REVIEW

Vol. 26 no. 18 2010, pages 2217-2225
doi:10.1093/bioinformatics/btq411

Sequence analysis

Advance Access publication July 11, 2010

A comparison of several algorithms for the single individual SNP
haplotyping reconstruction problem

Filippo Geraci

Istituto di Informatica e Telemetica, CNR, V. Moruzzi 1, Pisa, Italy

Associate Editor: Jonathan Wren

ABSTRACT

Motivation: Single nucleotide polymorphisms are the most common
form of variation in human DNA, and are involved in many research
fields, from molecular biology to medical therapy. The technological
opportunity to deal with long DNA sequences using shotgun
sequencing has raised the problem of fragment recombination. In
this regard, Single Individual Haplotyping (SIH) problem has received
considerable attention over the past few years.

Results: In this article, we survey seven recent approaches to
the SIH problem and evaluate them extensively using real human
haplotype data from the HapMap project. We also implemented a
data generator tailored to the current shotgun sequencing technology
that uses haplotypes from the HapMap project.

Availability: The data we used to compare the algorithms are
available on demand, since we think they represent an important
benchmark that can be used to easily compare novel algorithmic
ideas with the state of the art. Moreover, we had to re-implement
six of the algorithms surveyed because the original code was not
available to us. Five of these algorithms and the data generator
used in this article endowed with a Web interface are available at
http://biocalgo.iit.cnr.it/rehap

Contact: filippo.geraci@iit.cnr.it

Received on December 10, 2009; revised on June 14, 2010; accepted
on July 6, 2010

1 INTRODUCTION

Recently, many researchers’ focus has shifted from what individuals
of a certain species have in common to their differences, and
thus to DNA mutations. The single nucleotide polymorphism (SNP
pronounced ‘snip’) is the most widespread form of variation in
human DNA, and consists in the variation of the base present in
a single fixed position of the DNA strand. The sequence of all SNPs
in a given chromosome is called a haplotype. Humans are diploid
organisms, this means that except for the sexual chromosomes of
males, the chromosomes come in two copies: one inherited from the
mother and one from the father. As a consequence, the haplotypes
of a chromosome can be fully described by two sequences of
SNPs: the mother’s haplotype and the father’s. Since haplotypes
contain all the information about DNA variations, they play a
crucial role in many studies about variations in gene expression
and prediction of diseases. For this reason, several sequencing
projects have been launched with the ultimate goal of building a
complete map of the SNPs present in the human DNA (Frazer
et al., 2007; Levy et al., 2007; Via et al., 2010). At the moment,

the HapMap Consortium has produced the most complete map of
SNPs in human DNA, consisting of over 3.1 million SNPs (Frazer
et al., 2007) and has estimated that the overall number of SNPs in
the human DNA is about 9—10 million. Single Individual Haplotype
(SIH) reconstruction problem is one of the core problems in the
reconstruction of whole genomes (Zhao et al., 2007). It consists
in rebuilding the two haplotypes from a set of fragments obtained
by the shotgun sequencing of the chromosomes. Current shotgun
technology produces a very large set of fragments with lengths in
the range of 200-900 bases with a certain degree of overlap between
them (Morozova and Marra, 2008). This technology does not allow
keeping track of the association of a fragment with its haplotype. An
important characteristic of this problem is that, unlike the fragment
assembly problem, the position and orientation of the fragments
is known a priori; this means that fragments can be arranged in a
matrix called SNP Matrix. In the absence of errors, it is easy to find
a bipartition of the SNP matrix such that the fragments belonging to
each partition do not conflict (two fragments are said to be conflicting
if for a certain position not gap they have different values). In the
real-world application, this is not the case and errors affect the SNP
matrix. Errors can originate from various sources. Reading errors
are typically due to chemical/optical errors in reading the SNPs
and as a result lead to the insertion of a wrong base in a certain
position. Ambiguous readings occur when the signal strength of a
SNP in not enough to establish its correct value with a high degree
of confidence. The effect of ambiguous readings is typically the
insertion of a gap in the sequence.

The SIH problem has attracted considerable attention in the past
few years and a large number of models and algorithms have been
introduced in the literature. Many models have NP-hard solutions,
thus heuristics are often used. However, a common framework to
compare all those algorithms with each other is still lacking. We
tested several algorithms for the SIH problem and from them, we
selected the seven most effective heuristic algorithms. Moreover,
we defined a common framework in which all the algorithms were
evaluated. An exhaustive comparison of all the algorithms for the
SIH problem is not feasible for many reasons. For example, many
algorithms are designed for simplified models of the SNP matrix and
are inadequate for the matrices generated according to the current
shotgun sequencing technology. In this class of algorithms, there
are those (like KMec; Xie et al., 2008) that do not allow the
insertion of gaps inside the fragments or the insertion of mate pair
sequences. Another class of algorithms (as in Wang et al., 2006) uses
genotype information to solve the SIH problem. This information
can improve the accuracy of the reconstructed haplotypes, but is not
often available in practice.

© The Author(s) 2010. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://bioalgo.iit.cnr.it/rehap
http://creativecommons.org/licenses/

F.Geraci

We restrict our analysis to those algorithms designed for a model
of the SNP matrix compatible with the current shotgun technology.
For all the algorithms considered, we requested the software from
the corresponding authors. In the cases in which the software
was not provided, we checked whether the corresponding papers
contain a description of the algorithms enough accurate, allowing
us to carefully re-implement them. (We were unable to include
in this review all the algorithms for which we had insufficient
details). Re-implementing software raises the issue of validating
its correctness and running time performance. To validate our
implementations we tested each algorithm. For each test, we used
exactly the same parameters used by the authors (i.e. the same
error rate, coverage and haplotype length). Wherever possible we
also used the same datasets. For example, this is the case of Wang
et al. (2007) and Zhao et al. (2005) who generate their haplotypes
from the freely available dataset described in Daly er al. (2001).
Our tests reveal that all our implementations are comparable with
the original algorithms both in accuracy and running time. We also
excluded some algorithms for which we received the software due to
their characteristics. For example, the Branch and Bound algorithm
described in Wang et al. (2005) is much slower than its competitors,
and its running time makes it unsuitable in practice even for small
datasets. The same problem is present in HASH (Bansal et al.,
2008). We also tested the PM-MFR algorithm described in Xie and
Wang (2008) (in this case as well we received the software from
the authors). The running time of this algorithm depends on many
parameters. One of these parameters is the number of gaps in mate
pair sequences. Our tests show that even for small values of this
parameter, the running time of this algorithm becomes high.

