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Abstract

This paper proposes a mixture regression model-based method for drug sensitivity predic-

tion. The proposed method explicitly addresses two fundamental issues in drug sensitivity

prediction, namely, population heterogeneity and feature selection pertaining to each of the

subpopulations. The mixture regression model is estimated using the imputation-conditional

consistency algorithm, and the resulting estimator is consistent. This paper also proposes

an average-BIC criterion for determining the number of components for the mixture regres-

sion model. The proposed method is applied to the CCLE dataset, and the numerical results

indicate that the proposed method can make a drastic improvement over the existing ones,

such as random forest, support vector regression, and regularized linear regression, in both

drug sensitivity prediction and feature selection. The p-values for the comparisons in drug

sensitivity prediction can reach the order O(10−8) or lower for the drugs with heterogeneous

populations.

Introduction

Drug sensitivity prediction is an integral part of precision medicine which, unlike the tradi-

tional one-size-fits-all approach, tailors therapy to each patient by accounting for their hetero-

geneity in e.g. clinic, genomic, and environments. During the past decade, the study of drug

sensitivity prediction has received a boost due to the ever-growing interest in precision medi-

cine and the availability of large-scale pharmacogenomics datasets. Various drug sensitivity

prediction methods have been proposed in the literature, including regularized linear regres-

sion, support vector regression, and random forest, among others. Refer to [1] for an overview

of these methods.

The regularized linear regression is to model the effect of each feature in a linear function.

In this paper, we refer to features as the patient attributes under investigation, e.g., age, gender,

genes, SNPs, copy number variants, or some demographic variables. Since, in the current

pharmacogenomics datasets, the number of genomic features is often much larger than the

number of samples (a.k.a. small-n-large-p), the regression model is ill-posed and a regulariza-

tion term has to be included to enable its solution. Examples of regularized linear regression
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used in drug sensitivity prediction include ridge regression [2] and elastic net [3, 4], which

employ a l2-penalty and a combination of l1- and l2-penalties, respectively. A systematic study

for the two models in drug sensitivity prediction has been reported in [5]. Other regularized

linear regression methods, such as Lasso [6], SCAD [7], MCP [8] and rLasso [9], can also be

applied to this problem.

Support vector regression is a kernel-based method, which can model via kernels the effect

of each feature in a nonlinear function. The commonly used kernels include the linear kernel,

polynomial kernel, radial basis kernel, and sigmoidal kernel. Support vector regression has

been used for drug sensitivity prediction in [5, 10–12].

The random forest models the data by a set of regression trees, where the training set for

each tree is selected using bootstrap sampling from the original sample set, and the features

considered for partitioning at each node are a random subset of the original set of features.

The random forest falls into the class of nonlinear regression models, where the samples are

partitioned at each node of the binary tree based on the value of one selected feature. It tends

to have high accuracy prediction and can handle a large number of features due to the embed-

ded feature selection in the model generation process. The random forest model can also be

viewed as a mixture model, with each tree corresponding to a submodel. The random forest is

one of the top performing algorithms in the NCI-DREAM drug sensitivity prediction chal-

lenge [11, 13] and has been used in multiple other drug sensitivity studies [12, 14–16].

Although these methods can work reasonably well for some datasets, none of them has

directly addressed the issue of population heterogeneity, that is, different patients may have

different disease-causing factors. It is known that the population heterogeneity forms the bio-

logical basis of precision medicine. Under population heterogeneity, selection of the features

that affect the drug sensitivity has not been addressed either. This article aims to address the

two issues simultaneously. We propose to model the drug sensitivity using a high-dimensional

mixture linear regression, which directly addresses the issue of population heterogeneity.

When estimating the mixture model, the samples will be clustered into different groups and

different drug sensitive features will then be selected for each group. Although the random for-

est can be viewed as a mixture model and has an embedded feature selection procedure, it

does not explicitly group the samples and select different features for different groups. We

demonstrate the performance of the proposed method through simulation and analysis of the

CCLE dataset. The numerical results indicate that the proposed method can make a drastic

improvement over the existing ones, including random forest, support vector regression and

regularized linear regression, in drug sensitivity prediction.

Materials and methods

High-dimensional mixture regression

Suppose that we have collected a set of random samples (x1, y1), . . ., (xn, yn), where yi 2 R and

xi 2 R
p

for i = 1, � � �, n, and n is the sample size. Each yi is independently drawn from a finite

Gaussian mixture distribution with the density function given by

f ðyijθÞ ¼
XK

k¼1

pk�ðyijxiβk; s
2

kÞ; ð1Þ

where θ = (β1, . . ., βK; σ1, . . ., σK; π1, . . ., πK−1) denotes the parameter vector, ϕ(�|μ, σ2) is the

Gaussian density function with mean μ and variance σ2, πk is the mixing proportion, and βk is

a (p + 1)-dimensional vector whose first component corresponds to the intercept term and

others correspond to the regression coefficients of the p features. Further, we assume that p
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can be much greater than n and it can grows with n in a polynomial rate O(nγ) for some con-

stant γ> 0. To indicate the dependence of p on n, we may rewrite p as pn in the remaining part

of this paper. In addition, we assume that βk = (βk0, βk1, . . ., βkp) is sparse for each k, i.e.,

Xpn

i¼1

Iðbki 6¼ 0Þ <1; as n!1:

Our goal is to cluster the n samples into K groups, with each corresponding to a subpopulation

in (1), and identify the nonzero components of βk for each k.

