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Mounting evidence suggested that high loading intensity of exercise

might be detrimental to human health, especially the gastrointestinal tract.

Pterostilbene (PTE), derived from grapes and blueberries, might reach a high

concentration of intestinal contents. Our study aimed to evaluate PTE’s ability

to prevent the loss of intestinal epithelial barrier in high loading intensity of

exercise. The exercise model was established by the forced running of mice.

An effective HPLC-UV method was developed to quantify PTE concentration

in intestinal content. The mRNA changes were detected by quantitative

polymerase chain reaction (qPCR). The structure of intestinal flora was

analyzed by 16S rRNA sequencing. The PTE (100 mg/kg/d) could significantly

attenuate exercise-induced intestinal epithelial barrier loss. Moreover, the

HPLC-UV assay showed that the PTE concentration of intestinal content could

last 12 h. Furthermore, the exercise increased the abundance of Alistipes,

which was related to lipopolysaccharide (LPS) production but could not

be reversed by PTE intervention. Besides, cell experiments showed that

PTE could promote the expression of intestinal epithelial tight junction (TJ)

molecules in vitro. In conclusion, PTE has a significant interest in preventing

exercise-induced intestinal damage.

KEYWORDS

exercise, pterostilbene (PTE), lipopolysaccharide (LPS), intestinal barrier, intestinal
flora

Introduction

It is a known fact that moderate exercise can prevent and cure various metabolic
diseases and enhance immunity (1–3). Otherwise, the sustained high loading intensity
of exercise, which exceeds 60% maximal oxygen uptake (VO2 max) or 70% of maximum
heart rate reserve, such as a 50-km forced march, marathon, or triathlon, may cause
many health hazards to the body (4, 5). High loading intensity of exercise causes
metabolic disorder of skeletal muscle, leading to repetitive tissue micro-trauma of
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muscle, connective tissue, bone structure, and chronic
inflammation (6). In severe cases, some studies show
that 86% of athletes have severe gastrointestinal syndrome
(GIS) (7).

The intestinal flora plays an essential role in host physiology
and health. Mounting evidence suggests that exercise could alter
the structure of intestinal flora (8, 9) and is a crucial modulator
of intestinal flora (10). Besides, recent evidence shows that stress
during exercise is highly related to the changes in the intestinal
flora (11). However, there is no direct evidence that high loading
intensity of exercise causes dysbiosis of intestinal flora. The
effect of high loading intensity of exercise on intestinal flora is
still unknown. Therefore, our study aimed to explore the effect
of high loading intensity of exercise on intestinal flora.

The intestinal barrier has become a focus of biomedical
research, divided into chemical, mechanical, biological,
and immune barriers according to their functions (12,
13). The mechanical barrier is composed of occludin,
claudins, and zonula occluden (14, 15), which could prevent
lipopolysaccharide (LPS) from transferring into serum (13).
The LPS could cause harmful inflammatory reactions. LPS
could cause TJ dysfunction through the activation of the
immune system or the inflammatory process, closely associated
with the initiation or development of intestinal diseases (16).
Besides, LPS could cause altered membrane permeability,
through the disruption or relocation of tight junction (TJ)
proteins, following redox-sensitive mitogen-activated protein
kinases (MAPKs) modulation (17). A growing body of research
indicates that high loading intensity of exercise could cause
intestinal epithelial barrier damage (18–20). As for athletes, the
sustained high loading intensity of exercise training is frequent
(7), and barrier integrity is vital for athletes to prevent LPS
from transferring into the serum to avoid GIS. Therefore, a
new strategy for preventing intestinal barrier damage from high
loading intensity of exercise is required for athletes.

Given the crucial role of the practical application for
athletes, dietary approaches are preferentially recommended
to prevent intestinal barrier loss (21). In this sense, natural
bioactive substances such as plant polyphenols are emerging
as sports nutrition supplements for GIS prevention (22, 23).
Research studies have recently indicated that a Mediterranean
diet containing a high proportion of polyphenolic compounds
(24) could significantly prevent intestinal barrier dysfunction
(25). The phenolic compounds such as pterostilbene (PTE)
are widely reported and rooted in blueberries and grapes
(26). Mounting evidence has further proved that PTE and
its metabolites could improve the alteration in epithelial

Abbreviations: PTE, pterostilbene; LPS, lipopolysaccharide; ATCC,
American Type Culture Collection; DMEM, Dulbecco’s Modified Eagle’s
Medium; TMS, 3,5,4’-trimethoxy-trans-stilbene; DAPI, 4’,6-diamidino-2-
phenylindole;GIS, gastrointestinal syndrome; TJ, tight junction; PCoA,
principal coordinate analysis; PC1, primary ordination axis.