Our test data are available on request, which means that they can
be used in the near future to compare new ideas with the actual state
of the art.

Despite the high number of real human haplotypes freely available
on the Web, there are no real SNP matrices. In this article, we made
the effort to generate realistic data, writing a software program that
gets in input a real haplotype and simulates the actual technologies
of shotgun sequencing to produce realistic SNP matrices. The SNP
matrices simulator is described in Section 4.1.

The article is organized as follows: in Section 2, we formally
define the SIH reconstruction problem and its most common
computational models. In Section 3, we describe all the compared
algorithms. Section 4 reports quality and running time evaluation.
We conclude in Section 5.

2 PROBLEM FORMULATION

Due to the diploid nature of humans cells, except for male sex
chromosomes, each chromosome comes in two nearly identical
copies, one inherited from the mother and one from the father.
Current technology of shotgun sequencing is unable to keep track of
the association between a fragment and its own chromosome. Thus,
from the biological point of view, the Single Individual Haplotyping
(SIH) problem consists in the reassignment of each fragment to the
original haplotype.

From the computational point of view, the problem was first
formalized in Lancia er al. (2001). A fragment is represented as
a string of length m such that each character corresponds to a base
in the alphabet ¥ ={a,c,g,t} or a — in case of gap. The natural way
to store all n fragments is a matrix M with n rows and m columns,

such that, to each row corresponds a fragment f; = M[i]. The matrix
M is called SNP matrix. The element M[i][j] stored in the j-th entry
of the i-th row of M represents the j-th SNP of the haplotype for
fragment f;. We will denote this element also as f;[j]. In case f; does
not cover the j-th position of the haplotype, we have M[i][j]=—.

‘We say that a fragment f contains a gap (or is gapped) if for i,j, k €
[1,m] such that i <j <k we have f[i] # —, f[jl1=— and f[k] #—. If
no fragments in M are gapped, then the SNP matrix is said to be
gapless otherwise it is gapped.

In absence of errors in the SNP matrix, each column of M
can contain one or two distinct elements. The presence of only
one element indicates that the SNP in the corresponding site is
homozygous otherwise the SNP is heterozygous. We say that two
fragments f; and f; are in conflict if the following condition is true:
3k € [1,n] such that f;[k] £f;[k] Afilk] # — Afjlk] # —. According to
the definition of conflict between pairs of fragments, in Lancia et al.
(2001) the conflict graph is defined. Let G={V,E} be a graph such
that each vertex corresponds to a fragment and there is an edge
between two fragments if there is a conflict between them. If M does
not contain errors, then G is bipartite (Fig. 1a). The bipartition is not
necessarily unique, if the graph has several connected components.
In practice, due to errors in the SNP matrix, the conflict graph is
never bipartite (Fig. 1b). Thus, in this case, the SIH reconstruction
problem can be formalized as the problem of removing a certain
number of edges from G until the resulting graph becomes bipartite.
The problem of reducing a graph to a bipartite graph is well studied
in the literature where many models were proposed. Among them,
in the context of the SIH problem the following formalizations are
often used:

MEC (minimum error correction): determine a minimal set
of entries of the matrix M whose correction to a different value
induces a bipartite graph

MFR (minimum fragment removal): determine a minimal
number of fragments whose removal from the input set induces
a bipartite graph

MSR (minimum SNP removal): determine a minimal number
of SNPs whose removal from the input set induces a bipartite
graph

LHR (longest haplotype reconstruction): determine set of
fragments whose removal from the input set induces a bipartite
graph and the length of the induced haplotype is maximized.

In the presence of gaps, all the above problem formalizations
are NP-hard. More details about the complexity of some of these
problems can be found in Cilibrasi et al. (2007). Even if MEC is the
most complex of the above models, it is the most commonly used
in practice. Four of the algorithms described in this article approach
the SIH problem using the MEC model (2d-mec, SHR, HapCUT) or
a model derived from it (MLF). The other algorithms we considered
do not follow the above problem formulations. Note that there is no
proven relationship among the above problem formulations and the
SIH problem (i.e. a more accurate solution of the above problems
does not necessarily correspond to a better solution of the SIH
problem). Since the goal of this review is to evaluate the accuracy of
the algorithms with respect to the SIH problem, we derived the SNP
matrices from pairs of real haplotypes from the HapMap project and
used them as gold standard for evaluating the consensus haplotypes.

2218

Survey of SIH reconstruction algorithms

5 5
I I

GATCGGAT

ATTACCTT @ v e

= A-TA--TT
;% = -TT-C-T- Ae
f3 = A--A-C-T v
fi = GA-CG-AT
fs = ---C-GA-
o\

(a) SNP matrix without errors

=
Il

ATTACCTT
GATCGGAT

F
Il

A-TA--TT
-TTGC-A-
A--A-C-T
GA-CG-AT
---C-GA-
-AT-AG--

(b) SNP matrix with errors

Fig. 1. (a) Two haplotype strings, six fragments (without errors) and the corresponding bipartite conflict graph. (b) The same two haplotypes, six fragments

(with errors in gray) and the corresponding conflict graph (not bipartite).

We now introduce some definitions and notations that we will use
later in the algorithms description. Let C be a set of rows of M and
let xc[i] € ¥ be the character that appears most frequently at position
i among the fragments in C (or xc[i]=— if all the fragments of C
have a gap in position i), we define the haplotype consensus H(C)
deduced by C as the string of m characters such that the character
at position i is xc[i].