For the low-dimensional problems for which pn is much smaller than n or, more precisely,

the dimension of θ is smaller than n, the mixture regression model can be estimated using the

EM algorithm [17] by treating the cluster membership of each sample as missing data. The EM

algorithm leads to an maximum likelihood estimate (MLE) of θ.

When the dimension of θ is greater than n, the EM algorithm cannot be used any more, as

the problem is ill-posed and the MLE might no longer to consistent to the true parameter. To

address this issue, certain type of regularization has to be imposed on θ. For example, [18] pro-

posed to estimate θ by maximizing a penalized likelihood function, which is to set

θ̂ ¼ arg max
θ

Xn

i¼1

logf
XK

k¼1

pk�ðyijxiβk; s
2

kÞg � PlðθÞ

( )

; ð2Þ

where Pλ(θ) is the penalty function and λ is the regularization parameter. The algorithm has

been implemented in the R package fmrs [19], where different penalty functions have been

considered, including the Lasso penalty [6], adaptive Lasso penalty [20], MCP penalty [8],

SCAD penalty [7], and the hard penalty [18]. Although the method can be shown to produce a

consistent estimate of θ under appropriate conditions, its convergence rate seems low. That is,

it needs a large sample size to produce a good estimate of θ. In the next subsection, we propose

a new method to estimate the mixture regression, which, as indicated by our numerical exam-

ples, significantly outperforms the penalized likelihood method.

Imputation-conditional consistency algorithm

The imputation-conditional consistency (ICC) algorithm [21] is a general algorithm for deal-

ing with high-dimensional missing data problems. Let Xobs denote the observed data, and let

Xmis denote the missed data. Suppose that θ has been partitioned into b blocks θ = (θ(1), . . .,

θ(b)). Let θðtÞn ¼ ðθ
ðt;1Þ
n ; . . . ; θðt;bÞn Þ denote the estimate of θ obtained at iteration t, where the sub-

script n indicates its dependence on the samples. The imputation-conditional consistency

(ICC) algorithm works by iterating between the following steps:

• I-step. Draw ~xmis from the predictive distribution hðxmisjxobs; θðt;1Þn ; . . . ; θðt;bÞn Þ given xobs and

the current estimate θðtÞn ¼ ðθ
ðt;1Þ
n ; . . . ; θðt;bÞn Þ.

• CC-step. Based on the pseudo-complete data ~x ¼ ðxobs; ~xmisÞ, do the following:

(1). Conditioned on ðθðt;2Þn ; . . . ; θðt;bÞn Þ, find θðtþ1;1Þ

n which forms a consistent estimate of

θðt;1Þ
�
¼ arg max

θðt;1Þ
0

n

E
θðt;1Þ

0

n ;...;θðt;bÞn
log f ð~xjθðt;1Þ

0

n ; θðt;2Þn ; . . . ; θðt;bÞn Þ;

where the expectation is taken with respect to the joint distribution of ~x ¼ ðxobs; ~xmisÞ

and the subscript of E gives the current estimate of θ.
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(2). Conditioned on ðθðtþ1;1Þ

n ; θðt;3Þn ; . . . ; θðt;bÞn Þ, find θðtþ1;2Þ

n which forms a consistent esti-

mate of

θðt;2Þ
�
¼ arg max

θðt;2Þ
0

n
E
θðtþ1;1Þ
n ;θðt;2Þ

0

n ;θðt;3Þn ;...;θðt;bÞn
log f ð~xjθðtþ1;1Þ

n ; θðt;2Þ
0

n ; θðt;3Þn ; . . . ; θðt;bÞn Þ:

. . .. . .

(b). Conditioned on ðθðtþ1;1Þ

n ; . . . ; θðtþ1;b� 1Þ

n Þ, find θðtþ1;bÞ
n which forms a consistent estimate

of

θðt;bÞ
�
¼ arg max

θðt;bÞ
0

n
E
θðtþ1;1Þ
n ;...;θðtþ1;b� 1Þ

n ;θðt;bÞ
0

n
log f ð~xjθðtþ1;1Þ

n ; . . . ; θðtþ1;b� 1Þ

n ; θðt;bÞ
0

n Þ:

As indicated by the algorithm, to find a consistent estimate of θðt;iÞ
�

, the ideal objective func-

tion is

E
θðtþ1;1Þ
n ;...;θðtþ1;i� 1Þ

n ;θðt;iÞ
0

n ;θðt;iþ1Þ
n ;...;θðt;bÞn

log f ð~xjθðtþ1;1Þ

n ; . . . ; θðtþ1;i� 1Þ

n ; θðt;iÞ
0

n ; θðt;iþ1Þ

n ; . . . ; θðt;bÞn Þ;

but which cannot be directly evaluated. Practically, the consistent estimate of each block can be

obtained by maximizing a regularized conditional likelihood function, i.e., setting the estimate