permeability induced by LPS (17). PTE might slow LPS
induced transepithelial electrical resistance decrease, preserve
TJ proteins levels, and reduce MAPK phosphorylation to
attenuate alteration of epithelial permeability. Furthermore,
some studies find that PTE protects the intestinal epithelial
barrier through the NF-κBMLCK/p-MLC signal pathway in
mice (27). Besides, PTE could attenuate oxidative stress-induced
intestinal injury by improving mitochondrial redox homeostasis
(28). However, the protective role of PTE in exercise-induced
intestinal barrier damage remains unclear.

In this study, we attempted to investigate the effect of
PTE against damage induced by high loading intensity of
exercise. Our findings revealed that exercise caused the intestinal
epithelial barrier loss by altering intestinal flora’s structure.
Otherwise, the intervention of PTE (100 mg/kg/d) could
promote the expression of intestinal epithelial TJ molecules to
prevent intestinal damage.

Materials and methods

Chemicals and reagents

The LPS and 4′,6-diamidino-2-phenylindole (DAPI) were
purchased from Sigma (St. Louis, MO, United States). PTE
(≥ 98% purity analyzed by HPLC) was obtained from
Chengdu Must Bio-Technology. Occludin antibodies were
purchased from Proteintech (Chicago, United States). The
3,5,4′,-trimethoxy-trans-stilbene (TMS) was obtained from
Solarbio (Beijing, China). The penicillin–streptomycin was
purchased from Beyotime (Shanghai, China). The fetal bovine
serum was obtained from HyClone (Logan, UT, United States).

Experimental animals and design

The C57BL/6 mice (7 weeks, male) weighing 20–22 g
were obtained from the Laboratory Animal Centre of the
Army Medical University (Chongqing, China) and housed
in a controlled environment (22–25◦C, 50–55%). They were
provided standard food (D12450B; 10% fat, 70% carbohydrate,
20% protein) and obtained water freely (29). The body
weight and food intake of mice were weighed every day. All
animal experiments described herein followed the National
Research Council Guidelines, approved by the Animal Care
and Use Committee of the Army Medical University. The
experimental design is shown in Figure 1A and followed
the National Research Council Guidelines. Animal experiment
1: the C57BL/6 mice (n = 24) were randomly distributed
into six groups (n = 4/group), gavaged with pterostilbene
(100 mg/kg/day) (30) at 9:00 a.m. and sacrificed at 0, 2, 6, 10,
12, and 24 h after intragastric administration, respectively. The
contents of small intestine and colon were collected and stored
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at −80◦C. Animal experiment 2: mice (n = 48) were randomly
divided into four groups (n = 12/group): control group (CON),
pterostilbene group (PTE), exercise group (EX), and exercise
with pterostilbene group (EX + PTE). The experiment lasted
for 2 weeks. In the first week, mice ran on the treadmill at
a speed of 15 m/min for 10 min one time a day and rested
for the weekend on a motorized treadmill (SANS Biological
Technology, Jiangsu, China). In the second week, referred to
Bedford’s method (31, 32), mice in exercise groups ran at the
speed of 25 m/min until exhaustion one time a day for 7 days,
and the exhaustion statue according to the literature reported
(33). The PTE and EX + PTE groups were orally gavaged with
pterostilbene (100 mg/kg/day) for 1 week, as previous study
reported (30). The PTE was administered 12 h before exercise,
and the mice of the EX and EX + PTE groups were sacrificed
1 h after the last exercise session. Finally, the serum, small
intestine, cecum, and colon contents were removed and stored
at−80◦C.

Cell experiment and design

As the literature reported (34), Caco-2 and CCD 841
CoN cell lines, which were used as intestinal epithelium
models frequently, were obtained from the Chinese academy
of sciences cell bank or American Type Culture Collection
(ATCC) (Manassas, VA, United States). The cells were cultured
in Dulbecco’s Modified Eagle’s Medium (DMEM) (Gibco,
Carlsbad, CA, United States) containing 10% fetal bovine serum
and 1% penicillin–streptomycin in a controlled environment
(37◦C, 95% air, 5% CO2).