We define the generalized Hamming distance between two
fragments f; and f; as:

Ham(f;.f;) =) _ Ham(f; [k, ;[k]) 1)
k=1

where

Lif filk] #fjlk] # —

0 otherwise

Ham(f;[k1. fj[k]) =

If the generalized Hamming distance between two fragments is
different from 0, we say that the two fragments are in conflict.

3 ALGORITHMS

3.1 2d-mec: a clustering algorithm for the MEC model

In Wang et al. (2007), a clustering algorithm is used to split
the rows of M in two sets. The main contribution of the article
consists in the combination of the two distance functions used
by the clustering algorithm. As first distance the authors used the
generalized Hamming distance Ham as defined in Equation (1). This
distance takes into account only the number of mismatches between
two fragments. The second distance is defined as follows: let f; and
fj be two fragments

D' (fi.f=")_d (filk].filkD))
k=1

where
—Lif k] =fk] £~
1 if flk] £ 1K1 £

0 otherwise

d'(filk].filk]) =

The definition of distance in Equation (2) also takes into account
the number of matches between the two fragments. This means that
given a certain fixed number of mismatches between two fragments,
the more they overlap the closer they are according to D’. Note that
D’ is not a distance in a strict sense: in fact it can be negative and
has values in the range [—m, m]. Moreover, the triangular inequality
does not hold.

Using the above distance functions, the authors proposed a
simple iterative clustering procedure. To compare two fragments,
the functions Ham and D’ are evaluated in cascade.

The algorithm proceeds as follows:

(1) for each possible pair of fragments in the SNP matrix the
generalized Hamming distance is computed. Let f; and f; be
the two furthest fragments according to Ham, we initialize
the two sets C; =f; and C =f;.

Let Hy =H(C1) and H, = H(C;) be the two consensus strings
derived from Cy and C»: all the fragments are compared with
H| and H; and assigned to the corresponding closer set. If
a fragment is equidistant from the two consensus strings, the
distance D’ is used to decide to which set assign the fragment.

@

~

(3) Once all fragments are assigned, the consensus strings H
and H, are updated and the algorithm restarts from (2). The
procedure loops until a stable haplotype pair is found (i.e.
when the consensus haplotypes are the same before and after
the update).

3.2 Clustering algorithm for the MLF problem

In Zhao et al. (2005), the authors raised a weighted variant of
the MEC problem called Weighted Minimum Letter Flip (WMLF).
Assuming we have a matrix W, such that each entry is a number in
the range [0, 1] representing the degree of confidence of the SNP in
the same position in the matrix M. We can define a weighted version
of the generalized Hamming distance between two fragments f; and
fjas:

WHam(fi.fj) =Y _ wh(f;[k].£;[k])
k=1

2219

F.Geraci

where

min(W[il[k], W[j1Lk]) if fi[k] #fjlk] # —

0 otherwise

wh(fi k1K) =

The distance WHam is extended to deal with haplotypes, assuming
that the weight associated with each character of the consensus
string is 1.

The proposed algorithm is based on the well-known one-pass
k-means clustering algorithm (McQueen, 1967). The procedure
initialization consists in randomly partitioning the rows of M in
two sets C1 and C, deriving from them two consensus strings:
H{=H(C}) and H, =H(C3). In the main procedure loop, at each
iteration C| and C; are reinitialized and a new partition of the rows
in M is done. For each fragment f;, we compare its distance from H
and Hy. If WHam(f;, Hy) > WHam(f;, Hp) then f; is assigned to Cq,
otherwise the fragment is assigned to Cy. The procedure terminates
when two stable haplotypes are detected. More details regarding
the convergence of this method can be found in McQueen (1967).
Due to the random initialization of sets C| and Cj, every run of
this algorithm on a certain dataset can return a different haplotype
consensus. To mitigate the effect of randomness, the authors run the
algorithm 100 times and return as final result the consensus pair that
minimizes the following target function:

2

F(C1,C)=_ > WHam(f,H(Cy)) 3)
k:lfeCk

The main drawback of this algorithm is that with actual shotgun
sequencing technology, the information about the confidence level
of each fragment is typically not available. In this case, the algorithm
has to assume the same level of confidence for each fragment:
thus WHam reduces to Ham and the target function to minimize
in Equation (3) reduces to the target function of the MEC model.
Even in Zhao et al. (2005), experiments are made assuming each
entry of W as equal to 1.

3.3 Fast Hare

Fast Hare (Panconesi and Sozio, 2004) is one of the first heuristics
for the SIH problem. Although it was designed to work in a gapless
environment, our experiments and those reported in Genovese et al.
(2008) confirm that this method still works nicely also in the more
general case in which gaps are allowed. As a preliminary step, Fast
Hare removes from the SNP matrix M all those columns where
there is a character (not —) that is over-represented with respect to
the others. These columns are considered as homozygous sites. We
call this reduced matrix 4. More formally: let |x.| be the number
of occurrences of the character xe X in the column ¢ of M. The
probability to find x in ¢ is

|xc|
ZJEZ loc|

If a character x in ¢ such that P.(x)>t exists, the column c is
removed from the SNP matrix and the character x will be inserted
in the final solution. In Panconesi and Sozio (2004) and in our
experiments, the threshold 7 is set to 0.8. The intuition behind
this filtering comes from the fact that when P.(x)>¢ column ¢
represents a homozygous SNP (thus the column does not help in the
reconstruction procedure) and the positions (not gaps) not containing

Pc(x)=

x are errors. As the first step, Fast Hare sorts the fragments of
M according to the following ordering criterion: let k; and k; be,
respectively, the position of the first character not gap in f; and

i, thus k; <k; = f; <f;. After sorting the fragments of M, Fast Hare
Jj J = Ji =Jj g g

initialize two sets C1 = Co ={. At this point, according to their order,
the fragments of M are scanned one at a time. The first fragment is
assigned to C1. Considering the fragment f;, Fast Hare computes its
similarity with the two partial consensus strings H(C1) and H(C3).
As similarity score, Fast Hare uses —D’ where D’ is the distance we
defined in Equation (2). The fragment is assigned to the set whose
consensus shows higher similarity. Note that the values of —D’ stand
in the range [—1, 1] and for all fragments holds —D’(f, H(%))=0.

