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Abstract

In-scanner head motion represents a major confounding factor in functional connectiv-

ity studies and it raises particular concerns when motion correlates with the effect of

interest. One such instance regards research focused on functional connectivity modu-

lations induced by sustained cognitively demanding tasks. Indeed, cognitive engagement

is generally associated with substantially lower in-scanner movement compared with

unconstrained, or minimally constrained, conditions. Consequently, the reliability of

condition-dependent changes in functional connectivity relies on effective denoising

strategies. In this study, we evaluated the ability of common denoising pipelines to mini-

mize and balance residual motion-related artifacts between resting-state and task con-

ditions. Denoising pipelines—including realignment/tissue-based regression, PCA/ICA-

based methods (aCompCor and ICA-AROMA, respectively), global signal regression, and

censoring of motion-contaminated volumes—were evaluated according to a set of

benchmarks designed to assess either residual artifacts or network identifiability. We

found a marked heterogeneity in pipeline performance, with many approaches showing

a differential efficacy between rest and task conditions. The most effective approaches

included aCompCor, optimized to increase the noise prediction power of the extracted

confounding signals, and global signal regression, although both strategies performed

poorly in mitigating the spurious distance-dependent association between motion and

connectivity. Censoring was the only approach that substantially reduced distance-

dependent artifacts, yet this came at the great cost of reduced network identifiability.

The implications of these findings for best practice in denoising task-based functional

connectivity data, and more generally for resting-state data, are discussed.
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1 | INTRODUCTION

In-scanner head motion is one of the major confounders in functional

connectivity (FC) studies employing the blood oxygenation level

dependent (BOLD) signal (Power, Barnes, Snyder, Schlaggar, &

Petersen, 2012; Satterthwaite et al., 2012; Van Dijk, Sabuncu, &

Buckner, 2012). Two critical issues make the technique highly suscep-

tible to motion. The first is intrinsic to FC itself, which is defined as

statistical dependencies among remote neurophysiological events

(Friston, 2011), and is commonly estimated as temporal correlations

between BOLD time series of different brain regions. Regrettably, any

non-neuronal source of variance can introduce spurious correlations

that may completely obscure neuronally-driven correlations. In addi-

tion, motion acts by adding both global and spatially-dependent vari-

ance (Power, Schlaggar, & Petersen, 2015), mimicking true functional

connections. Second, investigators lack any a priori information

regarding the exact temporal characteristics of neuronal-related vari-

ance, which makes the reliability of FC estimates dependent on the

ability of researchers to detect, model and remove physiological noise,

reducing its magnitude below the threshold that systematically affects

results.

Consequently, a great effort has been made to develop (Behzadi,

Restom, Liau, & Liu, 2007; Jo, Saad, Simmons, Milbury, & Cox, 2010;

Patriat, Reynolds, & Birn, 2017; Power et al., 2014; Power

et al., 2015; Pruim, Mennes, van Rooij, et al., 2015; Salimi-Khorshidi

et al., 2014; Satterthwaite et al., 2013) and compare (Ciric et al., 2017;

Muschelli et al., 2014; Parkes, Fulcher, Yucel, & Fornito, 2018; Pruim,

Mennes, Buitelaar et al., 2015; Shirer, Jiang, Price, Ng, &

Greicius, 2015; Siegel et al., 2017; Weissenbacher et al., 2009; Yan

et al., 2013) numerous strategies for denoising BOLD data. There is

substantial heterogeneity in the performance of these strategies, and

even the most effective approaches were not able to fully account for

motion-related artifacts in FC estimates (Parkes et al., 2018). While a

relatively low residual motion-related variance may be considered

acceptable when in-scanner motion is evenly distributed among fac-

tors of interest, it can still create concerns when it correlates with the

investigated factors. Such situations are common in neuroscience

research since they are often found in developmental, aging (Harms

et al., 2018, and references therein) and clinical studies (Pardoe,

Kucharsky Hiess, & Kuzniecky, 2016).

Another class of FC studies in which head motion is particularly

serious is the one focused on network dynamics induced by cognitive

engagement, which is generally assessed by comparing resting state

to one or multiple task conditions. Indeed, it has been reported that

subjects tend to move less when they are engaged in a cognitive task

than when they are under unconstrained conditions (Huijbers, Van

Dijk, Boenniger, Stirnberg, & Breteler, 2017). Even passive movie

watching, which requires minimal attention, has been associated with

lower head movement compared to rest (Vanderwal, Kelly, Eilbott,

Mayes, & Castellanos, 2015), especially in young children (Greene

et al., 2018). While such a behavioral trait may be exploited to reduce

the detrimental effect of motion on image acquisitions, particularly on

structural or diffusion images, it is prone to bias task-based FC

studies. Therefore, whereas evidence from fMRI studies indicate that

the brain accommodates task demands with specific and systematic

network reconfigurations (reviewed in Gonzalez-Castillo &

Bandettini, 2018), it is not clear to what extent such modulations are

compounded by the different amount of motion between the func-

tional conditions being compared. Moreover, denoising strategies

have been specifically developed for study designs involving one con-

dition per subject, and in particular for resting-state data. Their effec-

tiveness has not been evaluated in the context of multiple steady-

state conditions that are differently prone to motion, as during differ-

ent prolonged cognitive engagements or physiological conditions.

In the current work, we sought to identify the appropriate proce-

dures for mitigating and balancing residual motion-related effects

across protracted functional conditions in task-based connectivity

studies. Specifically, we employed a set of benchmark measures to

investigate how popular denoising strategies perform in cleaning up

BOLD data that span different steady-state functional conditions

characterized by distinct amounts of head motion. To this aim, we

analyzed data from our previous study (Tommasin et al., 2017;

Tommasin et al., 2018) in which we collected BOLD fluctuations in a

block-design fashion employing prolonged epochs of alternated

resting-state and sustained working-memory task conditions. Leverag-

ing on the peculiar acquisition protocol, both long and with multiple

conditions within the same run, we evaluated the condition-specific

performance of the pipelines according to benchmarks based either

on minimizing motion-related artifacts or at maximizing network

identifiability. In addition, in order to corroborate our findings, we

evaluated the pipelines in a further, larger dataset, composed of two

separate acquisitions of resting-state and stop-signal task scans

(Poldrack et al., 2016). Finally, we examined the robustness of previ-

ously reported task-associated modulations in within-network FC

(Tommasin et al., 2018) by exploring its variability under different

denoising strategies and under stringent exclusion of motion-

contaminated volumes.

2 | MATERIALS AND METHODS

2.1 | Subjects and datasets

Denoising strategies were evaluated in two fMRI datasets. The first,

which we refer to as “Centro Fermi” (CF) dataset (40 runs from

20 healthy subjects), is composed of data collected at our laboratory

for the evaluation of FC modulations following sustained task execu-

tion (Tommasin et al., 2017; Tommasin et al., 2018). Each CF run com-

prises multiple long-lasting epochs of either rest or working-memory

task. Despite the limited sample size, the CF dataset was used as our

primary dataset given its peculiar paradigm (detailed in the following

section). For the second dataset, which serves for result corroboration

and to counteract the sample-size limitation of the CF dataset, we

used a subset of data from the Consortium for Neuropsychiatric

Phenomics (CNP Poldrack et al., 2016). The CNP dataset comprises

resting-state scans as well as six scans of BOLD acquisitions under
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different task conditions. We chose to compare the resting state to

the stop-signal task since such task showed the greatest difference in

motion compared to rest, as reported in a previous study (Huijbers

et al., 2017). From the entire pool of healthy subjects (130 subjects),

we selected 120 subjects that included (a) a complete resting-state

acquisition, (b) a complete stop-signal task acquisition, and (c) a

T1-weighted structural scan.

The CF data were collected on a 3T MRI Scanner (Magnetom

Allegra, Siemens Healthineers, Erlangen, Germany) equipped with a

standard birdcage coil. Functional images were acquired using a

Gradient-Echo Planar Imaging (GE-EPI) sequence (TR = 2,100 ms,

TE = 30 ms, FA = 70�, voxel size 3 × 3 × 2.5 mm3, 1.25 mm skip). Each

run lasted 24 min and 38 s yielding 704 volumes (four dummy scans

included). The slices were positioned starting from the vertex of the

brain and covered the whole cerebrum. The cerebellum was not con-

sistently included in the field of view of each subject. High-resolution

T1-weighted images were acquired for anatomic reference and tissue

segmentation purpose using a Magnetization Prepared Rapid Acquisi-

tion Gradient Echo (MPRAGE, TE = 4.38 ms, TI = 910 ms,

TR = 2000 ms, FA = 8�, voxel size 1 × 1 × 1 mm3). Subjects gave writ-

ten informed consent in accordance with the Declaration of Helsinki

and European Union regulations.

The CNP data were collected on one of two Siemens Trio 3T

scanners. Rest and task runs were acquired on the same day with a

GE-EPI sequence (TR = 2000 ms, TE = 30 ms, FA = 90�, voxel size

3 × 3 × 4 mm3). The resting run lasted for 304 s (�5 min), for a total

of 152 volumes, while the stop-signal task was longer, lasting 368 s

(�6 min) for a total of 184 volumes. Four dummy scans preceded

functional acquisitions and were not included in the data.

T1-weighted images were acquired with MPRAGE (TE = 3.31 ms,

TI = 1,100 ms, TR = 2,530 ms, FA = 7�, voxel size 1 × 1 × 1 mm3).

2.2 | Functional paradigms

2.2.1 | CF dataset

CF functional images were acquired during a block-design stimulation

paradigm consisting of alternated long-lasting epochs of eyes-open

resting state and sustained auditory working memory task (4 min and

54 s each, starting with a resting-state epoch). The auditory working

memory task involved continuous n-back trials administered in epochs

at either “high” load (2-back) or “low” load (1-back). Each trial was

composed of a 500-ms window, in which subjects were aurally pres-

ented with a vowel (pseudo-randomly chosen among A, E, or O), and

a subsequent 1,600-ms response window, during which subjects had

to report, via an MRI compatible 2-button keyboard, whether the cur-

rent vowel was the same as the one presented one stimulus prior

(1-back) or two stimuli prior (2-back). During the entire functional run,

subjects were asked to maintain their gaze on the center of the

screen, which was marked by a one-degree diameter circle over a uni-

form black background. The stimulation paradigm started at the begin-

ning of the third dummy scan (i.e., was overall shifted backward by

two TR) to roughly account for hemodynamic delay. More detailed

information on the stimulation paradigm can be found in (Tommasin

et al., 2018).

Two functional runs were acquired for each subject during the

same experimental session, with epoch ordering: rest/1-back/

rest/2-back/rest or rest/2-back/rest/1-back/rest, counterbalanced

across subjects. Since we found no significant difference in motion

between 1-back and 2-back epochs (see Figure S1), we lumped the

two load conditions together, thus, from here on we will simply refer

to both n-back epochs as task epochs.