CCK-8 kits: Cells were seeded at an initial density of 1× 105

cells/well in a 200 µl DMEM medium. After 24 h, cells were
exposed to the freshly prepared medium containing PTE (0, 5,
10, 20, 40, 60, 80, and 100 mg/L) or LPS (0, 0.2, 0.4, 0.6, 0.8,
1.0, 2.0, 4.0, 6.0, 8.0, 10.0 µg/ml) for 24 h. Subsequently, we
added 10 µl of CCK-8 solution to each well and measured the
absorbance at 450 nm.

The scratch test: Cells were seeded at an initial density of
5 × 105 cells/well in 1 ml DMEM medium. After 24 h, the
fused monolayer cells were scraped with the tip of a 10 µl sterile
pipette and treated with PTE (20 mg/L) or LPS (1 µg/mL). The
cells were photographed 0, 12, 24, and 36 h after the scratch.

Quantitative polymerase chain reaction: (1). Cells were
seeded at an initial density of 5× 105 cells/well in a 2 ml DMEM
medium. After 24 h, the PTE and LPS + PTE groups were
treated with PTE (20 mg/L). The LPS and LPS + PTE groups
were treated with LPS (1 µg/ml) 1 h after PTE treatment. (2).
Cells were seeded at an initial density of 5 × 105 cells/well in
a 2 ml DMEM medium complemented with the components
given above and allowed to attach and grow. After 24 h, cells
were treated with LPS (1 µg/ml) and collected at 0, 1, 2, 4, 6, 8,
and 12 h. The remaining methods refer to qPCR.

High-performance liquid
chromatography assays for
pterostilbene

Apparatus: The assay was set up by an integrated HPLC
system (Waters 2695 Liquid Chromatograph, Waters, America).
The HPLC system contained a Pntulips QS-C18 Plus column
(250× 4.6 mm i.d., 5 µm), and the Empower 2 software (Waters,
America) was used to analyze the data and control the system.
HPLC assays: According to the previous method (35), the colon
contents (20 mg) were mixed with methanol (500 µl), followed
by vortex oscillation (20 s), and ultrasonic extraction (80 Hz,
10 min, ≤ 30◦C, 12 min). Then, the supernatant was taken
as the sample detection solution after standing (4◦C,1 h) and
centrifugation (10,000 g,10 min, 4◦C). The TMS was used as
an internal standard (200 ng/ml). The mobile/water phase was
performed by gradient transportation of acetonitrile and 0.1%
(v/v) formic acid for 12 min at a flow rate of 1.2 ml/min. The
UV absorbance at 320 nm was recorded (36). Program setting:
column temperature 35◦C; gradient procedure:(a) 0–4 min, 60%
acetonitrile; (b) 4–8 min, 60–90% acetonitrile; (c) 8–12 min,
90% acetonitrile. The system is rebalanced for 10 min before
the next injection.

Biochemical analysis

As the literature reported (37), serum (10 µl), intestinal
contents (50–100 mg), and tissues (50 mg) were weighed and
dissolved in 500 µl phosphate-buffered saline (PBS), vibrated
(5 min), and centrifugated (12,000 g, 4◦C, 20 min) to collect
the liquid supernatant. The inflammatory cytokines (TNF-α,
IL-1β, and IL-6), GSH levels of serum, and LPS levels in the
supernatant of intestinal contents were detected by ELISA kits
(Quanzhou, Ruixing Biological).

Histological analysis

Eosin (H&E) staining: The intestine tissues were fixed in 4%
paraformaldehyde fixative overnight. The tissues were sectioned
at 5 µm and stained with hematoxylin–eosin, observed, and
photographed by light microscope as previously described (13).
Glycogen staining: Paraffin-embedded sections (5 µm) of the
small intestine and colon were dyed in schiff periodic acid
shiff (PAS) staining solution B (10 min) and PAS staining
solution A (25 min) under dark conditions, respectively. Then,
sections were stained with PAS staining solution C (30 s) and
observed by a light microscope according to the instruction.
Immunofluorescence staining: Paraffin-embedded sections (5
µm) of the colon were prepared and incubated with 0.5%
TrixonX-100 (1 h, RT) according to a previous study (13). After
that, sections were blocked with 2% horse serum (1 h, RT)
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FIGURE 1

