destruction.

As a therapeutic agent, the combination of MSC with 
IFN-γ has been shown to significantly alleviate symptoms 
of arthritis in up to 93.3% of patients within 3  months, 
and no relapse within 1 year of follow-up [37]. It has been 
discovered that high concentrations of IFN-γ produced 
by T cells induce MSC to produce more indoleamine 
2,3-dioxygenase (IDO), thereby enhancing MSC’s auto-
immune regulation ability [15]. IFN-γ thus maybe a key 
moderator of MSC’s therapeutic function in RA patients 
whose serum level is directly associated with the RA 
patients’ response to MSC therapy. A study by Yang et al. 
[58] assessed possible serum biomarker for predicting the 
therapeutic effect of MSC therapy in rheumatoid arthritis 

(RA) patients and found out that MSCT resulted in a 
transient increase in serum IFN-γ (> 2 pg/ml), promoted 
an increase in IL-10 levels and the Treg/Th17 ratio, and 
decrease DAS28, the decreased value at the 12-week was 
closely related to the increase in IFN-γ level. In a work, 
a high level of serum IFN-γ before or transient rise in 
IFN-γ after mesenchymal stem cell transplantation is a 
positive predictor of RA remission.

A 5-year follow-up found that patients had 34% of 
remission, 84% of survival rate, and 24% of recurrence 
rate [59]. Intravenous MSC transplantation (MSCT) sig-
nificantly decreased DAS28, HAQ, platelets, ESR, CRP, 
RF, prednisone dose, antinuclear antibody (ANA), carti-
lage oligomeric matrix protein (Comp), tissue inhibitor 
metalloproteinase-1 (Timp1), matrix metalloproteinase 
1 (Mmp-1) and IL-1R, MCP-1, IL-6, TNF-α, increase 
hemoglobin, albumin, Treg/Th17 ratio, IL-10, IFN-γ, 
and the proportion of Low Disease Activity [36, 58, 60], 
while the result of IL-1β, IL-8, IL-2R, anti-CCP antibody, 
RF is inconsistent [60, 61]. Liver, kidney function and 
immunoglobulins levels from each patient were all within 
normal range before, 1  year and 3  years after UC-MSC 
treatment; HAQ and DAS28 continued to decrease at 
3 years after treatment, suggesting the long-term efficacy 
of UC-MSC treatment [61]. 6.7% patients in the MSCT 
group relapsed at the 24th week of follow-up accompa-
nied by elevated levels of ESR and CRP [37]. However, 
improvement of WOMAC, VAS, time to jelling and 
pain-free walking distance could not be significantly sus-
tained beyond 12  months, and the MRI imaging score 
of the knee did not reveal any improvement in some of 
the patients who received BMSCs by intra-articular knee 
implantation [62].

Recent data have identified that GM-CSF-expressing 
T cell is a unique T helper subset having critical roles 
in the pathogenesis of arthritis and other inflamma-
tory diseases [63]. Lopez-Santalla et  al. [64] conducted 
an experiment in arthritis mice to examine the modula-
tion effect of MSC on GM-CSF CD4+T cells and Th17 
cells. They observed a significant decrease in the sever-
ity of the arthritis shortly after injecting the mice with 
adipose-derived MSC. A further notable effect was the 
reduction in the number of pathogenic GM-CSF CD4+T 
cells in the spleen and peripheral blood, accompanied 
by an increase in the number of Treg and IL10+IL17−
CD4+T cells in the draining lymph nodes [64]. It is clear 
that MSCT induces changes in different types of immune 
cells in peripheral blood and so the best option is to 
monitor a variety of immune cells at ago in order to accu-
rately determine treatment outcomes following MSCT. 
Changes in the number of immune cells in the spleen, 
however, seem more accurate and should be explored 
further.
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In RA, therefore, MSC combined with IFN-γ signifi-
cantly alleviate symptoms of the disease with good long-
term outlook (No relapse up to 1-year post treatment). 
Moreover, a high level of serum IFN-γ before or transient 
rise in IFN-γ after mesenchymal stem cell transplanta-
tion positively predicts good treatment outcome. MSC 
can reverse some of the clinical evaluation indicators of 
RA patients, such as DAS28, HAQ and immune markers, 
and reduce joint tissue damage markers, but the changes 
in autoantibodies after MSCT are not obvious. ESR and 
CRP are good biomarkers for monitoring MSCT therapy. 
Since immune markers are non-specific, monitoring a 
variety of them at once is a better indicator of prognosis 
and treatment outcome.