θðtþ1;iÞ
n;p ¼ arg max

θðt;iÞ
0

n

f
1

n

Xn

j¼1

log f ðxobsj ; ~x
mis
j jθ

ðtþ1;1Þ

n ; . . . ; θðtþ1;i� 1Þ

n ; θðt;iÞ
0

n ; θðt;iþ1Þ

n ; . . . ; θðt;bÞn Þ

� Pliðθ
ðt;iÞ0
Þg;

ð3Þ

where Plið�Þ denotes the regularization/penalty function used for block i. Let

f~xmis
t : t ¼ 1; 2; . . .g denote the sequence of imputed data during the iterations. Similar to the

stochastic EM algorithm [22, 23], it is easy to see that the sequences, f~xmis
t : t ¼ 1; 2; . . .g and

fθðtÞn : t ¼ 1; 2; . . .g, form two interleaved Markov chains:

θð1Þn ! ~xmis
1
! θð2Þn ! ~xmis

2
! � � � � � � ! θðnÞn ! ~xmis

n ! � � � � � � :

The convergence of these two Markov chains has been rigorously studied in [21] under

quite general conditions. Theorem 5 and Theorem 6 of [21] show that the Markov chain

fθðtÞn : t ¼ 1; 2; . . .g has a stationary distribution and the mean of the stationary distribution

forms a consistent estimate of the true parameter θ�.
For the mixture regression model, if we treat the cluster membership of each sample as

missing data, then the ICC algorithm can be applied. Let τ1, . . ., τn denote the cluster member-

ship variable of the n samples. Then

Pðti ¼ kjθÞ ¼
pk�ðyijxiβk; s

2
kÞPK

j¼1
pj�ðyijxiβj; s

2
j Þ
; k ¼ 1; 2; . . . ;K; ð4Þ

for i = 1, 2, . . ., n. Let pðtÞi ¼ fPðti ¼ 1jθðtÞÞ; . . . ; Pðti ¼ KjθðtÞÞg, and let t
ðtÞ
i denote the cluster

membership imputed for sample i at iteration t. Applying the ICC algorithm to the mixture

regression model leads to the following procedure:

• (I-step) Simulate t
ðtþ1Þ

i � Multinomialð1; pðtÞi Þ for i = 1, 2, . . ., n. Define the subsets

w
ðtþ1Þ

k ¼ fi 2 f1; 2; . . . ; ng : t
ðtþ1Þ

i ¼ kg for k = 1, 2, . . ., K.

• (CC-step) For each component k = 1, 2, . . ., K,

Drug sensitivity prediction with high-dimensional mixture regression
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1. estimate πk by setting p
ðtþ1Þ

k ¼ Cardðwðtþ1Þ

k Þ=n, where Card(A) denotes the cardinality of

the set A;

2. apply the SIS-MCP algorithm [8, 24] to estimate the regression coefficients βk based on

the samples assigned in w
ðtþ1Þ

k and denote the estimate by βðtþ1Þ

k ;

3. estimate σk conditioned on the estimate βðtþ1Þ

k , i.e., set

s
ðkþ1Þ

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2wðtþ1Þ

k
ðyi � xiβ

ðtþ1Þ

k Þ
2

Cardðwðtþ1Þ

k Þ � Cardðβðtþ1Þ

k Þ � 1

v
u
u
t

; ð5Þ

where Card (βk) denotes the number of nonzero elements in βðtþ1Þ

k .

In the SIS-MCP algorithm, the variables are first subject to a sure independence screening

procedure [24], and then the survived variables are selected using the MCP method [8]. This

algorithm has been implemented in the R-package SIS. This estimator maximizes the regular-

ized conditional likelihood function as defined in (3), where the regularization function is

given by the MCP penalty [8] in the subspace restricted by the sure independence screening

procedure and1 otherwise. The consistency of the SIS-MCP estimator follows directly from

[8, 24]. As shown in [21], such an estimator can be used in the ICC algorithm for achieving a

consistent estimator for high-dimensional linear regression. Given an estimate of βk, we esti-

mated σk using (5), for which the corresponding penalty function is 0, as it falls into the class

of low-dimensional problems. Similarly, the penalty function was also set to zero in estimating

πk’s. Following from [21], the sequence fðp
ðtÞ
k ; β

ðtÞ
k ; s

ðtÞ
k Þ : k ¼ 1; 2; . . . ;K; t ¼ 1; 2; . . .g will

converge to the true parameter in probability as both n!1 and t!1. However, for a finite

value of n, it will form a Markov chain which is almost surely ergodic and the average estima-

tor (over t and with appropriate relabeling) is consistent.

In the above algorithm, we have assumed that K is known. To determine the value of K, we

can use an average-BIC criterion which works as follows. First, we determine a set of K for

consideration. Then for each value of K in the set, we run the ICC algorithm separately, obtain

the sequences fτðtÞ : t ¼ 1; 2; . . .g and fθðtÞn : t ¼ 1; 2; . . . ;Tg, and calculate the BIC value for

each t and their average. Mathematically, we have

dBICðKÞ ¼
1

T � t0 þ 1

XT

t¼t0þ1

BICKðτ
ðtÞ; θðtÞn Þ; ð6Þ

where t0 denotes the burn-in steps of the Markov chains induced by ICC, T is the total number

of iterations, and BICK(τ(t), θ(t)) denotes the BIC value calculated based on the sample partition

τ(t) and parameter estimate θ(t). The rationale underlying the average-BIC criterion can be jus-

tified as follows by viewing BIC as a value of negative log-posterior probability:

� BICðKÞ ¼ log
X

θ;τ

Pðθ; τjK;DÞ

 !