Exercise-induced intestinal barrier disruption and inflammation in C57BL/6 mice. (A) Part1: mice gavaged with pterostilbene (100 mg/kg/day)
and sacrificed at 0, 2, 6, 10, 12, 24 h (n = 4); Part 2: mice treatment with pterostilbene (100 mg/kg/day) or exhaustive exercise for 7 days.
(B) Body weight was measured one time a day (F = 1.384, p = 0.261). (C) Representative photographs of colons from CON, PTE, EX, and
EX + PTE. (D) Food intake was measured one time a day (F = 0.612, p = 0.626). (E) TNF-α (PTE: F = 63.793, p < 0.001; EX: F = 287.397, p < 0.001;
interaction: F = 4.354, p < 0.05), (F) IL-1β (χ2 = 28.102, p < 0.001), (G) IL-6 (PTE: F = 40.789, p < 0.001; EX: F = 209.477, p < 0.001; interaction:
F = 3.625, p < 0.05), and (H) glucose were measured by ELISA kits immediately (PTE: F = 0.774, p = 0.384; EX: F = 18.084, p < 0.001;interaction:
F = 1.079, p = 0.305). (I) Representative PAS images of the colon at a magnification of 100×. (J) The colon glycogen was measured
(χ2 = 20.616, p < 0.001). Data were expressed as means ± SEM, and the statistical significance was showed using asterisks denote (∗p < 0.05;
∗∗p < 0.01; ∗∗∗p < 0.001).

and against with primary antibodies (Occludin, Proteintech,
1:1,000) (12 h, 4◦C) and secondary antibodies (FITC, Beyotime,
1:500) (1 h, RT). After being washed with PBS, sections were
incubated with DAPI (Sigma,5 µg/ml) (10 min, RT) and
visualized with a fluorescence microscope (Olympus, Japan).
The ImageJ software was used to measure the mean fluorescence
intensity. Transmission electron microscopy: Tissue samples
were sealed with 2.5% glutaraldehyde for 24 h, washed, and
fixed in osmium solution for 2 h. Tissue was dehydrated,

permeabilized, embedded, and sectioned at 60 nm and observed
with a JEM-1400 microscope (JEOL, Tokyo, Japan).

Quantitative polymerase chain
reaction

As previously reported (38–40), the PrimeScript RT Reagent
Kit (Takara, Japan) and TRIzol reagent (Invitrogen Life
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Technologies, Grand Island, NY) were used to extract the total
RNAs. Then, we reversed transcript mRNA into cDNA by
qTower 2.2 real-time PCR system (Analytik Jena, Germany).
The oligonucleotide primers were synthesized by Sangon
Biotech (Shanghai, China), as listed in Supplementary Table 1.

Western blot

As the literature described (39), proteins were extracted
from the colon, separated by 12% SDS-PAGE, and
transferred onto PVDF membranes (Bio-Rad, CA). After
that, membranes were blocked with 5% dried skimmed
milk (RT,1 h) and were incubated with primary antibodies
(24 h, 4◦C) under rotation following antibodies against
ZO-1 (Abcam, 1:1,000), occludin (Proteintech, 1:1,000),
claudin 1 (Thermo Fisher Scientific, 1:1,000). Then, we
incubated the membranes with a secondary antibody (1 h,
RT). Finally, we used the ImageJ software (NIH, MD) for the
quantitative analysis.

Sequencing of the intestinal flora

We used the DNA Stool kit (Beijing, China) to
extract the genomic DNA of bacteria according to the
instruction. We analyzed the 16S rRNA gene of the DNA
sequence on the Illumina MiSeq platform (Illumina,
San Diego, CA, United States), performed by QIIME2
software (41).

Statistical analysis

All experimental data were expressed as means ± SEM,
including at least three biological replicates. The details of the
statistical analysis were as follows: experiments between two
groups were analyzed with Student’s t-test. For multiple group
comparisons, we used a two-way ANOVA to analyze the factors’
main effect and interaction and the t-test for individual effect
analysis after two-way ANOVA. The two analyzed factors of
animal experiments were PTE and EX, and the two analyzed
factors of cell experiments were LPS and PTE. Moreover, we
used the non-parametric Kruskal–Wallis tests if the variance
was not the same.

Finally, we used the two-way ANOVA to analyze body
weight, food intake, TNF-α, IL-1β, IL-6, glucose, glycogen,
quantity analysis of WB, immunofluorescence staining, and
results of qPCR of four groups. Besides, we used the t-test for
two groups’ analysis, such as the healing rate of scratch or other
experiments which needed the comparison between the two
groups. All analyses were performed by SPSS 19.0 (Chicago, IL).
A p< 0.05 was considered statistically significant. The statistical

significance was showed using asterisks denote (∗p < 0.05;
∗∗p < 0.01; ∗∗∗p < 0.001).