2.2.2 | CNP dataset

The CNP rest and task data were acquired in separate runs, yet within

the same acquisition session. During resting-state acquisitions, no

stimulation was presented and subjects were asked to remain relaxed

and keep their eyes open. The stop-signal task runs consisted of

128 trials in which a “go” stimulus (left or right pointing arrow) was

visually presented with or without an aurally presented “stop” signal

(a 500 Hz tone). Subjects were required to respond to the go stimulus

(via a left or right button press) as quickly and accurately as possible,

but to withhold the response in case of the stop tone. Trials were sep-

arated by rest periods (with a black screen) whose duration was

pseudorandomly chosen between 0.5 and 4 s, with a mean of 1 s.

While the experimental design is aimed at identifying the specific

response to the stop signal, we treated the runs as block-designed,

thus ignoring potential instantaneous changes of motion associated

with the different structure of the trials (i.e., with or without the stop

signal). More detailed information about the stimulation can be found

in Poldrack et al. (2016).

2.3 | Functional image preprocessing

Image preprocessing was performed with FC toolbox (CONN 18.a,

Whitfield-Gabrieli & Nieto-Castanon, 2012), which is based on

SPM12 routines (http://www.fil.ion.ucl.ac.uk/spm), and was run on

Matlab 2016b (The Mathworks Inc., Natick, MA). Preprocessing of

functional data included the following steps: (a) rigid body registration

for inter-frame head motion, (b) application of the unwarp algorithm

to reduce the susceptibility-by-movements effects (Andersson,

Hutton, Ashburner, Turner, & Friston, 2001), (c) compensation of sys-

tematic slice-dependent time shifts by phase shift in the Fourier

domain, (d) direct normalization to Montreal Neurological Institute

(MNI) space (voxel size 3 × 3 × 3 mm3) using as source image the EPI

mean volume obtained from step a, and (e) intensity normalization to

global mode 1,000 units. The direct normalization to MNI space

(i.e., without using high-resolution structural information) was chosen

in order to mitigate the impact of geometric distortion artifacts, as

shown in (Calhoun et al., 2017). Subject-specific whole-brain

(WB) masks were defined to retain voxels fully covered by the field of

view of the EPI sequence. Such masks were obtained by intersecting
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an a priori brain mask with subject-specific masks composed of voxels

with a mean intensity above the 20% of the global mode. The WB

mask was also used to compute the global signal.

To allow a fair comparison between rest and task conditions,

scans were trimmed so that the two functional conditions had the

same number of volumes. In the CF dataset, we discarded the first

resting-state epoch, since there were three rest and two task epochs.

Following the cut, the final number of volumes in the run was

560 (280 volumes per condition, approximately 10 min). In the CNP

dataset, we discarded the first 32 volumes of the task run, so that

each functional condition was composed of 152 volumes (approxi-

mately 5 min).

Finally, after removing constant and linear trends, the rest and

task runs of the CNP dataset were concatenated, yielding a total run

length of 304 volumes.

2.4 | Structural image processing

T1 weighted images were segmented with SPM12 to obtain gray

matter, white matter (WM), and cerebrospinal fluid (CSF) probability

maps in native space (Ashburner & Friston, 2005). From tissue prob-

ability maps we derived WM and CSF masks for later extracting con-

founding signals. In constructing these masks, great care was applied

to minimize partial volume errors that can yield confounding signals

contaminated with signals from gray matter voxels (Power, Plitt,

Laumann, & Martin, 2017). For each subject, the WM probability

map was thresholded at 99% and underwent a 3-voxel level erosion

(AFNI's 3dmask_tool, Cox, 1996). Depending on the quality of the

structural images, the 99% threshold may result in small holes in the

deep white matter voxels that, once the image is eroded, substan-

tially reduce the spatial extension of the final mask. To prevent this

from happening, we applied the “fill_holes” function of 3dmask_tool

before the erosion step. The eroded mask was normalized to MNI

space (voxel size 3 × 3 × 3 mm3) using the transformation obtained

from the segmentation of the T1 weighted image. To further reduce

the contamination from gray matter signals, the MNI-normalized

mask was deprived of the brainstem, since this region is character-

ized by a scarce contrast between the two tissue types. CSF masks,

encompassing only the ventricles, were constructed with a similar

procedure. For each subject, the CSF probability map was first

deprived of voxels in close proximity to the gray matter by inter-

secting the map with a gray matter mask (obtained from the GM

probability map with threshold at 95% and applying a 2-voxel level

dilation; 3dmask_tool). Subsequently, the ensuing map was

thresholded at 99% (95% for the CNP dataset, since in such dataset

the 99% threshold resulted in a few subjects with empty masks) and

underwent a 2-voxel level erosion. The resulting mask was normal-

ized to MNI space and was deprived of any nonventricle structure

using an a priori mask. In case the final mask contained less than

10 voxels, the procedure was replicated using a 1-voxel level ero-

sion. Additional information regarding the constructed masks are

reported in Figure S2 and Table S1.

Once confounding signals were extracted with the above-defined

masks, we further masked functional data by retaining voxels with a

gray matter probability >75%. Such last masking aimed at increasing

the specificity of FC estimates and at lightening the computational

burden.

2.5 | Assessment of in-scanner motion

The realignment transformation matrices, estimated during the inter-

frame rigid-body registration, were used to compute the framewise

displacement (FD), defined as the root mean square deviation of the

relative transformation matrices (i.e., the transformation “error”
between two consecutive volumes), over an 80-mm radius sphere

(Jenkinson, Bannister, Brady, & Smith, 2002). Although there are sev-

eral alternative FD metrics, we adopted the one defined by Jenkinson

and colleagues as it has been shown to be the most closely related to

voxel-specific metrics of displacement (Yan et al., 2013).

For the CF dataset, we split the FD series in its five epochs,

according to the experimental paradigm. As for the EPI series, the FD

series of the first epoch was discarded. The remaining four epochs

were merged according to the functional condition, resulting in one

series at rest (FDrest) and one at task (FDtask). Similarly, for the CNP

dataset we discarded the first 32 points of the task FD series, so that

the FD series matched the trimmed EPI series.

The metric used to summarize the subject's head movement dur-

ing the two functional conditions was the mean FD (mFD).

2.6 | Denoising pipelines

2.6.1 | The general framework

Different denoising pipelines were evaluated in their ability to remove

motion-related artifacts. All the considered denoising pipelines were

applied within a common framework, which employs a multiple linear

regression model to perform simultaneous nuisance regression, band-

pass filtering and, if included in the pipeline, censoring of volumes

highly contaminated by motion (Jo et al., 2013). Each denoising model

was composed of a set of regressors common to all pipelines, which

included (a) Legendre polynomials up to order 1 to account for con-

stant and linear trends and (b) a basis of sines and cosines to regress

out frequencies outside the band 0.008–0.1 Hz. This common set of

regressors was accompanied by pipeline specific confounding vari-

ables (see next section for their definitions), that consumed a variable

number of temporal degrees of freedom (tDoF). When censoring was

required, the marked volumes were put to zero value both in the data

and in the regressor matrix, consuming a number of tDoF equal to the

number of excised volumes. For the CNP dataset, in order to take into

account the phase shift between the concatenated rest and task runs,

two orthogonal sets of trend and band-pass blocks were used (see

Figure S3 for CF and CNP representative denoising matrices). The lin-

ear regression was calculated via ordinary least squares method using
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the functional run as dependent variable and the above defined

regressor matrix as explanatory variables. The denoised series was

obtained by computing the residuals of the regression model.

The simultaneous denoising approach is available in AFNI via the

function 3dTproject (Cox, 1996), however, for speeding up calcula-

tions (e.g., by avoiding loading multiple times the same dataset that

undergoes different regression models) we rewrote the algorithm in

Matlab. The function is freely available from GitHub (https://github.

com/dmascali/fmri_denoising), along with code to construct suitable

regressors for denoising.

We note that the range of frequency selected for bandpass filter-

ing is slightly wider compared to similar previous denoising studies

(e.g., Parkes et al., 2018; Yan et al., 2013). The cut-off frequencies

were selected to minimize the impact of the filter on the residual tDoF

while at the same time allowing for low-pass filtering below 0.1 Hz,

which in previous studies has shown to be effective in mitigating

motion artifacts (Satterthwaite et al., 2013).

2.6.2 | Volume censoring

As part of data denoising, it is a common approach to remove volumes

corrupted by in-scanner motion, where the corrupted volumes may be

selected using the FD series or similar data quality metrics. While cen-

soring has been shown to mitigate the impact of motion on FC esti-

mates (Power et al., 2014; Satterthwaite et al., 2013; Yan et al., 2013),

it also reduces the accuracy of FC estimates due to the dependency

of the sample correlation variance on the number of observations

(Davey, Grayden, Egan, & Johnston, 2013). For the same reason, cen-

soring can also introduce heteroscedasticity when the number of

excised volumes is variable across the sample, since the variance of

correlations tends to increase with the number of excised volumes.

Heteroscedasticity may be particularly problematic when the studied

effects covary with in-scanner motion, as in our case, comparing func-

tional conditions differently affected by motion.

We adopted two censoring variants, one based on an FD thresh-

old, which we will refer to as threshold-based censoring (T-censoring),

and one that removes volumes based on the top-percentage FD

values, which we will refer to as percentage-based threshold (P-cen-

soring). In T-censoring, which is commonly applied in the literature

(Power et al., 2015; Satterthwaite et al., 2013), we marked for dele-

tion all volumes within the run with an FD above 0.2 mm. In P-censor-

ing, we censored a fixed number of volumes for each subject by

marking volumes having an FD within the top 25%, separately for task

and rest conditions. T-censoring ensures FC to be computed on scans

with no gross motion, at the cost of a variable loss of tDoF between

rest and task conditions, possibly inducing between-condition biases.

Conversely, P-censoring ensures a fair comparison between condi-

tions, but removes potentially good volumes in the condition with less

motion. In the CF dataset, the 0.2 mm and 25% thresholds were cho-

sen so to leave at least 39 tDoF and at least 5 min of data in each

functional condition, which has been shown as an adequate amount

of data to achieve stable estimates of FC (Van Dijk et al., 2010). Given

the short acquisition, the CNP dataset could not meet these two

criteria for any sensible threshold, therefore, we did not explore cen-

soring in this dataset.

2.6.3 | Denoising models

We evaluated the performance of numerous popular denoising pipe-

lines, which are listed in Table 1. Each pipeline was a composition of

the following confounding variables:

• RP. The 6-realignment parameters (RP; three-rotational and three-

translational parameters), estimated during the interframe rigid-

body registration step, plus their temporal derivatives (12RP; tem-

poral derivatives are always calculated via backward difference).

We also considered an additional expansion of the 12RP set by

including also the squared terms, for a total of 24 explanatory vari-

ables (Satterthwaite et al., 2013).