Systemic lupus erythematosus (SLE)
SLE is an autoimmune disease characterized by the 
destruction of the patient’s autoimmune tolerance, pro-
duction of nuclear-antibodies and immune complexes, 
and disruption of multiple organ functions. 10% of SLE 
patients eventually develop lupus nephritis (LN), and 
only half of the LN patients recover [65]. The target for 
managing lupus is to improve patients’ long-term out-
comes and quality of life, and so management plan 
is to treat the disease symptoms, prevent damage to 
other major organs and minimize drug side effects. The 
pathogenesis of SLE is multifactorial. Abnormal clear-
ance of apoptotic cells is related to the beginning of 
SLE [66]. Autoantigens are released mainly from sec-
ondary necrotic cells because of a defective clearance 
of apoptotic cells or an inefficient degradation of DNA, 
and then, these autoantigens are presented by dendritic 
cells to autoreactive B cells, forming immune complexes 
(IC). Many patients with systemic autoimmune diseases 
including SLE have signs of aberrant production of type 
I interferon (IFN) and display an increased expression of 
IFN-inducible genes, and the clearance of antinuclear IC 
via Fc-gamma receptors is considered a central event in 
amplifying inflammatory immune responses in SLE [66, 
67]. Excessive activation of B cells and the production of 
autoantibodies play an important role in SLE. Current 
studies have suggested that both impairments of Breg cell 
functions and expansions of autoreactive B subsets (Age-
Associated B cell, inate-like B cells, plasma cells) lead to 
immune tolerance breakdown and autoimmune progres-
sion [68].

Diagnostic biomarkers frequently used in clinical prac-
tice include ANA, anti-dsDNA antibodies, anti-Sm, anti-
cardiolipin, anti-β2-glycoprotein I, lupus anticoagulant, 
complement proteins C3 and C4(↓) [69]. SLE Disease 
Activity Index (SLEDAI), the dosage of immunosuppres-
sive agents, anti-dsDNA antibodies, serum complement 
proteins C3 and C4 are usually applied to SLE assessment 

while creatinine clearance (↓), urine protein (↑), and 
lung volume (↓) are applied to organ function monitor-
ing [70]. Potential biomarkers for lupus disease activity 
include anti-C1q antibodies, CBCAPs (RC4d, EC4d and 
EC3d), IFN-a and IFN-inducible genes, B-cell-activat-
ing factor (BAFF) or B-lymphocyte stimulator (BlyS), a 
proliferation inducing ligand (APRIL) [71]. CD4+ and 
CD8+T cell transcription signals, Treg, Tph (T periph-
eral helper) cells, IFN, cfDNA, CTHRC1 (collagen triple 
helix repeat containing 1) are closely related to SLE out-
come and SLEDAI [72–77].

Mesenchymal stem cell therapy (MSCT) is safe and 
results into long-term clinical remission in SLE patients. 
A five-year follow-up study found that 34% of patients 
with SLE had remission, 84% survival rate, and recur-
rence rate 24% post MSCT [59]. SLE Disease Activity 
Index (SLEDAI) scores decreased significantly, while 
albumin, complement C3, WBC, platelets, hemoglobin, 
lung volume and quality of life continued to improve 
during follow-up; dsDNA, ANA, proteinuria, serum 
urea nitrogen, creatinine levels decreased in 1 year after 
MSCT [59, 78]. The number of Treg, Treg/Th17 ratio, 
Foxp3 and TGF-β in the MSCT group increased, while 
Th17, IL-17 and TNF-α decreased significantly, and 
IL-6 and IL-17A had no changes [21, 79]. Pretreatment 
factors that can affect treatment efficacy are discussed 
by Wen et al. [80]. In a separate study, there was no dif-
ference in most of the above immune markers between 
the treatment and control group. SLEDAI score, blood 
cell count, serum albumin, proteinuria and Treg/Th17 
percentages between those with or without cyclophos-
phamide (CYC) pretreatment, those infused with bone 
marrow- or umbilical cord-derived MSCs were similar 
between the two groups [78, 79]. Disease relapse was 
not correlated with age, disease duration, MSCs source, 
CYC pre-treatment, baseline SLEDAI score, or proteinu-
ria levels [59]. It was, however, found that patients who 
had higher levels of baseline IFN-γ and lower levels of 
baseline IL-6 showed a good clinical response to MSCT; 
serum TNF-α, IL-17, TGF-β1, and IL-10 had no differ-
ence between MSCT responders and non-responders 
among these patients [81]. This result is consistent with 
those of MSCT of RA [58].