Results

Exercise-induced intestinal barrier
disruption and inflammation in mice

As shown in Supplementary Figure 1A, sweating and
injury of paws in C57BL/6 were significantly observed after
running until exhaustive. The body weight (Figure 1B) and
food intake (Figure 1D) were the same among the four
groups, which indicated that exercise did not change body
weight and food intake. There were significant differences in
the colonic length (Figure 1C) between the EX group and
other groups, and the colonic length of the EX group was
shorter than the CON group. After high loading intensity of
exercise for 7 days, as previously reported (13), the serum levels
of inflammatory cytokines, including TNF-α, IL-1β, and IL-6
in the exercise group, significantly increased (Figures 1E–G).
Besides, to confirm the influence on glycogen consumption by
exercise, the glucose levels in serum (Figure 1H) and glycogen
in intestine tissues of mice were detected by ELISA kits and
PAS staining. Moreover, the glycogen level was significantly
decreased in the EX group of small intestinal (Supplementary
Figures 1B,C) and colon (Figure 1I,J). Histological staining
was performed in the small intestine and colon of C57BL/6
mice. The villi of the small intestine (Supplementary Figure 1D)
and colon (Figure 2A) were obviously changed with a
structural disorder in the EX group compared with the
CON group.

To further observe the intestinal damage, transmission
electron microscopy was performed. The number of microvilli
on the surface of the small intestine (Supplementary Figure 1E)
and colon (Figure 2B) villi was reduced and disordered.
Furthermore, we analyzed protein levels of the TJ-related
genes in the colon tissue by western blotting, and the protein
expression of ZO-1, occludin, and claudin1 was decreased
significantly in the EX group (Figures 2C,D). Moreover, as
observed by the immunofluorescence staining, the mean density
of occludin was reduced in the colon of C57BL/6 mice from the
EX group (Figures 2E,F). Meanwhile, the mRNA expressions of
TJ-related genes were decreased in the EX group (Figure 2G),
revealing a disrupted intestinal barrier in the colon induced
by the high loading intensity of exercise (13). Besides, the
mRNA levels of TNF-α, IL-1β, and IL-6 were significantly
increased in the EX group compared with the CON group
(Figure 2H), suggesting an inflammatory response in intestinal
tissues after exercise. Additionally, the GSH levels of serum
were significantly decreased in the EX group (Supplementary
Figure 1F), showing that high loading intensity of exercise
could induce oxidative stress injury in mice. In brief, the results
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FIGURE 2

PTE (100 mg/kg/d) inhibited exercise-induced intestinal injury. (A) Histological staining of the colon. (B) Transmission electron microscopy.
(C,D) Protein levels of TJ were analyzed by western blotting (occludin: PTE: F = 51.611, p < 0.001; EX: F = 28.061, p < 0.001; interaction:
F = 34.992, p < 0.001.Claudin1: PTE: F = 8.435, p < 0.05; EX: F = 1.431, p = 0.266; interaction: F = 0.269, p = 0.618.ZO-1: PTE: F = 11.587,
p < 0.01; EX: F = 2.287, p = 0.169; interaction: F = 3.893, p = 0.084). (E,F) Colon was observed by the immunofluorescence staining (PTE:
F = 7.793, p < 0.05; EX: F = 16.164, p < 0.01; interaction: F = 6.612, p < 0.05). The expression of the intestinal barrier (G) (occludin: PTE:
F = 245.310, p < 0.001; EX: F = 16.339, p < 0.01; interaction: F = 9.892, p < 0.01. Claudin1: PTE: F = 43.313, p < 0.001; EX: F = 9.654, p < 0.01;
interaction: F = 1.303, p = 0.276.ZO-1: PTE: F = 26.905, p < 0.001; EX: F = 4.891, p < 0.05; interaction: F = 1.061, p = 0.323) and the
inflammatory factor (H) (TNF-α: PTE: F = 44.853, p < 0.001; EX: F = 28.804, p < 0.001; interaction: F = 10.280, p < 0.01.IL-1β: PTE: F = 125.588,
p < 0.001; EX: F = 40.647, p < 0.001; interaction: F = 25.763, p < 0.001.IL-6: PTE: F = 10.094, p < 0.01; EX: F = 42.662, p < 0.001; interaction:
F = 6.593, p < 0.05) were measured by qPCR. Data were expressed as means ± SEM, and the statistical significance was showed using asterisks
denote (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001).