• WM&CSF. Based on the argument that signals from WM and CSF

compartments primarily reflect a mixture of artifacts and physio-

logical noise, these signals are commonly exploited to construct

confounders to be regressed out from data (Giove, Gili, Iacovella,

Macaluso, & Maraviglia, 2009). Two explanatory variables

(2WM&CSF) were obtained by extracting the mean tissue signal

separately from WM and CSF masks. Similar to the 24RP set, we

also considered an expanded set of confounders that included the

two average time series, their first temporal derivatives and the

squares of the resulting four terms (8WM&CSF).

• aCompCor. Introduced by Behzadi et al. (2007), anatomical com-

ponent correction (aCompCor) defines a set of orthogonal con-

founders by extracting the first n-principal components (PCs)

from regions representative of physiological noise, such as WM

and CSF compartments, and it has been shown to outperform

mean tissue-based regression in removing motion artifacts

(Muschelli et al., 2014). We performed temporal PC analysis on

the mean-centered BOLD time series enclosed in each nuisance

mask (i.e., WM and CSF). Then, following (Muschelli et al., 2014),

we evaluated two different aCompCor variants that differed in

the number of extracted PCs. We either retained a fixed number

of PCs, 5 for each tissue type resulting in a total of 10 explana-

tory variables (aCompCor method), or we extracted a variable

number of PCs so that the selected components explained at

least 50% of the variance in each tissue mask (aCompCor50%

method).

Differently from previous evaluation studies (Ciric et al., 2017;

Muschelli et al., 2014; Parkes et al., 2018; Shirer et al., 2015),

before running PC analysis, we orthogonalized the BOLD signals

with respect to the sine/cosine basis functions and with respect

to any other confounders in the model (e.g., to the 24RP in case

of the model 24RP + aCompCor). Such an approach ensures that

the extracted PCs are maximally predictive. The developed

Matlab code is available from the GitHub repository (https://

github.com/dmascali/fmri_denoising).
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• ICA-AROMA (ICA-based strategy for Automatic Removal of Motion

Artifacts). ICA-AROMA is a data-drivenmethod to identify and remove

motion-related artifacts (Pruim, Mennes, Buitelaar, et al., 2015; Pruim,

Mennes, van Rooij, et al., 2015). The method employs spatial ICA

decomposition followed by an automatic classification of noise inde-

pendent components (ICs) based on four theoretically motivated fea-

tures: (1) robust correlation with realignment-derived time series,

(2) high frequency content, (3) brain edge, and (4) CSF spatial overlap.

Then, ICs classified as noise are removed from the data using ordinary

least squares partial regression (including into the model the entire set

of ICs). This approach ensures that only the variance uniquely associ-

ated with noise-classified ICs is removed. The ICA-AROMA cleaned

time series is complemented by the additional regression of tissue-

mean signals (i.e., the 2WM&CSF confounding set, yet now extracted

from the cleaned series). The number of regressors required by ICA-

AROMA is variable across subjects, being dependent on the number of

ICs classified as noise. In order to comply with the advised processing

stream (Pruim, Mennes, van Rooij, et al., 2015), ICA-AROMA was

applied to data in native space, motion and slice-timing corrected,

global 4Dmean intensity normalized and spatially smoothed (full width

at half maximum = 6 mm). Notwithstanding smoothing is required by

ICA-AROMA to better identify structured artifacts, it also introduces

an additional variable in model comparison. To overcome such issue,

we discarded the ICA-AROMA output time series (smoothed) and we

reconstructed the cleaned series using the mixing matrix and the com-

ponent classification on the unsmoothed andMNI normalized data (via

partial regression).

• GSR (Global Signal Regression). The subject-specific WB masks

were used to extract the global signal defined as the averaged time

series from all voxels within the mask. We considered either a two-

term set composed of the mean signal plus its temporal derivative

(2GSR) or an additional expansion including also the squared

terms (4GSR).

The denoising pipelines were designed to investigate the effects

of the above-defined confounding signals and/or some of their combi-

nations (Table 1). Comparison of models 1 and 2 investigates the

effect of employing an extensive expansion of realignment parame-

ters; models 3–5 the use of signals from tissue compartments. Models

4–6, based on PCA and ICA data decomposition respectively, repre-

sent the most promising no-GSR-based pipelines according to previ-

ous studies focused on resting-state connectivity (Ciric et al., 2017;

Muschelli et al., 2014; Pruim, Mennes, Buitelaar, et al., 2015). For

Pipelines 3–6, we also studied the effect of GSR (models from 7 to

10). Censoring was applied to Pipeline 7, as suggested in

(Satterthwaite et al., 2013), either using T-censoring (model 11) or P-

censoring (model 12).

2.7 | FC estimates

Before estimating FC, the denoised series were split and merged in

order to obtain two functional series, one for the rest and one for the

task condition, from which we extracted condition-specific FC esti-

mates. If the pipeline included censoring, the censored volumes, origi-

nally set to zero value, were removed.1 In order to compute

benchmark measures, we parcellated the cortex in 333 node regions

using the Gordon and colleagues parcellation, which provides higher

homogenous FC than other available parcellations (Gordon

et al., 2016). Five (34) node regions were discarded because they did

not overlap consistently with the EPI data in the CF (CNP) dataset,

resulting in a total of 328 (299) exploitable nodes. Average time series

were extracted from each node and a FC matrix was obtained by cal-

culating the Pearson's correlation coefficient between average time

series of each pair of nodes, resulting in 53,628 (44,551) unique FC

estimates. Before computing any statistics, the correlation values

were z-Fisher transformed.

2.8 | Outcome measures

We computed a set of benchmarks designed to highlight residual arti-

facts. Specifically, we evaluated (a) the change in signal intensity from

one volume to the next (DVARS, see below for its definition), (b) the

intersubject correlation between a quality control (QC) metric and FC

estimates (QC–FC correlations), and (c) the residual effect of censor-

ing high-motion volumes (Δr plots). The benchmarks were computed

separately for rest and task conditions and for the change in FC; they

were also evaluated to the extent that they yield comparable results

between the two functional conditions, providing an additional indica-

tor of pipeline efficacy. Since the above defined metrics are not sensi-

tive to possible overfitting, we adopted a fourth benchmark (d) based

on the ability to identify densely connected sub-networks (modularity

metrics). Finally, we explored the robustness against in-scanner

motion of a commonly reported finding in studies of task-based

dynamic FC, namely, the reduction of within-network FC (Gonzalez-

Castillo & Bandettini, 2018). Each measure is detailed in the following

sections.

2.8.1 | DVARS investigation

DVARS is an intensity-based data-quality metric that indexes the

change in signal intensity from one volume to the next (Power

et al., 2014; Smyser et al., 2010). A DVARS series is obtained by com-

puting, for each time frame, the root mean square (rms) value over the

entire brain, or within a mask, of the differentiated BOLD time series

(via backward difference). Differently from FD, which is only related

to head motion, DVARS is sensitive to various physiological noises,

including for example, breathing-related variance. DVARS can be com-

puted before any denoising is performed and might be used as an

index for censoring noisy volumes, but it can also be computed after

denoising has been performed to assess the quality of the denoised

data. In order to do the latter, we computed DVARS within a noise

only mask (DVARSNOISE) following each considered denoising pipe-

line2; then, we summarized the QC series by extracting the rms value
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from each functional condition, and finally plotting the task-associated

change, that is, Δrms(DVARSNOISE) = rms(DVARSNOISEjTASK) − rms

(DVARSNOISEjREST). The noise only mask contained voxels on the edge

of the brain and was constructed by applying a 3 voxel-level dilation

to the subject-specific whole-brain mask (3dmask_tool, AFNI) and

subsequently removing any voxels in the original mask; by construc-

tion, the NOISE mask does not contain voxels used to compute FC or

to extract confounding signals. Ideally, in the case of a perfectly

cleaned dataset, no difference in rms(DVARSNOISE) between the two

functional conditions is expected. Thus, effective pipelines should

yield zero-centered distributions of Δrms(DVARSNOISE).

Moreover, in order to examine how movements translate into MR

signal changes within the region of interest, we compared the

DVARSGM time courses to the FD series, where DVARSGM was calcu-

lated in the subject-defined GM mask.

2.8.2 | QC-FC correlations

A possible benchmark measure for assessing residual motion-related

variance in FC is the correlation between per-subject mFD and per-

subject estimates of FC (Burgess et al., 2016; Ciric et al., 2017; Parkes

et al., 2018; Power et al., 2014). We computed the intersubject

Pearson's correlation between mFD and FC for all possible pairs of

nodes, yielding a distribution of QC-FC correlations. Such distribution

was computed separately for each functional condition (i.e., mFDrest

vs. FCrest and mFDtask vs. FCtask). In addition, in order to understand

to what extent the task-associated changes in FC are related to the

task-associated difference in head movement, we computed a QC-FC

distribution by correlating the per-subject ΔmFD = mFDtask − mFDrest

with the per-subject ΔFC = FCtask − FCrest. In perfectly cleaned

dataset, no intersubject variability in FC is expected to be explained

by in-scanner motion, thus, a good cleaned dataset should yield a

zero-centered QC-FC distribution with small standard deviation. We

extracted the median of the absolute distribution to evaluate both the

centering and spread of the distribution.

We also quantified possible distance-dependence artifacts in QC-

FC distributions by computing the Spearman's correlation between

the QC-FC values and the associated Euclidian distance between each

pair of nodes (Parkes et al., 2018). Indeed, prior studies have shown

that in-scanner motion differently impacts FC depending on the dis-

tance between regions, with short-range connections showing greater

association with motion (Power et al., 2012; Satterthwaite

et al., 2012; Van Dijk et al., 2012); likely due to the greater similarity

of motion-added variance for nearby voxels compared with the simi-

larity of motion-added variance for distant regions (Power

et al., 2015).

2.8.3 | Δr plots

In addition of being employed as a cleanup strategy, censoring has

also been adopted as a benchmark tool (Burgess et al., 2016; Power

et al., 2014). The basic idea is that the difference in FC obtained with

and without censoring (Δr) should reflect the extent to which motion-

contaminated volumes influence FC estimates. In contrast to QC-FC

correlations, that index motion-related artifacts using across-subjects

variance in FC and motion estimates, Δr analyses explore the specific

effect of motion-contaminated volumes at the subject level.

Compared to previous work (Burgess et al., 2016; Power

et al., 2014), we applied some modifications to this benchmark. First, we

used a P-censoring approach, instead of the common T-censoring

method, to avoid tDoF-related variability in FC estimates both across

subjects and across conditions. Second, to improve the sensitivity of the

benchmark, as well as to avoid introducing a bias between censored and

uncensored estimates, we calculated Δr as the difference between FC

computed censoring the 20% top FD volumes minus FC computed cen-

soring the 20% bottom FD volumes, that is, FC obtained from the least

motion-affected volumes (LM, low motion) and one estimated from the

most motion-contaminated volumes (HM, high motion), respectively. We

computed ΔrREST = FCRESTjLM − FCRESTjHM and ΔrTASK =

FCTASKjLM − FCTASKjHM, while to assess the task-related change in FC

we computed ΔFCLM − ΔFCHM, where ΔFC = FCTASK − FCREST. This

procedure yielded for each subject a distribution of Δr values, one for

each pair of nodes. From the subject-specific Δr distribution we

extracted the mean, which indexes global artifacts, as well as the Spe-

arman's correlation between Δr values and the associated Euclidian dis-

tance between each pair of nodes, which indexes distance-dependent

artifacts.