Studies show that MSCT patients with lupus nephritis 
cannot get a positive therapeutic effect compared to pla-
cebo group [82] and are likely to cause renal insufficiency 
[59]. At present, there is still a big controversy about the 
therapeutic effect of MSC on LN. Traditional biomark-
ers for LN include dsDNA, complement, proteinuria, 
and active deposits. New biomarkers include MCP-1, 
NGAL, CXCL-10, CXCL-16, IL-6, IL-17, VCAM, TGF in 
urine -β1 mRNA and L-PGDS. Chemokines and inflam-
matory factors can better predict LN [83]. The result of 
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a meta-analysis showed that the renal sclerosis score, 
ds-DNA, ANA, creatinine, urea nitrogen, proteinuria, 
IL-2, IL-12, IL-17 and IFN-γ cytokine levels of MSCT 
LN mice decreased, while IL-4, IL-6, IL-10, TGF-β, 
MCP-1, TNF-α cytokines and Th1, Th17, Treg cells are 
not significantly changed [84]. Tfh (CD4+CXCR5+PD-
1+Tfh, CD4+CD44+CXCR5+PD-1+Tfh), B (GC B 
(B220+GL7 +), PC (B22010 CD138 +)) cells, which are 
associated with high concentrations of autoimmune 
antibodies and LN, are decreased in animal model after 
MSCT. While administration of hBMSC in the middle 
of the clinical phase of the disease is believed to sup-
press auto-Ab production and prevent the occurrence of 
LN, but does not reverse the progression of an ongoing 
nephritis, revealing a new mechanism for MSC to treat 
LN [27].

MSCT can make SLE patients survive up to 85% in 
5 years, and the clinical markers of patients continue to 
improve during the follow-up period. There is no differ-
ence in the treatment of patients with bone marrow- or 
umbilical cord-derived MSCs. However, the pre-MSCT 
state of patients may affect the efficacy of MSCT. Like 
RA, patients with higher levels of IFN-γ or lower levels of 
baseline IL-6 at baseline showed a good clinical response 
to MSCT, and administration of hBMSC midway through 
the course of the disease can slow down nephritis and 
prevent development of LN.

Inflammatory bowel disease (IBD)
Inflammatory bowel disease (IBD) is a term used to 
describe two chronic inflammatory conditions of the gas-
trointestinal tract, i.e., Crohn’s disease (CD) and ulcera-
tive colitis (UC). They are characterized by alternate 
episodes of inflammation remission and recurrences that 
often results into intestinal fistula and stenosis [85]. The 
factors that affect IBD are diverse and complex and are 
caused by genetic-environmental interactions. Central 
to this response is the homeostasis between intestinal 
immune cells and epithelial integrity, which is composed 
of epithelial and mesenchymal cells [86]. Once the 
mucosa regenerates, microbial translocation and further 
inflammation are prevented [87]. TNF receptor-1 signal-
ing in epithelial cells and Toll-like receptor activation are 
crucial in IBD pathogenesis; NF-κB pathways, STAT3, 
YAP/Notch control the regeneration of epithelial cells 
[88, 89].