3.4 SpeedHap

SpeedHap (Genovese et al., 2007, 2008) approaches the haplotype
assembly problem differently from previously described algorithms.
Instead of considering each fragment as a whole, it attempts to solve
n instances of the haplotyping problem on 1-base long fragments and
combines results.

SpeedHap is a greedy heuristic. It builds its solution in a pre-
processing phase and three main phases. The goal of each phase is
to exploit the outcome solution of the preceding phase and improve
it by relaxing some constraints.

Pre-processing: in this phase, SpeedHap performs a statistical
analysis of the columns of the SNP matrix attempting to locate
detectable errors and, if possible, correct them. In this phase, the
heuristic also set up some data structures.

First phase: in this phase, the heuristic selects an initial set of
columns such that they are likely to contain as few errors as possible.
For each column, SpeedHap builds a set G; (called profile) in which
each element is the set of all the indices of the fragments containing
the same character in position i. It is easy to observe that only profiles
having two elements (i.e. columns of the SNP matrix containing
exactly two distinct characters) are of interest since an empty profile
corresponds to a hole in the haplotype, a profile with just one element
corresponds to a homozygous site, a profile with more than two
characters must contains errors. Let P; =(P;(1), P;(2)) be the profile
of column i such that it corresponds to a heterozygous site. Given
two columns i and j, we can define the error matrix as

B P,’(l)ﬂPj(l) P,‘(l)ﬁPj(z)
Y\ PP Pi2)NPI2)

When the error matrix has positive values only in one diagonal
and it is of full rank, there are no detectable conflicts between the
two involved columns. Now, consider a graph such that it has a
vertex for each column of M corresponding to a heterozygous site
and there is an edge between two vertices if the corresponding error
matrix does not reveal inconsistencies (i.e. the matrix is diagonal
and of full rank). Using a DFS search, we can partition the graph
in connected components. Each component corresponds to a set of
columns not conflicting among themselves. The initial partitioning
of the fragments of M is extracted from the largest set.

Second phase: in this phase, the algorithm works in a similar
manner. The partitioning obtained from the previous step acts as a
special profile (pivot). All the columns not involved in the previous
phase are compared with the pivot and the error matrix is computed.
If the error matrix does not show inconsistencies, the column is

2220

Survey of SIH reconstruction algorithms

included in the solution. This procedure is repeated iteratively until
it is no longer possible to add new columns to the pivot.

Third phase: in this phase, some constraints are relaxed: the
insertion of the columns in the final solution no longer requires an
error matrix of full rank.

Another important contribution of SpeedHap is the use of
the context for resolving ambiguities in the final haplotype
reconstruction. In Genovese et al. (2008), the authors parsed a large
database of human haplotypes measuring the empirical entropy of
order up to 2. As a result, they show that there seems to exist a
statistical correlation between the base in a certain SNP site, its
preceding SNP site and its succeeding one.

When the coverage (i.e. the number of fragments that cover a
certain position) is low and the error rate is relatively high, it is not
infrequent the case in which, building a haplotype, exactly half of
the fragments in a certain position have a certain value and half of
them have another value. In this case, the choice of which character
should appear in the haplotype is arbitrary. To break ties, SpeedHap
exploits the statistical correlation among contiguous sites. Consider
the case in which the procedure has to choose for the site in position
i whether select A or B. Let x be the character in position i —1 and
z the character in position i+ 1. The procedure will decide for: A
if the empirical entropy of the string xAz is lower than those of the
string xBz, otherwise it will decide for B.

3.5 HapCUT

HapCUT (Bansal and Bafna, 2008) approaches the haplotype
assembly as a MAX-CUT problem. The HapCUT algorithm
considers the submatrix of the SNP matrix in which we remove
all the columns corresponding to Homozygous SNPs and all the
columns in which there are present more than two distinct bases
(i.e. there must be at least a mistaken base). Let us call the resulting
matrix X. Due to the fact that each column of X contains exactly
two possible SNP values, it can be represented using the restricted
alphabet 0, 1, —. The haplotype pair H associated with X is composed
by a binary string 4 and its bit-wise complement h.

Given a certain haplotype pair H, the authors defined a graph
Gyx (H) such that there is a vertex for each column of the matrix X and
there is an edge between two vertices of Gy (H) if the corresponding
columns in X are linked by at least one fragment. Consider the
fragment X; such that it covers both positions j and k. Let X;[j, k]
and H|[j, k] represent the restriction of X; and H to locij and k. There
are two cases: X;[j, k] matches one of the two haplotype strings of
HJj, k], or X;[j, k] does not match any. The weight wy (j, k) associated
with the edge between node j and k in the graph Gx(H) is given
by the number of fragments such that X;[j, k] does not match any
string in H|[j, k] minus the number of fragments such that the match
exists. The higher wy (j, k), the weaker is the correlation between
the haplotype pair H and the SNP matrix restricted to columns j
and k. Let (S,X —S) be a cut of G, the weight of the cut is defined

as follows:
w(S)= Y
jeS,keX—S

wg(j,k)

Consider the haplotype pair Hg derived from H by flipping all the
elements involved in S. The authors showed that if wg (S) is positive
for the graph Gy (H) then the following holds:

MEC(Hg)=MEC(H)—wg (S) > MEC(H)

As a consequence of the above result, the problem of finding a
haplotype pair minimizing the MEC score is reduced to the problem
of finding a max-cut in Gx(H). This problem is well known to be
NP-complete (Karp, 1972), thus heuristic methods are often used.

The HapCUT procedure exploits the connection between the
MEC optimization and the max-cut problem. Starting from a random
haplotype pair, HapCUT iteratively attempts to refine the haplotype
pair to reduce the MEC score. At each iteration, the algorithm
proceeds as follows: (1) compute the graph Gy(H), (2) compute
a max-cut S using a greedy heuristic like that in Sahni and Gonzalez
(1974), (3) if the MEC score of the pair Hg is smaller than the score
of H, keeps as new haplotype pair Hg.