Due to the limited number of volumes in the CNP dataset, this

benchmark was evaluated solely for the CF dataset.

2.8.4 | Network modularity

A good denoising pipeline should remove physiological artifacts while

preserving signal of interest. Indeed, while removing motion artifacts

does increase the detection power of the true neuronal effect, an over

aggressive denoising may lose this benefit by removing the very signal

of interest. Thus, we computed modularity, an index that quantifies

the extent to which a graph can be partitioned in densely connected

sub-networks, also called communities. It is expected that motion

would decrease modularity (Satterthwaite et al., 2012), and similarly,

we expect that pipelines that remove real signal would decrease the

modular structure of the brain (Ciric et al., 2017). For each subject, we

identified communities in the connectivity matrix, separately for rest,

task and for their difference, using the Louvain algorithm (Blondel,

Guillaume, Lambiotte, & Lefebvre, 2008) and maximizing a modularity

function defined for fully connected, weighted and undirected graph

(Rubinov & Sporns, 2011). To address degeneracy of community parti-

tions, we iterated the algorithm to obtain 250 optimal partitions and

finally selected the partition with the greatest similarity with respect

to all other partitions (Doron, Bassett, & Gazzaniga, 2012). Likewise,

we selected as the best representative modularity value the average

modularity across the 250 iterations, which was then evaluated as a

function of denoising pipelines. Given that modularity by definition
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tends to favor graphs whose distribution of correlations is centered to

zero, we expect that denoising strategies adopting GSR would be

favored. Consequently, we extracted a second outcome that does not

suffer from this limitation, that is, the similarity of the identified net-

work partitions across subjects, that we quantified as the average of

the z-score of Rand index calculated over all pairs of subjects' parti-

tions. In a homogenous sample, we expect that effective and efficient

denoising pipelines would increase the partitions' similarity across

subjects.

2.8.5 | Effect of motion on task-associated change
in within-network FC

One of the main findings we obtained analyzing the CF dataset was a

marked task-associated reduction of the internal synchronization of

several large-scale networks (Tommasin et al., 2018). Here, we re-

evaluated this finding using different pipelines in order to assess the

extent to which the processing may influence the reported reduction

in FC. With this aim, we computed the within-network FC of six ICA-

derived networks (dorsal attention (DAN), default mode (DMN),

frontoparietal (FPN), somatomotor (SMN), ventral attention (VAN),

and visual (VIS) network) as described in (Tommasin et al., 2018). We

further explored the stability of within-network FC under progressive

elimination of motion-contaminated volumes, both with the T- and P-

censoring approach. In case of progressive T-censoring, in order to

rule out the possibility that the reduction in FC may be driven by the

most moving subjects, we explored lower FD thresholds (<0.2 mm)

that progressively resulted in the elimination of subjects with not

enough tDoF after censoring.

3 | RESULTS

3.1 | Subject's in-scanner movement

As expected, the analysis of the FD series showed a marked tendency

for subjects to move more during the resting periods than when they

were engaged in the working-memory (Figure 1) or in the stop-signal

task (Figure S4). The motion characteristics of the two datasets are

reported in Table 2.

Considering the CF dataset (Figure 1), the resting epochs were

characterized both by more volumes with extreme FD values and by

an overall shift of the FD distribution toward higher values

F IGURE 1 Evaluation of in-scanner head movement for the CF dataset. (a) FD series for each session and subject, with sessions from the
same subject plotted with the same color. (b) Distribution of FD values in 9 bins of different width, showing the marked difference in the
distribution of FD values between rest and task epochs. (c) Task-averaged mFD versus rest-averaged mFD. (d) Percentage of volumes above
various FD thresholds computed separately at rest (left panel) and task (right panel). The dotted vertical and horizontal lines mark, respectively,
the 0.2 mm and 25% threshold that we used in denoising pipelines employing censoring. Percentage values above the red lines have less than
5 min of residual data
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(Figure 1b). As shown in Figure 1c, the mFD was found significantly

greater at rest than at task (mFDtask: 0.074 ± 0.029 mm; mFDrest:

0.114 ± 0.042 mm paired t-test, mFDrest > mFDtask: t = 5.0,

p = 7.8 × 10−5, dof = 19, after averaging the two runs). As the result

of the pronounced difference in the distribution of FD values for the

two functional conditions, a simulation of censoring at several thresh-

olds resulted in more volumes above threshold at rest than at task, for

all considered thresholds (Figure 1d). Figure 1d also shows that the

0.2 mm threshold, chosen for T-censoring, resulted in at least 5 min of

retained data free from gross motion, at both rest and task. The 25%

threshold, selected for the P-censoring, resulted in all task series

below 0.2 mm of FD, while 2 out 40 rest series had some volumes

with FD above 0.2 mm. Similar motion characteristics were found in

the CNP dataset (mFDtask: 0.080 ± 0.061 mm; mFDrest:

0.106 ± 0.072 mm; paired t-test, mFDrest > mFDtask: t = 5.9,

p = 4.4 × 10–8, dof = 119), yet it showed a few subjects with extreme

motion (mFD >0.25 mm).

The two datasets did not significantly differ in the average motion

(t-test mFDCF > mFDCNP: p = .96, t = 0.06, dof = 138), nor they dif-

fered in the disparity of motion between task and rest conditions (t-

test ΔmFDCF > ΔmFDCNP: p = .22, t = −1.2, dof = 138).

3.2 | DVARS results

Head motion induces spurious signal changes that are apparent in

DVARS series. Given the differential impact of head motion between

rest and task conditions, we expect DVARS to reflect such differences

by showing higher values for the resting state. Here, we used a bal-

anced DVARS value between the two functional conditions as an indi-

cator of pipeline efficacy.

Figure 2 shows the distribution of Δrms(DVARSNOISE) for each

considered pipeline and dataset, with functional runs color-coded

based on the task-associated difference in head motion. The distribu-

tion of Δrms(DVARSNOISE) was shifted or skewed toward negative

values for many investigated models, indicating greater

rms(DVARSNOISE) values at rest than at task. Generally, negative Δrms

(DVARSNOISE) values were associated with high differences in head

motion between function conditions (see blue dots). Considering the

CF dataset (Figure 2a), the worst performing methods were those

based exclusively on the regression of realignment parameters

(i.e., 12RP and 24RP), as indicated by the median absolute Δrms

(DVARSNOISE). Adding nuisance signals derived from WM and CSF

compartments decreased the median absolute Δrms(DVARSNOISE),

with the aCompCor models performing better than the simple tissue-

averaged signals. In particular, aCompCor50% yielded the best median

absolute value and was the only method that was able to invert the

sign of Δrms(DVARSNOISE) for the functional runs with the greatest

disparity in motion between conditions (see blue dots now laying on

the upper quadrant). On the contrary, ICA-AROMA performed poorly,

with a distribution almost comparable to those of simpler models.

Adding GSR provided minor to modest benefits and adding censoring,

either T- or P-censoring, provided almost no benefit compared to the

respective uncensored version.

TABLE 2 Motion characteristics for the CF and CNP datasets

CF dataset CNP dataset

Measure Functional condition p-values Functional condition p-values

Rest Task Rest Task

mFD (mm)

Number of runs (subjects) 40 (20) 40 (20) 120 (120) 120 (120)

Mean 0.114 0.074 7.8 × 10−5 0.106 0.080 4.4 × 10−8

SD 0.042 0.029 0.072 0.061

Min 0.060 0.032 0.033 0.024

Max 0.25 0.16 0.49 0.44

Percentage of volumes with FD >0.2

Number of runs (subjects) 40 (20) 40 (20) 120 (120) 120 (120)

Mean 10.1 2.9 .0027 9 5 5.4 × 10−5

SD 9.8 4.0 15 10

Min 0 0 0 0

Max 47 15 83 79

FD series across all runs (mm)

Number of volumes 11,200 11,200 18,240 18,240

SD 0.10 0.064 0.15 0.16

Skewness 5.1 5.5 12 21

Kurtosis 50 61 323 754

Note: p-values are obtained via two-sample paired t-tests (in the case of CF, after averaging runs belonging to the same subjects).
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Convergent results were obtained with the CNP dataset

(Figure 2b), yet with one exception. The most noticeable is the drop in

performance of aCompCor50%, which showed a much higher median

absolute value due to a distribution of Δrms(DVARSNOISE) markedly

shifted toward positive values, indicating greater DVARS during task

than at rest. Such an inversion may be the result of an overaggressive

denoising that may have overfitted the data.

To investigate the type and the time course of variance removed

by different models, we compared, subject by subject, the FD series

against the DVARSGM series. Figure 3 shows the FD series from two

typical high-motion subjects (mFDREST �0.2 mm, one for each

dataset) alongside DVARSGM series extracted from four denoising

models plus a simple model with only trends and band-pass regressors

(BP, black line). Large FD-concurrent fluctuations in BOLD intensity,

which were prominent during rest epochs, were largely suppressed by

24RP regression. A further, albeit less marked, improvement was

obtained by adding aCompCor and even more by switching to aCo-

mpCor50%. ICA-AROMA showed a good but not consistent perfor-

mance, occasionally failing to decouple the fluctuations in the two QC

series (see e.g., volumes �150, �430, and �550 in Figure 3a, and vol-

umes �125 in Figure 3b). On the contrary, fluctuations in BOLD

intensity not ostensibly related to fluctuations in FD series, mostly

present during task epochs (especially in the CF dataset), were

effectively mitigated both by aCompCor-based models and by ICA-

AROMA, while they were mainly unaffected by 24RP regression.

Another noticeable feature is the suppression of DVARSGM values

under the baseline level occurring simultaneously with huge move-

ments, which can be observed with 24RP regression and, even more,

with aCompCor-based pipelines but not with ICA-AROMA (see for

example volumes �150, �430, and �550 in Figure 3a). This kind of

depression in DVARS series has already been reported (Hallquist,

Hwang, & Luna, 2013) and may indicate the goodness of these kinds

of models in removing BOLD signal fluctuations following head move-

ments that heavily affect the entire brain. The effect, being particu-

larly marked for aCompCor50%, may explain the change in the sign of

Δrms(DVARSGM) for the 24RP + aCompCor50% pipeline seen in the

CNP dataset. Similar patterns can be seen in the other subjects. For

each cohort, the series for the stillest subject and for an average-

moving subject are reported in Figures S5 and S6, respectively.