¼ log
X

θ;τ

Pðθ; τjK;DÞ
Pðθ; τÞ

Pðθ; τÞ

 !

�
X

θ;τ

Pðθ; τÞ log
Pðθ; τjK;DÞ

Pðθ; τÞ

� �

¼
X

θ;τ

Pðθ; τÞ log Pðθ; τjK;DÞ �
X

θ;τ

Pðθ; τÞ log Pðθ; τÞ

� �
X

θ;τ

Pðθ; τÞBICKðτ; θÞ �
X

θ;τ

Pðθ; τÞ log Pðθ; τÞ;

Drug sensitivity prediction with high-dimensional mixture regression
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where D denotes the data, and the equality (in the second line) holds if Pðθ; τÞ ¼ Pðθ; τjK;DÞ.
Further, by the asymptotic normality of the posterior distribution of θ (in the low-dimensional

space restricted by the sure independence screening procedure), dBICðKÞ is approximately

equivalent to BIC(K) in determining the value of K when both the sample size n and the num-

ber of iterations T become large.

Clusterwise variable selection

The ICC algorithm proposed above leads to two interleaved Markov chains fθðtÞn : t ¼ 1; 2; . . .g

and {τ(t): t = 1, 2, . . .}. Therefore, different variables are selected at different iterations. How to

aggregate the variables selected at different iterations into a single list remains an unresolved

issue. To resolve this issue, we adopt the consensus clustering method [25–27], which works in

the following procedure:

• Calculate a dissimilarity matrix D = (dij) with

dij ¼ T � t0 �
XT

t¼t0þ1

IðtðtÞi ¼ t
ðtÞ
j Þ; ð7Þ

where I(�) is an indicator whether or not sample i and sample j are assigned to the same clus-

ter at iteration t.

• Cluster the samples into K clusters using a hierarchical clustering method, say, with the aver-

age linkage.

• Apply the SIS-MCP method to select variables for each cluster of samples separately.

The variables selected via this aggregation procedure are consistent, and its consistency fol-

lows directly from the consistency of the averaged ICC estimator.

An illustrative example

To illustrate the performance of the proposed method, we consider an example which consists

of 100 simulated datasets. Each dataset is independently generated according to (1) with

n = 600, pn = 2000, K = 3, π1 = π2 = π3 = 1/3, and s2
1
¼ s2

2
¼ s2

3
¼ 1. In simulations, we set n1 =

n2 = n3 = 200, where nk denotes the number of samples generated from component k of (1).

For each value of k, βk consists of three nonzero elements which are all set to 3. To make the

problem harder, we let βk’s share a common nonzero element and set all other nonzero ele-

ments to be exclusive. Each predictor xi, i = 1, 2, . . ., p, is generated from Nðm1; IpnÞ, where Ipn
is a pn-dimensional identity matrix, μ1 denotes a constant vector of μ, and μ is a random num-

ber generated from uniform(0,1),

The ICC algorithm was first applied to this example, which was started with a random

assignment of the cluster membership for each of the samples. To measure the performance of

the algorithm in both variable selection and sample clustering, we calculate the false selection

rate and negative selection rate which are defined by

fsr ¼
FP

TP þ FP
nsr ¼

FN
TP þ FN

; ð8Þ

where TP, FP and FN refer to the true positive number, false positive number and false nega-

tive number, respectively, and they are defined via a binary decision table (see S1 Table). Note

that both variable selection and sample clustering can be viewed as binary decision problems.

For the former, it is to decide for each variable to be included in the model or not; and for the

Drug sensitivity prediction with high-dimensional mixture regression
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latter, it is to decide for each sample to be assigned to the correct cluster or not. In general, the

smaller the values of fsr and nsr are, the better the performance of the method is. Other than fsr
and nsr, we calculated for each cluster the estimation error of the regression coefficients, i.e.,

kβ̂k � βkk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pp

i¼1
ðb̂ki � bkiÞ

2

q

, where β̂k denotes an estimate of βk.

S1 Fig shows the BIC statistics calculated along the path of ðτðtÞ; θðtÞn Þ, where it is assumed

that the true value K = 3 is known. In the next subsection we explored the case that K is

unknown. The ICC algorithm can converge very fast, usually with tens of iterations. For this

example, it took about 50 iterations to converge, i.e., the Markov chain reaches equilibrium.

To summarize the results of the run, we discarded the fist 100 iterations as the burn-in process

and calculated the dissimilarity matrix, defined in (7), based on the next 400 iterations. Then

the samples were re-clustered based on the dissimilarity matrix using a hierarchical clustering

procedure with the average link, and variables were selected for each cluster using the

SIS-MCP algorithm. The results are summarized in Table 1, which indicates that the algorithm

works well for this example in both sample clustering and variable selection.

For comparison, we have tried to apply the regularization method by [18] to this example.