Frontiers in Nutrition 06 frontiersin.org

https://doi.org/10.3389/fnut.2022.965180
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-965180 July 30, 2022 Time: 19:26 # 7

Zhang et al. 10.3389/fnut.2022.965180

FIGURE 3

Exercise treatment modified the gut microbiota and induced LPS production. (A) Principal coordinate analysis (PCoA) of the β-diversity based on
the unweighted UniFrac distance matrix (at the ASV level) of the CON and EX groups. (B) Hierarchical cluster analysis. (C) The species
composition of 16 samples at the genus level, based on the average distance. (D) Bar graph of linear discriminant analysis (LDA) scores, showing
the biomarker taxa (LDA score of > 2 and a significance of p < 0.05 determined by the Wilcoxon signed-rank test). (E) The Kruskal–Wallis H test
bar plot at the genus level of CON and EX groups. (F–H) LPS was detected by ELISA kits of intestinal contents (F: PTE: F = 1.769, p = 0.194; EX:
F = 104.762, p < 0.001; interaction: F = 3.724, p = 0.064; G: χ2 = 14.966, p < 0.05; H: PTE: F = 0.091, p = 0.765; EX: F = 5.766, p < 0.05;
interaction: F = 6.364, p < 0.05). (I) PCoA of EX and EX + PTE group. (J) Kruskal–Wallis H test bar plot at the genus level of EX and EX + PTE
groups. Data were expressed as means ± SEM, and the statistical significance was showed using asterisks denote (∗∗p < 0.01; ∗∗∗p < 0.001).
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demonstrated high loading intensity of exercise could cause
intestinal barrier disruption and inflammation in C57BL/6 mice.

Exercise remodeled the intestinal flora
related to lipopolysaccharide
production

The cecum contents of mice were collected to investigate
exercise’s effect on the intestinal flora. There was no significant
difference between CON and EX groups on α-diversity
(Supplementary Figures 2A–G), including community
richness (Sobs, Chao, and Ace), community diversity (Shannon
and Simpson), and community evenness (Simpsoneven and
Shannoneven). Moreover, a clear separation was observed by
principal coordinate analysis (PCoA) based on unweighted
UniFrac distances along the primary ordination axis (PC1),
which accounted for 43.16% of the variation (Figure 3A). Based
on the average distance, the genus-level species composition
of 16 samples was displayed, and hierarchical cluster analysis
was performed, indicating that the intestinal flora structure
was remodeled by exercise (Figures 3B,C). The analysis of the
LEfSe showed that exercise caused an increase in the relative
abundance of members from the order Lactobacillales, family
Lactobacillaceae, genus Lactobacillus, and genus Alistipes
compared with control mice (Figure 3D). Besides, at the
genus level, exercise markedly increased the abundance of
Lactobacillaceae and Alistipes (Figure 3E), which was related
to LPS production as reported (42–44). As accumulating
evidence indicated that LPS contributed to intestinal injury,
the level of LPS in intestinal contents was measured. The
results showed that exercise increased the concentration of LPS
significantly (Figures 3F–H) (45, 46). In brief, these results
indicated that exercise remodeled the structure of intestinal
flora and induced LPS production, which was a major cause of
intestinal barrier injury.

Pterostilbene inhibited intestinal injury
induced by exercise

We further detected whether orally garaged with PTE
(100 mg/kg/d) in C57BL/6 mice could inhibit intestinal barrier
loss induced by the high loading intensity of exercise in the
literature (17). We observed that the structural disorder of the
small intestine and colon had been improved by histological
staining and transmission electron microscopy in the EX + PTE
group compared with the EX group (Figures 2A,B and
Supplementary Figures 1D,E). Besides, there were significant
differences in the gene and protein expression between groups
treated with exercise alone or garaged with PTE through a
series of indicators (Figures 2C–H). Then, the 16S rRNA gene
sequence of cecum content was performed to observe whether
PTE could reverse the structure of intestinal flora. At the

genus level, there were no significant differences in α-diversity
(Supplementary Figures 3A–G), β-diversity (Figure 3I), and
the abundance of Lactobacillaceae and Alistipes (Figure 3J)
between EX and EX + PTE groups. Besides, based on the
average distance, the genus-level species composition was
displayed, and hierarchical cluster analysis was performed
(Supplementary Figures 3H,I), indicating that PTE could
not inhibit LPS production, which was induced by a specific
genus. Additionally, the results showed that PTE could improve
intestinal barrier loss directly by promoting TJ-related gene
expression instead of altering intestinal flora structure.