3.3 | QC-FC correlations

The results of the QC-FC analyses, designed to assess the association

between FC estimates and in-scanner motion, are reported in Figure 4

for the CF dataset (similar results were obtained with the CNP dataset

F IGURE 2 Task-associated changes in DVARSNOISE. The box plots show the distribution of the difference in rms(DVARSNOISE) between task
and rest—i.e., Δrms(DVARSNOISE) = rms(DVARSNOISEjTASK) − rms(DVARSNOISEjREST)—for all considered pipelines, separately for CF (a) and CNP
(b) datasets. Δrms(DVARSNOISE) values, calculated separately for each run (40 and 120 runs for the CF and CNP dataset, respectively), are color-
coded based on the task-associated difference in mFD. At the bottom of each box is reported the median of the absolute Δrms(DVARSNOISE),
with the smallest value highlighted in blue. On top of each box the asterisks mark whether the mean of the distribution is significantly different
from zero as indicated by a one-sample t-test (performed after averaging runs from the same subjects); ***p <.001, **p <.01, *p <.05
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and are reported in Figure S7). The top panels (Figure 4a) show the

distributions of the correlations between the FC estimates from the

53,628 edges (Gordon's parcellation) and the mFD, while the middle

panels (Figure 4b) show the median values of the absolute distribu-

tions. Pipeline without GSR showed a large variability in QC-FC corre-

lations, with the mean of the distributions ranging from .36 to .0045.

Methods based solely on realignment-derived regressors (12RP and

24RP) showed the greatest association with motion, exhibiting distri-

butions of QC-FC correlations markedly shifted toward positive

values and with high median absolute correlations, both indicating the

presence of strong global motion-related effects. These pipelines also

showed a pronounced differential motion effect between conditions,

with FC estimates from task epochs showing a higher association with

motion compared to FC estimates from rest epochs. The use of signals

extracted from tissue compartments improved results, with the exten-

sion of the benefits that depended on the type of signals extracted.

PCA-based methods (i.e., aCompCor models) outperformed the mean-

based method (i.e., 24RP + 8WM&CSF) both in centering the distribu-

tions and in decreasing the median absolute correlations. The best

centering of the QC-FC distributions, the lowest median absolute cor-

relations as well as the best evenness across conditions was achieved

with 24RP + aCompCor50%, which substantially outperformed the

24RP + aCompCor model, indicating that increasing the number of

extracted PCs had a great impact on reducing motion artifacts. In gen-

eral, ICA-AROMA demonstrated intermediate performance between

the two aCompCor models.

The addition of GSR was greatly effective in removing global

motion artifacts. Regardless of the pipeline on which it was applied

(tissue-based average, PCA or ICA) or of the number of considered

terms (2 or 4), GSR yielded almost perfectly centered QC-FC distribu-

tions (jmean[r] <.0074) and median absolute correlations highly com-

parable across functional conditions (maximum difference across

conditions = .013). Although the performance of the considered GSR-

based models were rather similar, 24RP + aCompCor50% + 2GSR

ranked as the best pipeline according to the median absolute

correlations.

Censoring applied on the 24RP + 8WM&CSF + 4GSR pipeline

further improved the centering of the distributions (jmean[r]j <.0038
and <.0014, for T- and P-censoring, respectively). Yet, T-censoring,

but not P-censoring, produced a severe increase of the spread of the

distributions for the resting condition and for the task-based change,

which resulted in inflated median absolute values (median jrj �.19).

F IGURE 3 QC series for a representative high-motion subject within the (a) CF and (b) CNP dataset. In each main panel, the first row shows
the FD series, while the second row shows DVARSGM series calculated after applying five different denoising models. BP (band-pass, black line) is
a denoising model containing only trends and band-pass regressors
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Finally, among all considered pipelines, P-censoring yielded the lowest

median absolute correlations (median jrj <.118).
Figure 4c shows the residual distance-dependent artifacts, quanti-

fied as the Spearman's correlation between FC estimates and the

Euclidean distance between pairs of nodes. For all considered models,

the correlation was negative, indicating a higher association between

FC and motion at short distance rather than at longer distances. Among

pipelines without censoring, models that were effective at minimizing

global artifacts were generally not as effective with distance-dependent

artifacts. No pipeline was associated with correlations both low and

even across conditions, although, even in the worst case, the magnitude

of the effect was modest (Spearman's r <.16). The addition of censoring

markedly reduced distance-dependent artifacts, irrespective of the cen-

soring approach (T- or P-censoring).

3.4 | Δr plots

The effect of the most motion-affected volumes on subject-level

FC estimates can be appreciated in the Δr plots (Figure 5). From

the difference between FC estimates obtained from the least

(FCjLM) and the most (FCjHM) motion-affected volumes we

explored the average motion effect across all pairs of nodes (dis-

tribution of means, Figure 5a) and distance-dependent artifacts

(Figure 5b).

The majority of the investigated pipelines yielded a distribution of

means significantly (p <.05) shifted toward negative values (Figure 5a),

indicating that high motion volumes increased FC estimates,

irrespective of the distance between pairs of nodes. In general, the

pipeline ranking was similar to that seen in QC-FC correlations. Com-

plex methods, such as PCA or ICA-based strategies, yielded more cen-

tered and narrower distributions of means than realignment-based

models. Among pipelines without GSR, 24RP + aCompCor yielded the

lowest median absolute values for both rest and task conditions

(0.021 and 0.023, respectively), yet the distributions of means were

still significantly shifted toward negative values. The only non-GSR

based approach that resulted in centered distributions of means with

no significant group effect was 24RP + aCompCor50%. Using GSR

greatly reduced the spread of the distributions, yielding approximately

10 times-lower median absolute values. Among GSR-based pipelines,

F IGURE 4 QC-FC plots for evaluating the across-subject relationship between motion (mFD) and connectivity estimates under different
denoising strategies for the CF dataset. The top panels (a) show the distribution of QC-FC correlations along with the absolute mean value of the
correlations, aiming at quantifying the centering of the distributions. The middle panels (b) show the median value of the absolute QC-FC
correlations, which takes into account both the centering and the spread of the distribution. The bottom panels (c) show the Spearman's
correlation between QC-FC correlations and the Euclidean distance between pairs of nodes, indexing distance-dependent artifacts. QC-FC
results are displayed for REST and TASK separately. For the task-based change in FC (ΔFC = FCtask − FCrest), the residual relationship with motion
was evaluated with respect to the change in mFD (mFD = mFDtask − mFDrest)
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24RP + 8WM&CSF + 4GSR and 24RP + aCompCor50% + 2GSR

resulted in no significant group effect.

The distribution of distance dependence was generally shifted

toward positive values (Figure 5b), which indicates that high motion

volumes differentially affected FC estimates depending on the inter-

node distance, increasing short- more than long-distance connections.

Significant distance-dependent effects were reported for all investi-

gated pipelines. Considering the median absolute values, the distance

dependence was generally mitigated by more effective strategies, at

odds with what reported for the distance-dependent effect of QC-FC

correlations (Figure 4c). The best median absolute values were

obtained using GSR on 24RP + aCompCor50%.

3.5 | Network modularity

Results of the community-based analyses are reported in Figures 6

and 7 for the CF and CNP dataset, respectively. Each figure shows

the subject-specific modularity (Panels a) and the across-subject simi-

larity of the identified network partitions (Panels b). In general, these

F IGURE 5 Censoring analysis (Δr) to evaluate residual artifacts in the CF dataset associated with the most moving volumes of each subject.
For each run, Δr values were obtained by subtracting FC estimated using the least motion-affected volumes (FCjLM) from FC estimated using the

most motion-contaminated volumes (FCjHM), where in both cases the top/bottom 20% of volumes were discarded. From the run-specific Δr
values, two quantities were extracted: (a) the mean, which indexes residual global artifacts, and (b) the distance-dependent effect of motion of FC
estimates, obtained by calculating the Spearman's correlation between Δr and the Euclidean distance between pairs. This analysis was run
separately for rest (ΔrREST) and task (ΔrTASK), while the effect on task-related change in FC was estimated by computing ΔFCLM − ΔFCHM, where
ΔFC = FCTASK − FCREST. The box plots contain the distribution of the means (a) and distance-dependent effects (b) across 40 points
(20 subjects × 2 runs). Each data point is color-coded based on mFD, for rest and task conditions, or based on ΔmFD, for the ΔFC comparison. At
the bottom of each panel is reported the median absolute of the distribution, which takes into account both the centering and the spread of the
distribution; the smallest median absolute values are color-coded based on the functional condition. On top of each panel the asterisks mark
whether the mean of the distributions are significantly different from zero as indicated by one-sample t-tests (performed after averaging the two
runs); ***p <.001, **p <.01, *p <.05
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metrics exhibited patterns in agreement with those reported for QC-

FC correlations and Δr plots, indicating that the removal of motion

artifacts was also associated with better sub-network identifiability.

Specifically, pipelines that were effective in mitigating global motion

artifacts were associated with high modularity values and high similar-

ities of the network partitions across subjects. Nevertheless, some

deviations from such a general pattern were noted. The most notable

exception was volume censoring that yielded worse results than the

uncensored version (i.e., 24RP + 8WM&CSF + 4GSR) for all metrics

(Figure 6). In particular, censoring produced a strong decrease in the

across-subject similarity of network partitions, with the effect that

was more pronounced for P-censoring, the most expensive approach

in terms of tDoF (39 residual tDoF, see Table 1), than for T-censoring.

This result highlights the critical role of tDoF in the across-subject

reproducibility of network structures.

Among pipelines without GSR, aCompCor-based models demon-

strated relatively good results, particularly in maximizing modularity,

with 24RP + aCompCor50% that showed the highest values in both

rest and task conditions. Nevertheless, divergent results were seen

when comparing the partitions' similarity of the aCompCor50% model

between the CF (Figure 6) and CNP (Figure 7) dataset. Indeed, while

in the CF dataset switching between aCompCor to aCompCor50%

improved the partitions' similarity for the task condition, the same

switching in the CNP dataset yielded reduced similarity for both func-

tional conditions and for their difference. Such discrepancy between

the datasets may once again be related to a low number of residual

tDoF. Indeed, the shortest dataset, CNP, had �51 tDoF left after the

application of 24RP + aCompCor50%, a much lower number com-

pared to that of the longest dataset, CF (�130 tDoF).

Regardless of the dataset, ICA-AROMA pipelines exhibited mixed

results. In combination with GSR, ICA-AROMA showed the highest

modularity, whereas without GSR it demonstrated intermediate per-

formance in agreement with benchmarks based on motion-related

artifacts. Nevertheless, the partitions' similarity was relatively low,

with values that were comparable to those of RP-based models.