Unfortunately, the package fmrs cannot handle such a high-dimensional problem. For this rea-

son, we considered another example in the next subsection where the dimension is set to be

much lower.

To illustrate the prediction performance of ICC, we randomly selected 80% of the samples

as the training data and the remaining for testing. The prediction results of the methods like

Lasso, ridge, elastic net, and random forest were also included for comparison. Table 2 sum-

marizes the computational results for 100 independent datasets.

Results

A comparison study

To make the package fmrs work, we independently generated 10 datasets as in the last subsec-

tion except for that the dimension pn was reduced to 200. For each dataset, we tried three dif-

ferent values of K = 2, 3 and 4; and for each value of K, we ran the ICC algorithm for 500

Table 1. Computational results of the ICC algorithm for the illustrative example, where fsr, nsr and kβ̂k � βkk are calculated by averaging over 100 independent

datasets with the standard deviation given in the parenthesis.

Component 1 Component 2 Component 3

Variable Selection fsr 0.01 (0.01) 0.02 (0.0198) 0 (0)

nsr 0 (0) 0 (0) 0.01 (0.01)

kβ̂k � βkk 0.4061 (0.1095) 0.4218 (0.1272) 0.3619 (0.1251)

Clustering fsr 0.1522 (0.0094) 0.1287 (0.0104) 0.1499 (0.0135)

nsr 0.1413 (0.0098) 0.1531 (0.0079) 0.1309 (0.0088)

https://doi.org/10.1371/journal.pone.0212108.t001

Table 2. Prediction results of different methods for the illustrative example, where corr(Ytest,Ŷ test) and RMSE(Ŷ test) are calculated by averaging over 100 independent

datasets with the standard deviation given in the parenthesis.

ICC Lasso Ridge Elastic net Random forest

corr(Ytest,Ŷ test) 0.882 (0.097) 0.591 (0.086) 0.246 (0.128) 0.585 (0.092) 0.528 (0.089)

RMSE(Ŷ test) 3.076 (1.025) 5.333 (0.847) 6.576 (1.849) 5.378 (0.973) 5.738 (0.826)

https://doi.org/10.1371/journal.pone.0212108.t002
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iterations, where the first 100 iterations were discarded for the burn-in process and τ(t)’s col-

lected from the remaining 400 iterations were used for computing the dissimilarity matrix D.

Each run took about 10 CPU minutes on a computer of 2.60GHz. Fig 1 shows the BIC paths

generated by ICC with K = 2, 3 and 4 for one dataset. According to the average-BIC criterion,

we can easily determine that K = 3. The corresponding cluster dendrogram shows that there is

a clear cut between three clusters of the samples. Table 3 summarizes the computational results

for the 10 datasets.

For comparison, the regularization method in [18] were applied to this example with three

different penalty functions, including Lasso, SCAD and MCP. The respective results and CPU

costs were also included in Table 3. The comparison indicates that the proposed method has

made a drastic improvement over the regularization method in both variable selection and

sample clustering, while having a comparable CPU cost with the existing regularization

method.

Finally we note that the ICC algorithm can converge very fast, usually within 50 iterations.

To be safe, we set the number of burn-in iterations to 100 and then continue to run for 400

iterations for sample collection. Such a 500-iteration run has been excessively long for ICC.

Drug sensitivity prediction and sensitive gene selection

The Cancer Cell Line Encyclopedia (CCLE) dataset consisted of 8-point dose-response curves

for 24 chemical compounds across over 400 cell lines. For different chemical compounds, the

numbers of cell lines are slightly different. For each cell line, it consisted of the expression data

of 18,926 genes. The dataset is publicly available at www.broadinstitute.org/ccle. We used the

area under the dose-response curve, which is also termed as activity area, to measure the sensi-

tivity of a drug for each cell line. Compared to other measurements, such as IC50 and EC50, the

activity area could capture the efficacy and potency of a drug simultaneously. To pre-process

the data, for each drug, we first applied a model-free feature screening method proposed in

[28] to reduce the number of candidate genes to pn = 500 and then divided the cell lines to two

parts, the first 80% of the cell lines used for training and the remaining 20% of the cell lines

used for test (in the order published at the CCLE website).

The underlying scientific motivation for this study is that cancer is a complex disease and it

can have significant heterogeneity in response to treatments. Therefore, the mixture regression

is potentially appropriate for modeling such heterogeneous data. We note that the drug-sensi-

tive genes, that are identified by the proposed method based on the CCLE data, may differ

from those genes that respond to the drug. To truly identify the genes that respond to the

drug, i.e., those whose expression changes with drug treatments or dose levels, statistically we

have to take the drug level as covariates and the gene expression as the response variable.