The procedure loops until it is no longer possible to reduce the
MEC score.

3.6 DGS

In Levy et al. (2007), the authors described a large study on genome
sequencing. In the paper they also described a good algorithm for the
SIH problem. For lack of a better name, we call this algorithm DGS.
As in HapCUT, this algorithm works with a submatrix of M in which
we remove all the columns corresponding to homozygous sites and
those with more than two distinct values. Let us again call this
matrix X. Even in this case, X can be represented using the restricted
alphabet 0, 1, —. The haplotype pair H associated with X is composed
by a binary string /4 and its bit-wise complement h. The DGS
procedure works in two phases: an initialization in which we build a
pair of initial haplotypes and a refinement step in which haplotypes
are iteratively refined. The initialization works as follows:

(1) the fragment with the minimal number of gaps is used to
initialize a haplotype. The other haplotype is initialized with
the complementary string;

(2) until no more fragments share non-missing information with
a haplotype, select the fragment such that the number of
columns it has in common with one haplotype minus number
of columns indicating the other haplotype is maximal and
assign it to the corresponding haplotype. The other haplotype
is updated with the complementary string.

The second phase iteratively refines the haplotype consensus
strings and stops when, at the end of an iteration, the solution no
longer changes. At each iteration, the haplotype consensus strings
are determined by majority rule, then each fragment is associated
with the closest haplotype.

3.7 SHR-three

In Chen et al. (2008), the authors proposed a probabilistic framework
to approach the SIH problem. According to the proposed model, the
authors designed a novel randomized algorithm [i.e. an algorithm
that receives, in addition to its input data, a stream of random bits that
it can use for the purpose of making random choices (Karp, 1991)]
and generalize it to handle reading errors and gaps. The most general
variant of this algorithm is called SHR-three. The algorithm requires
as input the SNP matrix and a parameter « that controls the number
of iterations made by the main loop. As proposed by the authors in
their experiments, we set u=10.

2221

F.Geraci

The SHR-three main loop is as follows:

(1) select at random two fragments f; and f> from M and assign
to each of them an empty set (C; to f; and C; to f>);

(2) each fragment of M is compared through the generalized
Hamming distance with f; and f> and inserted in the set related
to the closest fragment;

(3) for each of the two sets compute the MEC score (i.e. the
sum of the distances among each fragment in C; and f; for
i=1{1,2}) and get as score the highest value; and

(4) if the computed score is lower than the previous computed
ones, than C1 =C; and Cr =C;.

As consensus strings SHR-three returns H(él) and H(éz).

4 RESULTS

4.1 Input data and fragment generation

The research project HapMap (HapMap, 2005) has produced a
certain number of maps of the human haplotypes that are publicly
available. In the first two phases of the project, the consortium
used PHASE software for estimating haplotypes from population
genotype data. Recently, in the third phase, the consortium has
adopted sequencing for estimating haplotypes. For our experiments,
we used the Phase I HapMap data'. A detailed description of the
dataset characteristics can be found in HapMap (2005).

The Phase I HapMap dataset consists of all 22 chromosomes (for
females, the haplotypes of the X chromosome are also available) of
269 different individuals coming from four different populations

* CEU: Utah residents with ancestry from northern and western
Europe (90 individuals)

* YRI: Yoruba in Ibadan, Nigeria (90 individuals)
* HCB: Han Chinese in Beijing, China (45 individuals)
* JPT: Japanese in Tokyo, Japan (44 individuals).

Individuals of the HCB and JPT populations are unrelated among
each other. Individuals of CEU and YRI are parent-offspring trios. To
prevent possible undesired effects due to the parental relationship,
in our experiments, we consider only the haplotypes of the parents.
This reduces the population to 209 unrelated individuals.

Thus, we were able to generate the fragments and the SNP
matrices from real data instead of using synthetic haplotypes as
input. Using real haplotypes, the Hamming distance between them
is no longer a free parameter. We observed that haplotype pairs
show a great variability in the Hamming distance. Typical values of
Hamming distance are in the range [0.4m,m]. To evaluate whether
Hamming distance produces effects in the outcome of the tested
algorithms, we performed two sets of experiments: one in which we
select haplotype pairs having Hamming distance < 0.7 m and one in
which the Hamming distance between the haplotypes considered is
> 0.7 m. Our tests show that Hamming distance does not affect the
performance (both in terms of reconstruction rate and running time)
of the algorithms considered.

Distilling realistic SNP matrices from the haplotypes is crucial
for designing meaningful experiments. In this sense one should

'Original HapMap haplotypes can be downloaded from:
http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2005-03_phasel/full/

pay attention to three main aspects: the simulation of the
shotgun sequencing process, the estimation of some technological
parameters of sequencers and some intrinsic characteristics of
human DNA. To simulate the shotgun sequencing process, we used
the widely accepted algorithm described in Myers (1999). According
to Li et al. (2003) and Metzker (2005), current shotgun sequencers
are able to manage DNA fragments of hundreds of bases and the
average distance in bp of two SNPs in human DNA is quantified
in 300 bp on average. Thus, each DNA fragment covers roughly a
number of SNPs in the range [3,7]. The distribution of errors in the
SNP matrices depends on the characteristics of sequencers. A hint
about this distribution for different manufacturers can be found in
Metzker (2005).

According to the above considerations, the generation of the SNP
matrix is as follows: given a pair of haplotypes of length [, each
haplotype is replicated ¢ times (the parameter c is called coverage),
then each copy is broken into non-overlapping fragments whose
length is in the range [3,7]. According to a certain probability some
fragments are merged again in order to simulate matepair sequences
(In our experiments, at the end of this phase, globally 50% of the
fragments are 1-gapped). Once created, we arrange the fragments in
a matrix and insert errors according to a uniform distribution. Note
that the number of fragments is not determined a priori but depends
on the length I, on the coverage ¢ and on the distribution of the
fragment lengths.