High concentration of pterostilbene in
intestinal

A convenient and effective high-performance liquid
chromatography-ultraviolet (HPLC-UV) method was
developed to quantify PTE concentration in intestinal contents,
and the TMS was used as an internal standard (Supplementary
Figures 4A,B). The peak area ratio (pterostilbene and TMS) was
used as the analytical response, and the calibration standards
of these concentrations (1,500, 3,000, 4,500, 6,000, 7,500, 9,000,
10,500, and 12,000 ng/ml) were used to generate the calibration
curve and assess the linearity (y = 0.0057x + 0.3681, R2 = 0.999)
(Figure 4A and Supplementary Figure 4C). The PTE and
TMS eluted from the system at 7.2 and 10.6 min, respectively.
Detected by HPLC-UV, the maximum concentration was
achieved at 2 and 6 h in small intestinal and colon contents after
oral administration of pterostilbene (Figures 4B,C). Besides,
an unidentified metabolite that might be rooted in PTE was
present at 2–4 min (Figures 4D,E). However, no PTE analytical
response was detected in small intestinal and colon contents
12 h after oral administration. In addition, the PTE could keep
high concentration in intestinal tissues within 12 h, which
might play a crucial role in intestinal barrier repair.

Pterostilbene preserve tight junction
integrity in vitro

Cell experiments were performed to verify PTE’s potential
effects against intestinal barrier injury in vitro. The cell
viability of Caco-2 did not change in the presence of a
chosen concentration of PTE (0–20 mg/L) and LPS (0–
10 mg/L) (Figures 5A,B). Reverse transcription polymerase
chain reaction (RT-PCR) analysis showed that LPS-induced
inflammatory response occurred in Caco-2 cells (Figure 5C) at
early stages (1–3 h), which were subsequently decreased after
6 h, further confirming the results of animal experiments in
Figures 1E–G. Besides, there were no significant differences in
TJ-related genes (occludin, claudin-1, ZO-1) in Caco-2 cells at
different points (Supplementary Figure 4D), indicating that
LPS could not affect TJ-related gene expression.
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FIGURE 4

High concentration of pterostilbene in intestinal. (A) the calibration curve of pterostilbene obtained by HPLC method at 320 nm in standard
solution. (B,C) Levels of small intestinal and colon gavaged with pterostilbene (100 mg/kg/day). (D) Pterostilbene chromatograms of small
intestinal. (E) Pterostilbene chromatograms of colon. Data were expressed as means ± SEM.
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FIGURE 5

PTE preserve TJ integrity in vitro. (A,B) The cell viability of Caco-2 cells after pterostilbene (0, 5, 10, 20, 40, 60, 80, and 100 mg/L) or LPS (0, 0.2,
0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 6.0, 8.0, and 10.0 µg/ml) intervention. (C) The mRNA expression of inflammatory gene (TNF-α, IL-1β, and IL-6) induced
by LPS (1 mg/ml) at 1, 2, 4, 6, 8, and 12 h. (D,E) The healing rate of LPS-treated cells by the scratch test. (F) The expression of TJ-related gene
after PTE (20 mg/L) treatment by qPCR analysis in Caco-2 cells (claudin1:LPS: F = 0.398, p = 0.540; PTE: F = 44.602, p < 0.001; interaction:
F = 0.174, p = 0.684. occludin: χ2 = 1.333, p = 0.248.ZO-1: LPS: F = 0.380, p = 0.549; PTE: F = 8.755, p < 0.05; interaction: F = 4.126, p = 0.065),
(G) CCD 841 CoN cells (claudin1: LPS: F = 1.930, p = 0.190; PTE: F = 327.213, p < 0.001; interaction: F = 1.196, p = 0.296. occludin: LPS:
F = 0.283, p = 0.604; PTE: F = 166.214, p < 0.001; interaction: F = 1.125, p = 0.310.ZO-1: χ2 = 2.083, p = 0.149). (H) the expression of
inflammatory gene in Caco-2 cell between CON and PTE (20 mg/L). Data were expressed as means ± SEM, and the statistical significance was
showed using asterisks denote (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001).

Additionally, the scratch test showed that the healing rate of
LPS-treated cells (24.5 ± 0.7%;43.5 ± 0.9%; 51.8 ± 1.0%) was
significantly decreased than control (44.2 ± 0.4%;80.6 ± 0.4%;
94.6 ± 0.2%) at 12, 24, and 36 h (Figures 5D,E). The control
experiments were carried out to investigate the potential effects
of PTE (20 mg/L,12 h) after LPS (1 mg/L, 1 h) exposure. There
were significant improvements in TJ-related genes after PTE
treatment compared with other groups by RT-PCR analysis in
Caco-2 cells or CCD 841 CoN cells (Figures 5F,G). However,
the expression of inflammatory factor genes (TNF-α, IL-1β, and
IL-6) was increased obviously after PTE (20 mg/L) intervention

in Caco-2 cells (Figure 5H) compared with CCD 841 CoN
cells (Supplementary Figure 4E), owing to the anticancer effect
of PTE. In addition, treatment with PTE could induce the
expression of TJ-related genes.