When evaluating partitions' similarity, it should be considered

that noise could inflate such a metric in case motion-induced connec-

tivity patterns are reproducible across subjects. This possibility cannot

be excluded a priori, especially considering that previous studies have

shown motion to increase test–retest reliability of FC (Parkes

et al., 2018; Shirer et al., 2015), probably due to a trait-like nature of

motion-related noise. In order to mitigate such concerns, we rec-

alculated the across-subject partitions' similarity using a weighted

average, where each pair of z-score Rand index was weighted with

F IGURE 6 Results of the network modularity analysis for the CF dataset. (a) The box plots show the across-subject distribution of modularity
for each functional condition (REST and TASK) and for the differential condition (Δ = TASK − REST). The 40 runs (20 subjects × 2 runs)
composing the box plots are color-coded based on mFD, for rest and task conditions, or based on ΔmFD, for the Δ comparison. At the bottom of
each box plot is reported the median of the distribution, with the largest values that are color-coded based on the functional condition.
(b) Partitions' similarity across subject, assessed via z-score of Rand index
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1/mFD, so that partitions estimated from high motion subjects were

penalized. Results of the weighted similarity, reported in Figure S8,

are in agreement with the unweighted variant, which suggests that

partitions' similarity results are not driven by stereotyped patterns of

motion.

3.6 | Effect of motion on task-associated changes
in within-network FC

Using the CF dataset, we previously reported a marked reduction of

within-network FC in several large-scale networks following the exe-

cution of the working-memory task (Tommasin et al., 2018). Here, the

task-associated reduction in within-network FC was found to be mod-

ulated in magnitude depending on the denoising model applied, but it

was always significantly different from zero (see Figure S9). In addi-

tion, the incremental censoring analysis showed the stability of the

effect sign under progressive elimination of the most motion-affected

volumes. Results of such analysis applied to the best performing pipe-

line, 24RP + aCompCor50%, are reported in Figure S10, while in

Figure 8 we show results for the 24RP + aCompCor pipeline, that,

demanding fewer tDoF, allowed us to explore a wider range of

censoring thresholds. Results are reported with and without GSR and

show that the effect sign was always negative, irrespective of the cen-

soring approach (T- or P-censoring). Not only the sign was preserved,

but also the relative magnitude of the effect among networks was

reasonably stable. In P-censoring mode, Δwithin-network FC tended

toward zero as soon as the tDoF approach zero. In T-censoring mode,

the progressive elimination of the subjects who moved most

highlighted the reduction of Δwithin-network FC even at very low FD

thresholds, ruling out the possibility that the effect was driven by

motion.

4 | DISCUSSION

The current study evaluated the efficacy of commonly adopted den-

oising pipelines in balancing the residual motion-related artifacts

between functional conditions differently prone to in-scanner motion.

First, we confirmed the marked difference in subjects' motion

between resting epochs and epochs of continuous performance of

either a working-memory task or a stop-signal task, with task epochs

characterized by a minor number of bulky movements and lower aver-

age motion. Second, we found that many denoising pipelines

F IGURE 7 Results of the network modularity analysis for the CNP dataset. (a) The box plots show the across-subject distribution of
modularity for each functional condition (REST and TASK) and for the differential condition (Δ = TASK − REST). The 120 runs composing the box
plots are color-coded based on mFD, for rest and task conditions, or based on ΔmFD, for the Δ comparison. At the bottom of each box plot is
reported the median of the distribution, with the largest values that are color-coded based on the functional condition. (b) Partitions' similarity
across subject, assessed via z-score of Rand index
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performed poorly according to the selected benchmarks, displaying

either high association between motion and FC or unbalanced residual

motion artifacts between functional conditions. The inclusion of the

global signal among confounding variables substantially improved

many benchmarks and virtually equalized global motion artifacts

between conditions. Among no GSR-based pipelines, aCompCor-

based models, particularly aCompCor50%, performed well across

nearly all benchmarks. However, pipelines that were effective in miti-

gating global motion artifacts were associated with higher distance-

dependent artifacts compared with less efficient pipelines. Censoring

was the only approach that was effective in mitigating distance

dependence, yet at the expense of a great loss of tDoF accompanied

by reduced network identifiability and similarity across network parti-

tions. Moreover, in case the number of censored volumes was not bal-

anced between rest and task, censoring increased the correlation

between motion and task-based changes in FC. Finally and most

importantly, we showed the robustness against head motion of a

common result in task-based FC studies, namely the reduction of

within-network FC during task performance. These findings are dis-

cussed in detail in the following sections.

4.1 | Realignment- and tissue-based models

The simple 12RP model was overly ineffective, showing strong global

artifacts as highlighted by QC-FC correlations and Δr plots. The

expansions of 12RP, that is, models 24RP, 24RP + 8WM&CSF and

the aCompCor-based models, yielded the same pattern across all

considered benchmarks, with each expansion generating some bene-

fits with respect to the previous ones. The first great improvement is

obtained by expanding the 12 motion-based model with its squared

terms that model nonlinearities in the motion-BOLD relation and

remove the dependency on the sign of motion-derived parameters

(Satterthwaite et al., 2013). The improvement generated by this model

is in agreement with previous reports (Satterthwaite et al., 2013; Yan

et al., 2013) and, although the increase in effectiveness may be

dependent on the amount of motion in the dataset, the modest reduc-

tion in tDoF (12 additional explanatory variables compared with

12RP), supports its use as default set of realignment-based regressors.

Adding mean tissue-based signals with expansion terms

(i.e., 8WM&CSF) to the 24RP model yielded a minor but consistent

improvement, which, however, was outranked by the use of aCo-

mpCor. Of note, 24RP + 8WM&CSF and 24RP + aCompCor pipelines

have a similar cost in terms of tDoF, being composed of 8 and 10 con-

founding signals extracted from tissue compartments, respectively.

Thus, results from our multiple-condition datasets suggest that exploi-

ting signals from tissue compartments that encompass various orthog-

onal sources of variance is both more effective and more efficient

than accounting for phase lags (first derivatives) and nonlinear effects

(squared terms) in tissue-mean signals.

Despite each of the above-described pipelines provided incremental

benefits in reducing global motion artifacts, they all showed a relatively

high differential efficacy in cleaning the two functional conditions, espe-

cially in the CF dataset. The effect was markedly reduced by using the

24RP + aCompCor50% pipeline, that is, by increasing the number of PCs

used as confounding variables. Indeed, among pipelines without GSR,

F IGURE 8 Incremental censoring analysis for within-network FC considering models (a) RP24 + aCompCor and (b) RP24 + aCompCor
+ 2GSR. In each panel, the left plot shows a P-censoring analysis while the right plot a T-censoring analysis. In P-censoring an equal number of
volumes were excised from rest and task conditions ensuring condition comparability in terms of tDoF, yet at the expense of removing potentially
good volumes in the task condition. In T-censoring a more efficient data cleaning comes at the expense of variable tDoF among conditions and, in
case of severe thresholds, at the progressive elimination of subjects with the highest motion. For each network, the mean across subjects of FC is
shown as a black line along with shades representing the standard error of the mean (SEM), color-coded based on the network. Likewise, tDoF for
the T-censoring variant are represented with the mean and SEM (light-gray shade for task, darker for rest). DAN, dorsal attention; DMN, default
mode, FPN, frontoparietal; SMN, somatomotor; VAN, ventral attention; and VIS, visual network
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the 24RP + aCompCor50% model provided the best results in nearly

every benchmark, particularly in minimizing global motion artifacts, in

balancing the residual artifacts across conditions and at maximizing met-

rics based on network identifiability. Yet, the latter effect was not seen

in the CNP dataset, where the application of aCompCor50% resulted in

reduced across-subject partitions' similarity compared to the aCompCor

variant. The discrepancy between the two datasets is likely to be tDoF

related. Indeed, aCompCor50% had a great cost in terms of tDoF, which

resulted in a poor residual nominal tDoF for the CNP but not for the CF

dataset. In light of such results, the application of aCompCor50%,

despite its good efficacy in removing global motion artifacts, should be

evaluated in concert with the consumed and available tDoF, especially in

short acquisition protocols.

One interesting feature that emerged from the inspection of QC-

FC plots in the CF dataset (Figure 4) is that the above-described

condition-dependent pipeline efficacy fostered the functional condi-

tion most affected by motion, that is, the rest condition. While the

lack of physiological recordings hamper any firm conclusion, we spec-

ulate that the effect may be related to condition-dependent respira-

tory fluctuations that are differentially coupled to motion. Indeed, in

the case of a stronger coupling at rest than at task, regression of

realignment-derived parameters may remove more respiration-related

variance at rest than at task.

4.2 | aCompCor-based pipelines

As highlighted above, aCompCor-based pipelines were found to be

superior to the mean-tissue based method in every considered bench-

mark. The strength of the aCompCor approach lies in its data-driven

capability of defining confounding variables encompassing multiple

orthogonal sources of variance, which, compared to the mean signals,

are more likely to explain the different types of physiological noise in

the two functional conditions. Indeed, the striking difference in head

motion between task and rest epochs may result in condition specific

patterns of BOLD signal change that may be inadequately represen-

ted by solely mean signals.

We found that the number of PCs used as regressors played a

critical role. Indeed, the aCompCor variant, which used a total of

10 confounding signals, was striking outperformed by the aCo-

mpCor50% variant, which used a much larger number of confounders

(around 61 and 35 for CF and CNP, respectively). Such result indicates

that five PCs for tissue type are not sufficient to evenly clean the

datasets. While we cannot generalize the statement to different

dataset types, we suspect that the need for a large set of PCs in order

to effectively minimize motion artifact is due to the specific complex-

ity of multiple-condition experiments or of long-acquisition scans.

Indeed, this type of experiments tends to be affected by a richer spec-

trum of physiological noise compared to single-condition or short-

acquisition scans. Nonetheless, a clear advantage of aCompCor50% is

the data-driven selection of the number of PCs, which makes the

method particularly flexible, being able to tune the number of regres-

sors according to the specific physiological noise within the data.

Compared to previous evaluation studies, we optimized aCo-

mpCor by extracting PCs from tissue signals orthogonalized with

respect to the confounding variables that composed the model, yield-

ing a set of PCs with a greater noise prediction power compared to

the standard variant. The benefits of this optimization are illustrated

in Figure S11 for the aCompCor50% variant of the CF dataset.