For each dataset, we tried four different values of K = 1, 2, 3 and 4. For the case K = 1, the

ICC algorithm is simply reduced to the SIS-MCP algorithm for conventional high-dimen-

sional linear regression. In this case, it only needs to run for a single iteration. For K = 2, 3 or

4, we ran the ICC algorithm for 500 iterations. As in simulation studies, we discarded the first

100 iterations for the burn-in process and used the remaining 400 iterations were for infer-

ence. Each run costs about 15 CPU minutes on a computer of 2.60GHz. The computational

results were summarized in Table 4, where the number of clusters for each drug was deter-

mined according to the average-BIC criterion. In addition to the value of K, Table 4 also

reports the total number of genes selected by the mixture regression, the correlation coefficient

corr(Ytrain, Ŷ train), and the correlation coefficient corr(Ytest, Ŷ test), where Ŷ train and Ŷ test denote

the fitted and predicted response, respectively. The genes selected by the mixture regression

for each drug was reported in S4 Table. In prediction, we first identify the cluster that the new
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Fig 1. BIC paths and cluster dendrograms produced by ICC. The BIC paths and cluster dendrograms produced by ICC with K = 2,

3, 4, where each cluster dendrogram was produced using a hierarchical clustering procedure (with the average link) based on the

dissimilarity matrix calculated along the corresponding BIC path after discarding the first 100 iterations as the burn-in process.

https://doi.org/10.1371/journal.pone.0212108.g001
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sample most likely belongs to according to the distribution given in (4) and then make the pre-

diction based on the regression model learned for that cluster. To show the advantage of the

mixture regression model, we have also included in Table 4 the results with K = 1 for all drugs.

Among the 24 drugs, there are 20 drugs that prefer the mixture regression model according to

the average-BIC criterion. For these 20 drugs, the mixture regression model has made a drastic

improvement over the single regression model in both fitting and prediction. To make this

conclusion more concrete, we also conducted random shuffling and a 5-fold cross validation

on the CCLE dataset, the results are included in S2 and S3 Tables.

To visualize the detailed fitting and prediction performance of the mixture regression

model, we show in Figs 2 and 3 some scatter plots and cluster dendrograms with the drugs

AZD0530, L-685458 and Lapatinib as examples. In fitting, the values of corr(Ytrain,Ŷ train) of the

three drugs have been improved by the mixture regression model from 0.541, 0.586 and 0.489

to 0.819, 0.924 and 0.871, respectively. In prediction, the values of corr(Ytest,Ŷ test) of the three

drugs have been improved by the mixture regression model from 0.289, 0.444 and 0.351 to

0.73, 0.888 and 0.819, respectively.

Table 3. Comparison of the ICC and regularization methods, where fsr, nsr and kβ̂k � βkk are calculated by averaging over 10 independent datasets with the stan-

dard deviation given in the parenthesis. The regularization methods were implemented with the Lasso, SCAD and MCP penalties.

ICC Component 1 Component 2 Component 3

Variable Selection fsr 0.0167 (0.0527) 0 (0) 0.0286 (0.0904)

nsr 0 (0) 0 (0) 0 (0)

kβ̂k � βkk 0.4128 (0.1712) 0.4437 (0.1743) 0.4511 (0.2201)

Clustering fsr 0.2032 (0.0231) 0.2218 (0.0402) 0.1956 (0.0391)

nsr 0.1965 (0.0433) 0.198 (0.0572) 0.227 (0.0493)

CPU(m) 10

fmrs-Lasso Component 1 Component 2 Component 3

Variable Selection fsr 0.32773 (0.2455) 0.0429 (0.1355) 0.05 (0.1581)

nsr 0.52 (0.3676) 0.78 (0.3824) 0.94 (0.1897)

kβ̂k � βkk 8.778 (0.9603) 9.273 (1.3057) 9.884 (0.3668)

Clustering fsr 0.6989 (0.1029) 0.8044 (0.2192) 0.7847 (0.2524)

nsr 0.3095 (0.4607) 0.7755 (0.3918) 0.8925 (0.3067)

CPU(m) 6

fmrs-SCAD Component 1 Component 2 Component 3

Variable Selection fsr 0.1650 (0.2371) 0.0556 (0.1757) 0.0775 (0.1635)

nsr 0.56 (0.3098) 0.8 (0.2828) 0.749 (0.3458)

kβ̂k � βkk 7.927 (2.8518) 9.35 (0.8100) 9.749 (0.5852)

Clustering fsr 0.5514 (0.2312) 0.7303 (0.3041) 0.8622 (0.1799)

nsr 0.4405 (0.4207) 0.664 (0.4117) 0.8485 (0.3086)

CPU(m) 5

fmrs-MCP Component 1 Component 2 Component 3

Variable Selection fsr 0.09 (0.1912) 0.05 (0.1581) 0.1333 (0.2194)

nsr 0.54 (0.1897) 0.74 (0.2119) 0.64 (0.3239)

kβ̂k � βkk 7.475 (0.8900) 8.253 (1.7369) 7.539 (3.2272)

Clustering fsr 0.5427 (0.0862) 0.5652 (0.1118) 0.6074 (0.1164)

nsr 0.5305 (0.3691) 0.6225 (0.3550) 0.5455 (0.3529)

CPU(m) 5

https://doi.org/10.1371/journal.pone.0212108.t003
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In terms of gene selection, we find that for most drugs, the genes selected by the mixture

regression model are quite consistent with our existing knowledge. For example, for both drug

AZD6244 and PD-0325901, the gene SPRY2 was selected by the mixture regression model. It

is known that SPRY2 is an inhibitor of mitogen-activated protein kinase signaling, and it has

been recognized as the top sensitive gene to the two drugs [10, 29, 30]. [30] reported that the

gene DUSP6 is one of the key genes under MEK function control, while MEK is the target

gene of AZD6244. In our study, this gene was selected by the mixture regression model but

not by the single regression model. For the drug Topotecan and Irinotecan, the gene SLFN11

was selected as the top drug sensitive gene. Both [3] and [31] reported that SLFN11 is a predic-

tive biomarker for these two drugs. For the drug Lapatinib, the gene ERBB2 was selected by

the mixture regression model but not by the single regression model. Both [32] and [33]

reported that the expression level of ERBB2 is predictive for the treatment effect of Lapatinib.