Currently, 2 coprimary end points are used by cli-
nicians to determine the effectiveness of therapeutic 
interventions in patients with Crohn’s disease (CD): 
symptomatic remission and endoscopic remission. There 
is generally a lack of accepted biomarkers to facilitate 
regulatory decision-making [90]. At present, FC and CRP 
are in clinical trials. FC is being utilized as a diagnostic, 

prognostic, predictive, and pharmacodynamic/response 
biomarker, strongly correlated with endoscopy and post-
operative disease recurrence [91]. The disadvantage of 
CRP as a biomarker is its poor specificity and so it’s often 
used in combination with other markers [90]. Other CD 
biomarkers being explored include[90]: inflammation 
markers such as IL-6 IL-22, IL-23; NGAL; miR-21, miR-
31, miR-146a, and miR-375; TREM-1; pASCA; Oncos-
tatin M; microbiome markers such as lower Firmicutes; 
higher Faecalibacterium; OmpC, ANCA, I2, A4-Fla2, 
Fla-X, Cbir1; and tissue injury markers such as Pro-C4, 
C4M, C3M, ECM1, BGM, EL-NE, C5M, Pro-C5, MMP-
3, MMP-9, MMP-14. SPP24 whose level is related to 
endoscopy and is significantly different before and after 
treatment [92]. Matrix metalloproteinase-degraded type 
IV collagens, Serum oncostatin M, FC and CCR9 are con-
sidered to be biomarkers of drug efficacy [93, 94], while 
IFN reflects disease activity [95], and the transcription 
signals of CD4+T and CD8+T cells are closely related to 
the outcome [72, 95]. Both, phase I and II clinical stud-
ies done so far show that CRP and FC biomarkers are 
not affected by MSCT [96]. The predictive value of these 
markers for MSCT prognosis and outcome therefore still 
needs to be experimentally verified.

Given the expression of Toll-like receptors on the sur-
face of MSCs, Kol et al. [97] found that bacteria can pro-
mote MSC to inhibit T cell proliferation. Studies have 
shown that in DSS model, tail vein injection of MSC 
increases the number of Ki-67( +) intestinal epithe-
lial cells, LGR5( +) intestinal stem cells and CD31( +) 
endothelium in mouse intestinal, which demonstrated 
greater recovery of intestinal epithelial integrity com-
pared with mesalamine group [38, 41]. Compared with 
control group, the infiltration of F4/80+ macrophages 
and monocytes in the colon tissue of MSC-DSS group 
was reduced, and FOXP3(+) Treg increased, but the 
number of CD3(+) T cells did not change significantly 
[41].

EF mice with administration of DF-MSCs exhibited 
outcomes, returned to normal body weight, healed the 
fistulas and significantly reduced mortality and pro-
longed survival [98]. Intravenous or intraperitoneal or 
locally injection of MSC significantly down-regulated 
IL-17A, IL-1β, IL-6, TNF-α, IFN-γ, CD8, IL-12, SAA 
and chemokines, while up-regulated IL-10 and TGF-β 
and the expression of VEGF and Ang-2 [13, 38, 98–100]. 
Inflammation-related ROS and lipid peroxidation prod-
uct levels decreased, and the expression of antioxidant 
enzymes (Catalase and SOD1 not SOD2 increased) 
showed the reverse pattern as oxidative stress; MSC 
show the capacity of inhibiting Th1 and Th17 inflamma-
tory cells, promoting Th2 and Treg cells [13, 38, 99, 100]. 
A large number of studies focus only on the changes of 
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T cells, but few people pay attention to the activities of 
B cells related to antibody production. Chao et al. [101] 
noticed an increase in Treg and CD5+ Breg cells in 
MSCT group; IL-10 produced by Breg cells can correct 
the imbalance between Treg and Th17/Th1 cells.

Perianal fistula is a serious complication of CD. MSC 
is a new and promising treatment for perianal fistula due 
to its capacity for immune regulation and tissue repair. 
In one study, 12 weeks after MSC local injection, 40.0%, 
80.0% and 20.0% of cohort 1 [1 ×  107 cells], 2 [3 ×  107 
cells], and 3 [9 ×  107 cells] achieved full fistula closure 
[42]. And after 4  years, in cohort 2, all fistulas were 
closed. In this same 4 years, in cohort 1 had 63% of fistu-
las closed while and in cohort 3 had 43% of fistulas closed. 
None of the patients had detectable anti-HLA antibodies 
24 weeks and 4 years after therapy [102]. Unlike in other 
diseases, MSCs are often transplanted directly into the 
patient’s fistula tissue in IBD [42, 103–105], but blood 
transfusion can also be used [43, 96]. In addition to com-
plete healing of the fistula for extended period of time 
following local MSCT, the levels of IL-8, IL-1β and IL-6 
in the fistula tissue were significantly increased; how-
ever, there was no significant difference in these factors 
between normal tissue and fistula tissue after MSC treat-
ment, accompanied by decreased PDAI, MSS, PDAI and 
increased SIBDQ, but no change in CDAI, CRP, fibrino-
gen, WBC [42, 104]. We have not found the number of 
Treg, the levels of CRP and CF have differences before 
and after intravenous infusion of MSC [96], and there 
was no significant difference in CRP between MSCT 
response group and non-response group [43].