Figure S11a–c shows QC-FC plots for the standard aCompCor50%

approach and for two different optimizations obtained by

preorthogonalizing WM and CSF signals with respect to either the

sine/cosine basis functions (i.e., filtering the signals before computing

PCs) or to the sine/cosine basis functions plus realignment-derived

variables (the actual model used for pipeline comparisons). Both

preorthogonalization schemes produced benefits compared to the

standard approach, with the complete orthogonalization yielding the

best results, particularly in shifting the QC-FC correlations toward

zero. A second and critical benefit of such an optimization is specific

to the aCompCor50% variant. When the optimization was used, we

saw a marked reduction of the number of extracted PCs, that is, a

reduction of the components required to fulfill the 50% variance

criteria, as illustrated in Figure S11d. This result shows that the major-

ity of the components extracted without the optimization explained

variance that was already accounted for by the other regressors

within the model, particularly by the sine/cosine basis functions. The

number of used PCs has a direct impact on the nominal tDoF, which is

a critical parameter particularly in short acquisitions, such as in the

CNP dataset. Indeed, we note that without the optimization we could

not perform aCompCor50% on the CNP dataset, since without the

gain in residual tDoF provided by the preorthogonalization scheme

the denoised matrix was not invertible. In summary, the optimization

we adopted increased both the efficacy of the method and, in the

case of the aCompCor50% variant, its efficiency. While the optimized

approach was first introduced with connectivity toolbox (Whitfield-

Gabrieli & Nieto-Castanon, 2012), research in denoising optimization

surprisingly has not explored it thus far (Ciric et al., 2017; Muschelli

et al., 2014; Parkes et al., 2018; Shirer et al., 2015). Our results

encourage the use of the optimized aCompCor approach also in

resting-state experiments. We provide code to perform it in Matlab

(https://github.com/dmascali/fmri_denoising).

4.3 | ICA-AROMA

ICA-AROMA demonstrated intermediate performance, ranking

between the 24RP + 8WM&CSF and 24RP + aCompCor50% pipe-

lines for most of the benchmarks, but it performed poorly according

to DVARS-based outcomes. Even small differences in head motion

resulted in greater rms(DVARSNOISE) at rest than at task (see green

dots in Figure 2). From the inspection of QC series (Figure 3, and

Figure S5 and S6), ICA-AROMA effectively reduced signal changes

during task epochs, performing better than the 24RP model, but was

less effective at suppressing motion-related signal changes occurring

during resting epochs, especially those occurring in coincidence with

bulky movements.

1822 MASCALI ET AL.

https://github.com/dmascali/fmri_denoising


ICA-AROMA is appealing because it uses a conservative den-

oising approach that is achieved by avoiding direct regression of

realignment-derived parameters and by using partial regression in a

model containing both “good” and “bad” ICs. These precautions miti-

gate the possibility of removing signal of interest that may covary with

confounding variables. Thus, it might be possible that ICA-AROMA

preserved signals of interest otherwise removed by other pipelines,

possibly leading to a physiological task-induced reduction of

rms(DVARS). However, we ruled out such possibility since Δrms

(DVARS) was calculated in a noise-only mask where no neuronal

meaningful difference is expected.

ICA-AROMA was also associated with a considerable loss of tDoF,

particularly for the CF dataset where the number of explanatory vari-

ables matched that of 24RP + aCompCor50% (an average of �82 ICs

were classified as noise), while for the CNP dataset the number was

similar to that of 24RP + 8WM&CSF (�30 noise-classified ICs). These

numbers are at odds with previous evaluation studies focused on

resting-state data, where an average of �10 to 20 ICs were classified

as noise in �5 to 8 min-long datasets (Ciric et al., 2017; Parkes

et al., 2018). The discrepancy is mainly related to the different run

lengths, being the CNP and CF datasets roughly two and four times

longer than those of previous studies, respectively. Indeed, while the

number of ICs classified as noise naturally tends to increase with the

complexity of the structured noise, it also increases as a function of the

number of components in which the data are decomposed (due to the

more likely splitting of noise ICs in sub components with similar fea-

tures). The algorithm for automatic dimensional estimation used in ICA-

AROMA (which is the same of MELODIC, FSL, Beckmann &

Smith, 2004; Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012)

tends to decompose longer datasets in higher dimensionalities, thus

explaining the discrepancy with previous studies. Setting an a priori

dimension for data decomposition may help in reducing the loss of

tDoF in long or short-TR experiments, yet further research is needed to

both determine the optimum decomposition number and to evaluate

the ensuing classification performance. As an alternative approach to

preserve tDoF, it is possible to divide the acquisition in epochs and

then running ICA-AROMA on each epoch separately, thereby reducing

the series length from 20 to 5 min. We explored this possibility in a

supplementary analysis, the results of which are shown in Figure S12.

ICA-AROMA ran on single-epochs reduced the average number of

noise classified components from �82 to 60. As a consequence of the

less aggressive denoising, the efficacy in removing motion-related vari-

ability was slightly reduced, yet the across-sample partitions' similarity

was increased for the resting and differential condition. While we did

not find strong evidence to favor one approach over the other, they

should be carefully evaluated in different acquisition schemes, as with

shorter TR or longer epochs/runs.

4.4 | Global signal regression

In line with previous reports (Ciric et al., 2017; Parkes et al., 2018;

Yan et al., 2013), the inclusion of the whole-brain signal markedly

reduced global motion artifacts. Additionally, we showed that GSR is

particularly effective in balancing the residual motion artifacts across

the two functional conditions, even when applied to pipelines that per

se showed a great differential residual artifacts (e.g., 24RP

+ 8WM&CSF). Despite its clear efficacy, GSR remains controversial

(see e.g., Murphy & Fox, 2017). One of the main arguments concerns

the fact that the global signal is a mixture of neuronal and non-

neuronal signals, with their relative contribution that depends on the

amount of noise in the data. As a consequence of the unbalanced

noise level between task and rest conditions, it is possible that GSR

removed more neuronal signal at task than at rest, introducing artifac-

tual differences in FC between conditions. While this possibility can-

not be ruled out by our study, the fact that both the modularity and

the similarity among network partitions were maximized by the use of

GSR (Figures 6 and 7), partially mitigates the concern. A second caveat

that must be considered when adopting GSR is that the ensuing distri-

bution of correlations, among all possible voxels, becomes centered to

zero. Depending on the investigated metrics, such redistribution of

correlations may have important repercussions on result interpreta-

tions. In our data, considering the task-based changes in within-

network FC (Figure 8), the addition of GSR reduced the standard error

of the mean but did not substantially affect the absolute and the rela-

tive magnitude of the effect among networks. The similarity of the

within-network results, with or without GSR, is likely to be due to the

large networks used to compute the metric. More spatially localized

metrics may be more influenced by the redistribution of correlations

by GSR.

4.5 | Distance dependence

Depending on the denoising strategy, our data showed small to mod-

est distance-dependent artifacts. Interestingly, among pipelines with-

out censoring, the application of models that were effective at

minimizing the global (i.e., spatially delocalized) association between

mFD and FC (i.e., QC-FC metric; Figures 4a,b) resulted in an increased

distance dependence between motion and connectivity estimates

(Figure 4c). In other words, the residual association between motion

and connectivity was more distance-dependent after the application

of effective denoising strategies. For instance, one of the pipelines

that showed the smallest QC-FC distance-dependence in both func-

tional conditions was the simple 12RP model, which ranked as the

worst model for removing global artifacts. These results suggest that

distance-dependent artifacts are at least partially a consequence of a

fragmentary denoising. Indeed, while head motion has a tendency to

impact short- more than long-distance connections

(e.g., Satterthwaite et al., 2013), a denoising model performing differ-

entially between nearby and distant connections can introduce similar

artifacts, in the same way as GSR has been implied to exacerbate

distance-dependence (Ciric et al., 2017). This effect was particularly

evident when using signals from tissue compartments or when using

GSR, however, it was also evident when expanding the 12RP set to

include the squared terms. Overall, motion-related variance with a
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spatially variable profile was not effectively represented by the evalu-

ated confounding variables, that, with the exclusion of ICA-AROMA,

were all representative of large-scale effects (volume-wise realign-

ment parameters or signals from tissue compartments). One class of

methods that we did not consider but that deserves further consider-

ation is that of voxel-wise confounders. Voxel-wise motion parame-

ters (e.g., Yan et al., 2013) or locally derived confounding signals

(e.g., Jo et al., 2010), although have shown moderate efficacy in

removing global artifacts (Ciric et al., 2017; Yan et al., 2013), have the

potential to target distant-dependent artifacts and may benefit from

the association with methods that are more effective at minimizing

global artifacts, such as GSR or CompCor.

In our study, the only approach that was effective at minimizing

both spatially delocalized and distance-dependent artifacts was vol-

ume censoring, irrespective of the modality (P- or T-censoring). How-

ever, censoring was greatly expensive in terms of tDoF, with

important repercussions on FC estimates and network identifiability.

4.6 | Volume censoring

Excising volumes to decrease the impact of motion on FC has the side

effect of decreasing the accuracy of FC estimates, increasing the likeli-

hood of extreme values (Yan et al., 2013). When the number of excised

volumes is variable across the sample or across conditions, censoring

may introduce a bias due to the different accuracy of FC estimates. To

explore such a potential effect, we compared the commonly used cen-

soring based on thresholding FD series (T-censoring) to a censoring

approach that constrains the amount of excised volumes to be equal

across both subjects and conditions (P-censoring). While both censor-

ing variants were effective at improving the centering of QC-FC distri-

butions (Figure 4a) and at minimizing the distance-dependent effect

(Figure 4c), they behaved differently with respect to the spread of the

QC-FC distributions. In particular, T-censoring, but not P-censoring,

increased the spread of the distribution and consequently the median

absolute value (Figure 4b) for the resting condition and for the task-

based change. In addition to affecting the task-based change in FC,

such bias may alter any other behavioral correlation that shares variabil-

ity with motion. The bias is mainly driven by few runs showing the

highest mFD during the rest condition (see runs with mFDrest above

�0.175 mm in Figure 1c), that after T-censoring were characterized by

FC estimates with a wider distribution. Previous studies have shown

that the major benefit of adopting censoring comes from a stringent

selection of subjects (Parkes et al., 2018). While discarding subjects

may be feasible in resting-state experiment where large cohort of data

are publicly available, this may not be viable for task-based experi-

ments, which are less common and generally require more complex and

long acquisition protocols (in our study, each run lasted 25 min). There-

fore, discarding potentially valid acquisitions may not be an option in

this kind of studies. Notably, despite the subjects that drove this bias

were outliers with respect to the number of excised volumes, after cen-

soring they had an adequate number of volumes for FC computation,

as recommended in the field (Van Dijk et al., 2010).

Irrespective of the bias introduced by the variability in the num-

ber of excised volumes, censoring was highly expensive in terms of

tDoF, particularly when using P-censoring. The detrimental effect of

reducing the number of available tDoF was evident in the reduced

network identifiability (Figure 6). Indeed, both censoring modalities

reduced the modularity and the similarity of across-sample network

partitions. The latter was particularly affected by P-censoring (the

most tDoF-consuming modality), showing a similarity across partitions

that was even lower than that of the worst performing pipeline

(i.e., 12RP). The critical role of tDoF was also evident in the incremen-

tal censoring analysis for the task-based change in within-network FC

(Figure 8), which tended sharply to zero as soon as tDoF went

below �30.