For the drug Paclitaxel, the gene BCL2L1 was again selected by the mixture regression model

only. In the literature, [34] reported that the gene BCL2L1 is predictive for the treatment effect

of Paclitaxel.

We note that for some drugs, including TKI258, PHA-665752 and Topotecan, there are

some clusters for which no genes were selected. We have made a detailed exploration of these

clusters. The reason is that these clusters are too small, each consisting of 2 samples only, and

thus no genes were selected. Merging them to other clusters is possible, but this will lead to a

Table 4. Comparison of the single component regression model and mixture regression model for the CCLE dataset, where #gene denotes the total number of differ-

ent genes selected by the model.

Drug Single regression Model Mixture regression Model

#gene corr(Ytrain,Ŷ train) corr(Ytest,Ŷ test) RMSE(Ŷ train) RMSE(Ŷ test) K #gene corr(Ytrain,Ŷ train) corr(Ytest,Ŷ test) RMSE(Ŷ train) RMSE(Ŷ test)

17-AAG 15 0.655 0.469 0.785 0.937 1 15 0.655 0.469 0.785 0.937

AEW541 8 0.555 0.289 0.503 0.609 2 9 0.835 0.73 0.325 0.433

AZD0530 12 0.541 0.368 0.662 0.714 2 5 0.819 0.816 0.439 0.448

AZD6244 13 0.71 0.637 0.651 0.709 2 10 0.855 0.783 0.399 0.387

Erlotinib 1 0.403 0.207 0.810 0.733 2 7 0.814 0.759 0.528 0.489

Irinotecan 4 0.769 0.647 0.724 0.869 3 5 0.921 0.873 0.443 0.558

L-685458 3 0.586 0.444 0.449 0.485 3 7 0.924 0.888 0.209 0.248

LBW242 2 0.341 0.3 0.842 0.887 3 11 0.919 0.862 0.501 0.543

Lapatinib 1 0.489 0.351 0.563 0.655 2 5 0.871 0.819 0.318 0.399

Nilotinib 2 0.548 0.272 0.675 0.632 2 7 0.891 0.72 0.401 0.453

Nutlin-3 1 0.322 0.302 0.822 0.839 3 23 0.925 0.86 0.507 0.518

PD-0325901 17 0.756 0.693 0.562 0.593 4 14 0.81 0.798 0.363 0.371

PD-0332991 1 0.492 0.3 0.542 0.640 1 1 0.492 0.3 0.542 0.640

PF2341066 2 0.466 0.133 0.568 0.619 3 4 0.909 0.802 0.389 0.408

PHA-665752 6 0.484 0.129 0.477 0.511 4 11 0.744 0.783 0.355 0.413

PLX4720 1 0.453 0.436 0.493 0.783 2 3 0.83 0.724 0.397 0.598

Paclitaxel 10 0.629 0.584 1.001 1.081 4 6 0.759 0.682 0.842 0.955

Panobinostat 3 0.656 0.5 0.861 0.893 4 13 0.88 0.834 0.716 0.734

RAF265 10 0.574 0.392 0.601 0.737 1 10 0.574 0.392 0.601 0.737

Sorafenib 1 0.493 0.209 0.671 0.833 4 21 0.931 0.774 0.518 0.545

TAE684 3 0.495 0.263 0.737 0.816 2 10 0.837 0.792 0.462 0.515

TKI258 2 0.461 0.039 0.553 0.556 3 9 0.815 0.732 0.349 0.373

Topotecan 5 0.691 0.529 0.905 1.080 4 8 0.829 0.751 0.708 0.810

ZD-6474 8 0.473 0.24 0.889 0.973 1 8 0.473 0.24 0.889 0.973

https://doi.org/10.1371/journal.pone.0212108.t004
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Fig 2. Comparison of the single component and mixture regression models for training data fitting. The left

column is for the single regression model, the middle column is for the mixture regression model, and the right

column is the cluster dendrogram produced by the mixture regression model; the top, middle and lower panels are for

the drugs AZD0530, L-685458 and Lapatinib, respectively.

https://doi.org/10.1371/journal.pone.0212108.g002
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Fig 3. Comparison of the single component and mixture regression models for test data prediction. The left

column is for the single component regression model, and the right column is for the mixture regression model; the

top, middle and lower panels are for the drugs AZD0530, L-685458 and Lapatinib, respectively.

https://doi.org/10.1371/journal.pone.0212108.g003
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slight increase in the average-BIC value. In general, for two partitions with similar average-

BIC values, the prediction will not be much affected.