Above studies show that MSC therapy can improve 
the quality of life of IBD patients. Intravenous adminis-
tration of MSC restores immune function in mice, pro-
mote vascular regeneration, and reduce oxidative stress. 
These findings still need further studies to verify. Local 
injection of MSC promotes healing of fistula in patents 
with refractory Crohn’s disease through immunosuppres-
sion and further promotes intestinal epithelial regenera-
tion. Although CRP and CF are commonly used clinical 
biomarkers to reflect the disease activity of patients, evi-
dence to support their use in MSC treatment monitoring 
is still lacking.

Conclusions
These studies summarized above show that the active 
CID is caused by an abnormal immune homeostasis that 
can be restored by MSCT. MSCT reduces serum inflam-
mation-related factors TNF-α, IFN-γ, IL-1β, IL-6, IL-8, 
ROS levels and the number of peripheral blood Th, Tfh, 
and B cells, while increasing IL-10, TGF-β, IDO (a key 
factor in MSC immunoregulation), angiogenic factors, 
and the number of Treg and Breg cells. Importantly, in 

RA, high serum level of IFN-γ in patients before mes-
enchymal stem cell transplantation and the transient 
increase in IFN-γ after transplantation indicate that the 
patient can achieve better results, due to its ability to 
promote the release of IDO to promote MSC’s immune 
activity; it was also found that patients with SLE who 
had higher levels of baseline IFN-γ and lower levels of 
baseline IL-6 showed a good clinical response to MSCT 
The combined use of cytokines including IFN-γ and 
MSC can enhance the response of patients treated with 
MSC, which indicates to a certain extent that patients 
with higher levels of cytokines in the serum treated with 
MSCs can achieve better results, or those who treated 
with these cytokines pretreated MSC may have a better 
effect.

Prospect
At present, there are a large number of clinical studies 
looking at the changes that occur in patients before and 
after MSCT in order to find viable indicators of treat-
ment outcomes. It is important that multiple immune cell 
subgroups, cytokines and clinical features are compared 
between patients that respond to MSC therapy and those 
that do not respond so as to have a clearer understand-
ing of which biomarkers indicate response and which 
ones do  not. This further enables objective exploration of 
mechanisms by which these factors affect MSC therapy.

The indicators to be considered for the inclusion of 
MSC treatment patients usually include: Disease Activity 
Score (DAS) 28, Simple Disease Activity Index (SDAI), 
and Clinical Disease Activity Index (CDAI) for Rheuma-
toid arthritis (RA); SLEDAI (Urine protein and creati-
nine clearance should be considered for LN) for Systemic 
lupus erythematosus (SLE) and CD Activity Index 
(CDAI) score of < 250 for Crohn’s disease (CD).

Treatment endpoint detection indicators often include: 
The remission rates of American College of Rheumatol-
ogy (ACR) 20, ACR 50 and ACR 70, HAQ, RF, CRP, anti-
citrulline antibody for Rheumatoid arthritis (RA); British 
Isles Lupus Assessment Group score (BILAG), SLEDAI, 
Quality of life Month SF-36, Quality of life EQ-5D, Ster-
oids dose, and Lupus serology (Alb, ANA, dsDNA, C3, 
C4), Renal function (GFR, BUN, urinalysis) for Systemic 
lupus erythematosus (SLE), and monitoring of the clo-
sure of all treated external openings that were drained at 
baseline to determine fluid collections > 2 cm by masked 
central MRI, PDAI, CDAI, IBDQ, time to combined 
remission, relapse and time to relapse, and van Assche 
score for Crohn’s disease (CD). In the future, these mark-
ers can be used as clinical indicators and biomarkers for 
CID patients undergoing mesenchymal stem cell therapy 
(MSCT).
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