4.2 Quality evaluation

To evaluate the quality of the algorithms tested, we use a slightly
modified version of the well-known error rate. Let H=(h1,hy) be
the pair of correct haplotypes each of which has length m. Let
H =(le,i12) be the pair of consensus haplotypes returned by an
algorithm. According to the standard definition, the reconstruction
rate is

min(D(hy,hy)+D(hy, hp), D(hy ko) +D(ha, 1)
2m

Rﬁ,Hzl_

where D is the generalized Hamming distance and m the haplotype
length. The main disadvantage of using the above formula is that
the generalized Hamming distance assigns the same score to two
matching characters and to characters matching with gaps. As a
consequence of this, a pair of empty haplotypes (i.e. haplotypes
in which each position contains a gap) receives the same positive
evaluation of the correct solution. To remove the bias introduced
dealing with gaps, we used in the computation of the error rate a
variant of the Hamming distance in which gaps receive the same
penalty of errors. We defined D in greater detail as follows:

m
D(hj, hj)="Y " d(h; k1, hjk])
k=1

where
0 if h;[k]=h;[k]

d(hi[k1, hjlk]) = _
1 otherwise

For each parameter assignment, Table 1 reports the average
reconstruction rate (over 100 runs on distinct instances of SNP
matrices) of all the algorithms for the case in which the average
Hamming distance between the input haplotypes is > 0.7 m. We do
not report results for the case in which the Hamming distance is

2222

http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2005-03_phaseI/full/

Survey of SIH reconstruction algorithms

Table 1. Each entry in the table represents the average, over 100 randomly selected HapMap strings, of the Reconstruction Rate when the Hamming distance

is in the range [0.7m, m]

Algo e=0.0 | e=0.1 | e=02 | e=03
c=3 c=5 c=8 c:lO‘ c=3 c=5 c=8 c:lO‘ c=3 c=5 c=8 0:10‘ c=3 c=5 c=8 «¢=10
Baseline 1.000 1.000 1.000 1.000| 0971 0992 0.997 0.999| 0.898 0.944 0967 0.980| 0.787 0.840 0.878 0.903
SpeedHap 0.999 1.000 1.000 1.000| 0.895 0.967 0.989 0990| 0.623 0.799 0.852 0.865| 0.480 0.637 0.667 0.676
o FastHare 0.999 0.999 1.000 1.000| 0919 0965 0.993 0998 0.715 0.797 0.881 0915| 0.617 0.639 0.661 0.675
% 2d-mec 0.990 0997 1.000 1.000| 0912 0951 0983 0988 0.738 0.793 0.873 0.894| 0.623 0.640 0.675 0.678
— HapCUT 1.000 1.000 1.000 1.000| 0.929 0920 0901 0.892| 0.782 0.838 0.864 0.871| 0.602 0.629 0.673 0.709
MLF 0973 0992 0.997 0998 0.889 0970 0985 0.995| 0.725 0.836 0918 0.938| 0.618 0.653 0.697 0.715
SHR-three 0.816 0.861 0912 0.944| 0.696 0.738 0.758 0.762| 0.615 0.655 0.681 0.699| 0.557 0.599 0.632 0.632
DGS 1.000 1.000 1.000 1.000| 0930 0.985 0989 0.997| 0.725 0.813 0.878 0917| 0.611 0.647 0.663 0.688
Baseline 1.000 1.000 1.000 1.000| 0.978 0.990 0.997 0.999| 0.896 0.943 0968 0.981| 0.783 0.840 0.873 0.903
SpeedHap 0.999 1.000 1.000 1.000| 0.819 0.959 0.984 0984 | 0439 0.729 0.825 0.855| 0.251 0.578 0.629 0.638
o FastHare 0.990 0.999 1.000 0.999| 0.871 0945 0985 0.995| 0.684 0.746 0.853 0.877| 0.590 0.602 0.626 0.644
“ﬁ 2d-mec 0965 0.993 0.998 0.999| 0.837 0913 0964 0978| 0.675 0.729 0.791 0.817| 0.593 0.606 0.623 0.634
— HapCUT 1.000 1.000 1.000 1.000| 0.930 0913 0.896 0.888| 0.771 0.831 0.862 0.867| 0.565 0.582 0.621 0.664
MLF 0.864 0929 0.969 0981 0.752 0.858 0.933 0962| 0.642 0.728 0.798 0.831| 0.581 0.606 0.634 0.641
SHR-three 0.830 0.829 0.895 0.878| 0.682 0.724 0.742 0.728 | 0.591 0.632 0.670 0.668 | 0.548 0.557 0.604 0.619
DGS 0.999 1.000 1.000 1.000(0926 0.978 0.996 0.998| 0.691 0.769 0.842 0.878| 0.578 0.609 0.628 0.641
Baseline 1.000 1.000 1.000 1.000| 0.971 0.991 0997 0.999| 0.898 0.942 0966 0.980| 0.786 0.838 0.875 0.902
SpeedHap 0.999 1.000 1.000 1.000| 0.705 0.947 0985 0.986| 0.199 0.681 0.801 0.813| 0.095 0.523 0.616 0.627
o FastHare 0.988 0.999 1.000 0.999| 0.829 0949 0.986 0.995| 0.652 0.712 0.808 0.872| 0.581 0.591 0.615 0.616
% 2d-mec 0.946 0976 0.992 0997 | 0.786 0.880 0.948 0.965| 0.647 0.697 0.751 0.778| 0.583 0.596 0.613 0.622
~— HapCUT 1.000 1.000 1.000 1.000| 0.927 0916 0.896 0.889| 0.753 0.825 0.856 0.861| 0.552 0.555 0.597 0.645
MLF 0.787 0.854 0919 0.933| 0.698 0.809 0.863 0.884| 0.624 0.682 0.747 0.765| 0.570 0.594 0.614 0.625
SHR-three 0.781 0.832 0.868 0.898| 0.668 0.716 0.743 0.726 | 0.591 0.617 0.653 0.675| 0.536 0.562 0.611 0.625
DGS 0.999 1.000 1.000 1.000| 0931 0.977 0987 0.997| 0.669 0.741 0.818 0.861| 0.573 0.595 0.614 0.622

The free parameters are: (i) the haplotype length /=100, 350, 700; (ii) the coverage ¢ =3, 5, 8, 10; and (iii) the error rate e = 0%, 10%, 20%, 30%. In bold the algorithms with highest
performance, in gray the algorithms with the second-best performance. We consider as equal to the performance of two algorithms when the difference between their Reconstruction

Rate is in the range [0,005].

lower since the performances (both in terms of reconstruction rate
and running time) of the algorithms are similar.