Overall, our findings suggest adopting censoring with caution in

task-based experiments. Censoring may be a sensible approach when

the scientific goals dictate the use of metrics or comparisons that are

particularly sensitive to distance-dependent artifacts. In this case, to

alleviate the side effects of censoring, researchers may use more

lenient thresholds. Indeed, in a supplementary analysis we found that

the mitigation of distance-dependent artifacts was also achieved with

less aggressive threshold, as an FD threshold of 0.3 mm or discarding

the 15% of the most moving volumes (Figure S13), sparing a consider-

able number of tDoF. On the contrary, when the scientific goals dic-

tate the use of metrics that are not sensitive to distance-dependent

effects (e.g., within-network FC), we discourage the use of censoring,

so to preserve tDoF and, consequently, to increase the accuracy of

FC estimates.

4.7 | Considerations on the denoising framework

A critical aspect in BOLD data cleaning is the order and method used

for frequency filtering, nuisance regression, and volume censoring. In

the current work, we opted for a single linear regression model that

performs the three steps simultaneously, as recommended in

(Jo et al., 2013). The simultaneous approach provides several benefits.

When censoring is used, the simultaneous denoising avoids spreading

motion-contaminated signals back and forward in time as in the case

of filtering followed by volume deletion (Carp, 2013). Moreover, the

simultaneous denoising provides an upper limit on the number of cen-

sored volumes, because the estimation of the model is constrained by

the nominal tDoF; namely, it is not possible to obtain a residual series

when there are fewer observations (i.e., time points, excluding cen-

sored volumes) than model parameters (i.e., confounding variables).

While the tDoF of the linear model do not reflect the effective tDoF

(e.g., they do not take into account the autocorrelation structure of

the data), still, they provide a useful tool for decreasing the risk of

using statistically meaningless time series. Regardless of the use of

censoring, the simultaneous approach has shown to outperform the

popular regression-followed-by-filtering in attenuating nuisance

related variability and in removing motion-related fluctuations in

resting-state data (Hallquist et al., 2013). The advantage is possible

because the simultaneous approach mitigates the frequency mismatch
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existing between nuisance variables and the nuisance-induced vari-

ability in the MR signal.

It is important to note that when censoring is not used, the simul-

taneous approach is equivalent to a two-step processing in which

confounding signals and MRI data are filtered separately, and then

nuisance regression is performed on the filtered series (Hallquist

et al., 2013). Despite the numerical equivalence of the two methods,

the two-step method offers the possibility of using different filtering

strategies, such as IIR filters, while the simultaneous approach is

restricted to sinusoidal-based filters (equivalent to FIR filters). None-

theless, we advise the use of the simultaneous (1-step) approach to

take into account the residual nominal tDoF, even when censoring is

not performed.

The use of MRI data acquired during multiple functional condi-

tions allows for two different data-cleaning strategies: either den-

oising the functional run as a whole (“full-run” method), or denoising

each functional condition separately by splitting the run in its compos-

ing epochs (“single-epoch” method). In the current work, we opted for

the former strategy, since the latter required a number of explanatory

variables that was not compatible with censoring pipelines. Indeed,

one key difference between the two approaches is the number of

confounding variables, which is n times greater when splitting the run,

where n is the number of epochs. For instance, in the CF dataset, the

RP24 set requires 24 confounding variables in the full-run method,

whereas 96 are required in the single-epoch method (an RP24 set for

each epoch). The single-epoch strategy has the potential to provide a

better control for nuisance related variability, yet at the cost of reduc-

ing FC sensitivity due to the marked loss in tDoF. Indeed, in a supple-

mentary analysis we compared the two methods using noncensoring

based pipelines and found a marked reduction in the residual tDoF,

ranging from −19% to −62%. This reduction was accompanied with

lower QC-FC correlations (average median absolute

change = −9 ± 10%, min = −37%, max = 3%), indicating a more effec-

tive cleaning of motion-related variability. However, this benefit was

accompanied with a strong reduction in the across-sample partitions'

similarity (average z-score Rand index change = −42 ± 20%,

min = −77%, max = 0%), indicating lower sensitivity to FC. The only

exception was ICA-AROMA, where the lower dimensional decomposi-

tion (due to the division of the run, see Section 4.3 for details), played

a major role compared to the expansion of the 2WM&CSF set. In

summary, when multiple conditions are collected within the same

functional run, we advocate the use of the “full-run” approach for

sparing tDoF and increasing FC sensitivity.

4.8 | Limitations

One important limitation of the present study is the impossibility of

disentangling genuine task-related changes in connectivity from those

arising from task-related changes in head motion. Since we lack any

ground truth regarding the effect of the task on FC, we based most of

our evaluation on detecting residual motion artifacts. Exploiting the

paired design of the study, we used as an indicator of effective

cleaning a low and balanced residual artifact between the two func-

tional conditions. Nonetheless, the employed benchmarks have limita-

tions. QC-FC analyses are only capable of identifying linear

relationships between motion and connectivity estimates; for

instance, they might fail if motion results in a ceiling effect on connec-

tivity. Moreover, in comparing rest and task, QC-FC analyses may suf-

fer from the slight difference in across-sample variance between rest

and task motion, with the higher variability at rest that is more likely

to explain variance in connectivity. The information contained in Δr

plots is also limited, since the plots convey insights solely about the

selected censored volumes. Pushing further the threshold, so that

even volumes characterized by smaller amounts of motion are

excised, might have disclosed further residual artifacts. While such a

strategy was not feasible due to the limited number of tDoF, we par-

tially mitigated this limitation by increasing the sensitivity of Δr plots

(i.e., comparing the “best” against the “worst” volumes).

The entire set of denoising strategies evaluated in this work was

complemented with bandpass filtering. We did not explore different

cutoff frequencies nor the possibility of removing the lowpass filter.

Indeed, while lowpass filtering has been shown to mitigate motion-

related variability (e.g., Satterthwaite et al., 2013), it has also shown to

remove neuronal-related signals occurring beyond typical cutoff fre-

quencies (Chen & Glover, 2015; Niazy, Xie, Miller, Beckmann, &

Smith, 2011), which is suggestive of a general trade-off between ade-

quately modeling noise and preserving neuronal-related signals. In

addition, in the current work, FC was estimated by calculating

Pearson's correlations between pairs of nodes, but other techniques,

such as partial correlation or ICA-based methods, are available. The

choice of the method for extracting FC can strongly interact with the

optimal frequency range for filtering, since different methods have

different sensitivity to spurious variance and different requirements in

terms of tDoF. Further studies are needed to define the optimal

trade-off for frequency filtering under different experimental

conditions.

Finally, while we explored an extensive set of denoising strategies

including many popular techniques, we did not fully cover the copious

assortment of denoising methods developed so far. Many of these

approaches (reviewed in Caballero-Gaudes & Reynolds, 2017) deserve

further consideration.

4.9 | Conclusion

In this work, we evaluated popular denoising strategies in the chal-

lenging pursuit of balancing residual-motion artifacts between steady-

state cognitive conditions that are inherently affected by different

amounts of motion. Exploiting a paired design, where the same sub-

ject undergoes two levels of a single treatment, we underscored the

inefficacy of many approaches, especially those based exclusively on

realignment-derived parameters. The best strategy employed a combi-

nation of realignment-derived parameters along with aCompCor50%

signals, which further benefited from GSR. Importantly, we encourage

the use of the optimized aCompCor to obtain the best from this
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approach. We also advise to use censoring with caution in these types

of experiments since it has the potential to introduce additional

biases. Furthermore, censoring provided minor benefits compared to

GSR and came at the great cost of reduced network identifiability.

These results provide important indications for denoising data

composed of multiple steady-state conditions (see Table 3), yet many

of these observations naturally extend to the more common resting-

state fMRI. Importantly, while this study was not specifically designed

to deal with patients, it finds a natural albeit indirect application to the

identification of best practices in studies contrasting populations intrin-

sically affected by different degrees of motion, as is the case of many

neurological diseases. Moreover, our conclusions should be carefully

evaluated in the context of dynamic FC studies, where the use of a

much short temporal scale (from 30 to 60 s) poses great challenges to

specificity and sensitivity. Finally, as highlighted in similar studies, our

results demonstrate further the importance of inspecting, and possibly

reporting, the residual relation between motion and FC.
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TABLE 3 Overview of major findings and recommendations

Denoising framework

Recommendations Benefits

Filtering/regression/censoring Use a linear regression model to perform all

steps simultaneously

• Better control for nuisance-related

variability (see Hallquist et al., 2013)

• Better control for residual nominal tDoF

• Provides an upper limit to the number of

censored volumes

Treatment of multiple epochs within the

same functional run

Avoid splitting the functional run in epochs Denoising the whole run reduces the

number of confounding variables,

increasing network identifiability metrics

Nuisance mask creation Extract masks from high-resolution

segmentation maps using conservative

probability thresholds and multiple

erosion cycles

Prevents contamination from gray matter

voxels (see Power et al., 2017).

Otherwise, the extracted signals might

behave like GSR

Pipeline evaluation

Pipelines Strengths Weaknesses Recommendations

GSR (e.g., 24RP

+ 8WM&CSF + GSR)

The most effective strategy for

balancing motion-related

effects across functional

conditions

GSR remains controversial

Censoring (24RP

+ 8WM&CSF + GSR

+ T/P-cens)

The best approach for

controlling distance

dependent artifacts

• Reduced network

identifiability metrics,

especially with P-censoring

• T-censoring is prone to

introduce additional biases

• If possible, exclude high-moving subjects (see

Parkes et al., 2018)

• Distance-dependent artifacts can also be

controlled with lenient thresholds (FDjenk

>0.2; see figure S13)

aCompCor50% (24RP+

aCompCor50%)

Best non-GSR based pipeline It might overfit the data,

depending on the number

of observations.

Use the preorthogonalization procedure to

increase the noise prediction power and to

reduce the number of extracted components

(see Figure S11)

aCompCor (24RP+

aCompCor)

Lower number of consumed

tDoF compared to

aCompCor50%

Use the preorthogonalization procedure to

increase the noise prediction power (see

Figure S11)

ICA-AROMA • Good control of motion-

related artifacts

• No direct regression of

motion parameters

• Nonaggressive denoising

Depending on the number of

observations, it might

require a considerable

number of tDoF

In long multiple-condition experiment, evaluate

the possibility of performing ICA-AROMA in

each epoch separately in order to reduce the

number of noise-classified components (see

Figure S12)

RP (RP12, RP24) Effective in combination with

other strategies

It might remove true signals

covarying with head motion

Prefer 24RP over 12RP
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ENDNOTES
1 If not removed, the volumes forced to zero may bias FC estimates.

Indeed, when denoising the entire series, the zero value matches the

mean-centering of the series, thus, the volumes set to zero do not con-

tribute to covariance. However, after splitting the series in the two func-

tional conditions, the zero-centering is not guaranteed anymore and the

volumes previously forced to zero may not match the mean of the series,

thus, possibly contributing to covariance.
2 In case the pipeline included censoring, DVARS was calculated from the

corresponding pipeline variant without censoring. Before extracting any

statistics, marked volumes for censoring were excised from the DVARS

series.
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