Discussion

Many studies have proved that exercise is beneficial
for health, but the high loading intensity of exercise is
harmful to human health. It has been well established
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FIGURE 6

Schematic summary of the results. High loading intensity of exercise disrupted the intestinal epithelial barrier through remodeling the gut flora
related to LPS production. Pterostilbene attenuated exercise-induced intestinal barrier injury by improving the expression of the TJ-related
genes and suppressing inflammation.

that substantial exercise might induce GIS and decrease
exercise performance for the athlete population (7, 47).
Besides, a common feature of GIS is the altered intestinal
permeability (48). The high loading intensity of exercise
might affect the downregulation of the TJ-related genes to
increase intestinal permeability. Some studies found that
the loss of barrier integrity contributes to inflammatory
bowel disease and other metabolic diseases (49). The barrier
integrity could prevent LPS produced by gut microbiota from
transferring into the serum. In this study, we found that the
high loading intensity of exercise-induced GIS in C57BL/6
mice mode was related to the disrupted intestinal barrier
integrity (4). However, the potential mechanisms remained
to be elucidated.

A previous study showed that change in intestinal flora
composition was related to metabolism disturbance (50),
which might damage intestinal integrity (51). Gut-derived LPS,
which is induced by the increased proportions of harmful
microorganisms (such as Alistipes) (42), plays a crucial role in
causing intestinal inflammatory responses (52). In this study, we
found that the intestinal flora composition of C57BL/6 mice was
altered by the high loading intensity of exercise, which increased
the abundance of Alistipes and caused a high concentration of
LPS in contents.

The PTE has been largely investigated for its’ anti-
inflammation (53), anticancer (54), antiobesity (55), and
antifibrosis effects (56) in the past decade. The PTE
reduces blood pressure in adults at 250 mg/day doses
(57). Besides, the PTE at 100 mg/kg/day doses could

preserve the exercise endurance of mice subjected to
sleep restriction in mice (30). PTE at 50 mg/kg/day doses
could promote skeletal muscle adaptations to exercise
training in rats (58). However, the effect of high doses
of PTE on athletes is still unknown. In this study, we
aimed to investigate the role of PTE in the occurrence
of intestinal barrier repair to prevent perturbed intestinal
function followed by high load intensity exercise. The PTE
has a significant interest in preventing TJ integrity via
promoting the expression of intestinal epithelial TJ molecules.
Furthermore, some studies found that PTE protected the
intestinal epithelial barrier through the NF-κBMLCK/p-
MLC signal pathway in mice (27). Our results showed
that high load intensity of exercise could induce disrupted
intestinal barrier integrity and inflammation response in
the C57BL/6 mice running model, which might be due
to the LPS produced by intestinal flora (59). Otherwise,
oral administration of PTE could significantly prevent
intestinal barrier damage by improving the expression of the
TJ-related genes.

Unexpected in vitro experiment, we found that
there was no obvious change in the expression of
the TJ gene after LPS treatment, showing that LPS-
induced intestinal barrier disruption might be related
to the immune microenvironment of intestinal and
deserves further study (Supplementary Figure 4D).
Overall, this is the first report on PTE improving
intestinal barrier integrity disrupted by the high
loading intensity of the exercise via promoting
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the expression of intestinal epithelial TJ molecules. However,
the potential mechanism is still unclear, which will also be
a part of our follow-up study in the future. Besides, there
were some limitations in our study. We found that PTE
(100 mg/kg/d) could not reverse the intestinal flora structure
induced by high load intensity exercise, which indicated
that PTE could not prevent the dysbiosis of intestinal flora
composition. Moreover, our study only obtained the results
from animal and cell experiments, which could be different
in humans. Therefore, we will further observe the effect of
PTE on athletes, which will also be a part of our follow-up
study in the future.

Conclusion

In summary, high load intensity of exercise would affect
intestinal permeability caused by LPS, which might be related
to altering intestinal flora structure in the cecum (Figure 6).
Certain dietary supplements might contribute to the prevention
of injury induced by exercise (60). Therefore, we found PTE
emerging as a promising candidate for a new generation of
sports nutrition supplements for athletes.
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