To compare all the algorithms with the optimal haplotype
reconstruction, Table 1 also reports the reconstruction rate for the
naive baseline algorithm that can access the true fragment bipartition
and simply reconstruct haplotypes by majority.

As shown in Table 1, when the error rate is low (up to 0.1) the
DGS algorithm performs permanently better than the others. For
higher error rate, there is no algorithm that works clearly better than
the others. For small fragments (with /=100) and coverage higher
than three, MLF outperforms the others. For the other cases, there is
no strong winner. If we consider the best and the second-best result
(highlighted values in Table 1), we observe that Fast Hare should be
considered reliable for an error rate up to 0.2. In the case in which
the haplotype length is set to 100, MLF can be considered the most
reliable algorithm. When the haplotype length is set to 350 bp, the
most reliable algorithm is DGS followed by Fast Hare. It is possible
to observe that for a low error rate DGS is always among the best
algorithms. For low error rate SpeedHap performs quite well, while
for high error rate MLF becomes reliable. The case in which the

haplotype length is set to 700 is similar to the previous case. The
DGS algorithm is reliable in all settings and outperforms the other
algorithms for low error rate. Even in this case, Fast Hare is the
second-best algorithm.

The MLF performances highlight that the higher the error rate,
the better the strategy of computing many independent haplotype
pairs (and return the solution that minimizes the MEC score) works.

It is surprising that even in the cases in which the error rate is set to
0, the 2d-mec, MLF and SHR-three algorithms can introduce errors
in their final solution. This can be explained by the fact that their
initializations involve random choices that can heavily affect the
final result. The other algorithms are almost always able to rebuild
the haplotypes entirely without errors (sometimes introducing some
gaps).

It should be observed that the SHR-three algorithm consistently
has a reconstruction rate lower than that of the other algorithms.
This can be imputed to the initialization step of the algorithm in
which the two sets C1 and C, are initialized with two random
fragments that have high probability of being mates in the correct
bipartition.

2223

F.Geraci

Haplotypes reconstruction time

10,00
] SpeedHap
=
§ 1,00 m Fast Hare
E 2d-mec
£ o010 I HapCuT
F MLF

0.0] SHR

01 =

L ‘ I DGS
0,00 .
100 350 700
Haplotype length
(@) Variable haplotype length, ¢ = 8

Haplotypes reconstruction time

10,00

E] SpeedHap
=
§ = Fast Hare
g 1,00 2d-mec
_E HapCUT
5 MLF

0,10 SHR

L I I DGS
0,01 I I
3 5 8 10
Coverage

(b) Variable coverage, [= 700

Fig. 2. Average running time expressed in seconds over 100 instances for different settings of the haplotype length (a) and coverage (b). The error rate is

set to 0.2.

Another important observation is that when the error rate is 0.3
and the coverage is 3, the SpeedHap algorithm performs much worse
than in the other cases. This is due to the fact that the high error rate
and low coverage makes the first phase of SpeedHap to be unable
to select the set of columns that are likely to contain few errors.
The effect of this phenomenon is that SpeedHap is unable to assign
most of the rows, hence a large part of the haplotypes is filled with
gaps.

Looking at the algorithms that compute a certain number of
solutions and return the one that explicitly minimize the MEC score
(MLF and SHR-three), we can observe that their performances are
not among the best ones. According to this observation, it seems
that the target function of minimizing the MEC score performs worse
than other approaches. We do not want to claim that this observation
is necessarily true, in fact (even if not explicitly) DGS minimize the
MEC score and attains good results.

4.3 Running time evaluation

In this section, we show the running time of the algorithms
compared. Except for HapCUT whose implementation is freely
provided by the authors, we reimplemented all the other algorithms
using Python v2.6. For each parameter assignment, we run the
algorithms over 100 different instances and collect the average
running time. For our tests, we used a Pentium D 3.2 GHz endowed
with 3 Gb of RAM.

Figure 2 shows a comparison of the haplotype reconstruction
times. The slowest algorithm is HapCUT, while the two fastest
algorithms are Fast Hare and SHR-three. Except for HapCUT, it
is possible to observe that all the algorithms are able to solve
all the instances of the reconstruction problem for each parameter
assignment in <5s in the worst case, making all of them suitable
for real applications. Instead, HapCUT running time does not scale
and requires tens of seconds for large instances of the reconstruction
problem.

Figure 2 also shows that both haplotype length and coverage
affect the final running time of all the algorithms in different ways.
Coverage involves a linear increase of the running time for all
algorithms, while haplotype length involves a quadratic increase.

Due to lack of space, in this article we do not report results in
the case in which we vary the error rate or the Hamming distance
because we observed that they have no effect on the running time
of all the algorithms.

5 CONCLUSIONS

The SIH problem is one of the core problems in the whole genome
sequencing. Due to the presence of various types of errors and
missing data in the fragments, the problem is very hard to solve.
In recent years, many algorithms and heuristics were proposed in
the literature, but a systematic comparison between them is still
missing. In this article, we survey seven algorithms that are among
the most commonly used for the SIH problem. We also developed a
common framework to compare them. Our framework simulates the
actual technology for shotgun sequencing to generate realistic SNP
matrices from real human haplotypes collected from the HapMap
project. The web-based interface of the framework allows to control
all the generation parameters. The Hamming distance and fragment
size can be specified only as a range. Due to the fact that we use
real haplotypes, it is possible (for too-small ranges) that the selected
chromosome does not contain a portion of haplotype with the desired
Hamming distance. In this case an error is raised. The choice of
the generation parameters is heavily influenced by the sequencing
hardware, and it can have considerable impact on the final results. To
facilitate the choice of parameters, our framework suggests default
settings compatible with actual standards. Our experiments show
that the DGS algorithm can be considered the best choice, especially
in those experiments in which some parameters cannot be estimated
in advance. The data we used for the comparison are available upon
request, and thus can be used in the near future to compare novel
algorithmic ideas with the actual state of the art.