For a thorough comparison, we have also applied elastic net, ridge regression, support vec-

tor regression and random forest to this example, which have been implemented in the R

package glmnet, glmnet, e1071 and randomForest, respectively. For elastic net, we let the l1-

penalty and the l2-penalty to be equally weighted, and let the regularization parameter deter-

mined via cross-validation. For ridge regression, we determine the regularization parameter

via cross-validation. For support vector regression, we have tried all possible combinations of

the kernels (linear, sigmoid, radial and polynomial) and regression types (eps-regression and

nu-regression). For random forest, we run the package under the default setting. We have also

tried different numbers of trees, but less favorable results were produced. The results were

summarized in S5 Table.

As a summary, we show in Fig 4 the values of corr(Ytest,Ŷ test) produced by support vector

regression, random forest, ridge regression, elastic net, SIS-MCP regression (i.e., single model

Fig 4. Prediction performance comparison. Comparison of the prediction performance (measured by corr(Ytest, Ŷ test)) of the mixture regression model with

support vector regression, random forest, ridge regression, elastic net, and SIS-MCP regression (i.e., single model regression).

https://doi.org/10.1371/journal.pone.0212108.g004
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regression), and mixture regression for the 20 drugs that prefer the mixture regression model.

The plot indicates that the mixture model has made a drastic improvement in prediction over

all other competitive methods for these drugs. To assess the significance of the results, we

applied Fisher’s transformation to each of the correlation coefficients between Ytest and Ŷ test;

that is, we define the prediction z-score by

Z ¼ 0:5 log
1þ r
1 � r

� �

;

where r denotes the correlation coefficient. Following the standard statistical theory, Z is

approximately normally distributed with a standard deviation of 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 3
p

, where N denotes

the number of samples used in calculating the correlation coefficient r. Based on the prediction

z-scores, we conducted paired t-tests for each of the competitive methods versus the mixture

regression method and reported the p-values in Table 5. The tests were under two scenarios,

with all N = 24 drugs and with only the N = 20 drugs for which the mixture regression is pre-

ferred. Under both scenarios, the mixture regression method shows highly significant

improvement in prediction over the competitive methods. These results imply that population

heterogeneity is the key to the success of the proposed method. If the population is homoge-

neous (i.e., a single component regression model is preferred), the regularized linear regression

might not be the best method for drug sensitivity prediction. In this case, both support vector

regression and random forest tend to work better than regularized linear regression.

Discussion

The proposed method can be extended in various ways. In the current implementation, the

features are selected at each iteration using the SIS-MCP algorithm. Many other algorithms

can be used in place of SIS-MCP, e.g., SIS-SCAD [7, 24] and rLasso [9]. However, the Lasso

algorithm [6] might not work here, which, as pointed out in [21], will lead to a biased estimator

if the parameter space is unbounded. In addition, the ICC algorithm requires the estimates

θðtÞn ’s to be accurate enough at each iteration. To be more precise, θðtÞn ’s need to be uniformly

consistent with respect to θðtÞ
�

’s. For the model considered in the paper, a high-quality high-

dimensional regression estimation procedure is essential for achieving such a goal. It is known

that the performance of the penalized likelihood methods, which include MCP and SCAD,

tend to deteriorate as the dimension increases, see [35] for more discussions on this issue. To

address this issue, a blockwise consistency method by [36] might be used to further improve

the performance of the MCP and SCAD method when the number of features is ultra-high.

To determine the value of K, i.e., the number of clusters, we proposed the average-BIC crite-

rion. With the same reasoning, an average EBIC criterion can be defined based on the EBIC

statistic [37], and it might work better for high-dimensional problems. Finally, we would like

to say that the proposed method is general, which can work with any types of features, e.g.,

genomic features, clinical features and demographical features.

Table 5. p-values produced by the paired t-test for each of the competitive methods versus the mixture regression.

linear &

eps-reg

linear &

nu-reg

radial &

eps-reg

radial& nu-

reg

poly& eps-

reg

poly &nu-

reg

sigmoid

&eps-reg

sigmoid &

nu-reg

random

forest

ridge elastic

net

Single

20

Drugs

9.88e-13 6.92e-14 3.69e-8 3.49e-8 2.58e-9 2.34e-9 1.02e-10 4.50e-9 6.72e-9 1.01e-

10

4.17e-11 9.88e-

13

24

Drugs

1.15e-9 2.00e-10 1.26e-5 1.31e-5 1.32e-6 1.23e-6 9.48e-8 5.82e-7 6.89e-6 4.26e-7 9.37e-8 2.30e-8

https://doi.org/10.1371/journal.pone.0212108.t005
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Conclusion

We have proposed a mixture regression model-based method for drug sensitivity prediction.

The proposed method has explicitly addressed two fundamental issues in drug sensitivity pre-

diction, namely, population heterogeneity and feature selection pertaining to each subpopula-

tion. The mixture regression model is estimated using the ICC algorithm, which can lead to a

consistent estimator for the mixture regression model. In addition, we have proposed an aver-

age-BIC criterion for determining the number of components for the mixture regression

model. The proposed method was applied to the CCLE dataset, and the numerical results indi-

cate that the proposed method has made a drastic improvement over the existing ones, such as

random forest, support vector regression, and regularized linear regression, in both response

prediction and feature selection.
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