ACKNOWLEDGEMENTS

We would like to thank Rui-Sheng Wang, Jianxin Wang, Minzhu
Xie, Zhixiang Chen and Zhiyu Zhao who provided us with their
software and allowed us to test them.

2224

Survey of SIH reconstruction algorithms

Funding: Italian Registry of .it ccTLD (partially); the EU funded 7FP
Virtual Physiological Human Network of Excellence (VPH NoE)
(contract number 223920) (partially).

Conflict of Interest: none declared.

REFERENCES

Bansal,V. and Bafna,V. (2008) HapCUT: an efficient and accurate algorithm for the
haplotype assembly problem. In European Conference on Computational Biology,
Cagliari, Italy, pp. 153-159.

Bansal,V. et al. (2008) An MCMC algorithm for haplotype assembly from whole-
genome sequence data. Genome Res., 18, 1336—1346.

Chen,Z. et al. (2008) Linear time probabilistic algorithms for the singular haplotype
reconstruction problem from SNP fragments. J. Comput. Biol., 15, 535-546.

Cilibrasi,R. et al. (2007) On the complexity of the single individual SNP haplotyping
problem. Algorithmica, 49, 13-36.

Daly,M.J. et al. (2001) High-resolution haplotype structure in the human genome. Nat.
Genet., 29, 229-232.

Frazer,K. et al. (2007) A second generation human haplotype map of over 3.1 million
SNPs. Nature, 449, 851-861.

Genovese,L.M. et al. (2007) A fast and accurate heuristic for the single individual SNP
haplotyping problem with many gaps, high reading error rate and low coverage.
In Workshop on Algorithms in Bioinformatics, Philadelphia, PA, Lecture Notes in
Computer Science, Springer, Berlin/Heidelberg, pp. 49-60.

Genovese,L.M. et al. (2008) SpeedHap: an accurate heuristic for the single individual
SNP haplotyping problem with many gaps, high reading error rate and low coverage.
EEE/ACM Trans. Comput. Biol. Bioinform., 5, 492-502.

HapMap (2005) A haplotype map of the human genome. Nature, 437, 1299-1320.

Karp,R.M. (1972) Reducibility among combinatorial problems. Complex. Comput.
Comput., 85-103.

Karp,R.M. (1991) An introduction to randomized algorithms. Discrete Appl. Math., 34,
165-201.

Lancia,G. et al. (2001) SNPs problems, complexity, and algorithms. In Proceedings of
the Ninth European Symposium on Algorithms, Aarhus, Denmark, Lecture Notes in
Computer Science, Springer, Berlin/Heidelberg, pp. 182-193.

Levy,S. et al. (2007) The diploid genome sequence of an individual human. PLoS Biol.,
5,2113-2144.

Li,L. et al. (2003) Haplotype reconstruction from SNP alignment. In Proceedings
of the Seventh International Conference on Computational Molecular Biology,
Lisbon, Portugal, Lecture Notes in Computer Science, Springer, Berlin/Heidelberg,
pp. 207-216.

McQueen,J. (1967) Some methods for classification and analysis of multivariate
observations. In Fifth Berkeley Symposium on Mathematics, Statistics, and
Probability, Statistical Laboratory of the University of California, Berkeley.
University of California Press, Berkeley, CA, pp. 281-298.

Metzker,M.L. (2005) Emerging technologies in DNA sequencing. Genome Res., 15,
1767-1776.

Morozova,O. and Marra,M.A. (2008) Applications of next-generation sequencing
technologies in functional genomics. J. Genomics, 5, 255-264.

Myers,G. (1999) A dataset generator for whole genome shotgun sequencing. In
Proceedings of the Seventh International Conference on Intelligent Systems for
Molecular Biology, AAAI, Heidelberg, Germany, pp. 202-210.

Panconesi,A. and Sozio,M. (2004) Fast hare: a fast heuristic for single individual
SNP haplotype reconstruction. In Workshop on Algorithms in Bioinformatics,
Bergen, Norway, Lecture Notes in Computer Science, Springer, Berlin/Heidelberg,
pp. 266-277.

Sahni,S. and Gonzalez,T. (1974) P-complete problems and approximate solutions. Annu.
Symp. Switching Automata Theory, 23, 28-32.

Via,M. et al. (2010) The 1000 genomes project: new opportunities for research and
social challenges. Genome Med., 2, 3.

Wang,R. et al. (2005) Haplotype reconstruction from SNP fragments by minimum error
correction. Bioinformatics, 21, 2456-2462.

Wang,R. et al. (2006) A markov chain model for haplotype assembly from SNP
fragments. Genome Inform., 17, 162—-171.

Wang,Y. et al. (2007) A clustering algorithm based on two distance functions for MEC
model. J. Comput. Biol. Chem., 31, 148-150.

Xie,M. and Wang,J. (2008) An improved (and practical) parameterized algorithm for the
individual haplotyping problem MFR with mate-pairs. Algorithmica, 52, 250-266.

Xie,M. et al. (2008) A practical exact algorithm for the individual haplotyping problem
MEC. In BMEI : Proceedings of the 2008 International Conference on BioMedical
Engineering and Informatics, IEEE, Sanya, Hainan, China, pp. 72-76.

Zhao,Y. et al. (2005) Haplotype assembly from aligned weighted SNP fragments.
J. Comput. Biol. Chem., 29, 281-287.

Zhao,Y. et al. (2007) An overview of the haplotype problems and algorithms. Front.
Comput. Sci. China, 1, 272-282.

2225

