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Inflammatory arthritis is a chronic systemic autoimmune disease of unknown etiology,

which affects the joints. If untreated, these diseases can have a detrimental effect on

the patient’s quality of life, leading to disabilities, and therefore, exhibit a significant

socioeconomic impact and burden. While studies of immune cell populations in

arthritis patient’s peripheral blood have been informative regarding potential immune

cell dysfunction and possible patient stratification, there are considerable limitations in

identifying the early events that lead to synovial inflammation. The joint, as the site

of inflammation and the local microenvironment, exhibit unique characteristics that

contribute to disease pathogenesis. Understanding the contribution of immune and

stromal cell interactions within the inflamed joint has been met with several technical

challenges. Additionally, the limited availability of synovial tissue biopsies is a key incentive

for the utilization of high-throughput techniques in order to maximize information gain.

This review aims to provide an overview of key methods and novel techniques that

are used in the handling, processing and analysis of synovial tissue biopsies and the

potential synergy between these techniques. Herein, we describe the utilization of high

dimensionality flow cytometric analysis, single cell RNA sequencing, ex vivo functional

assays and non-intrusive metabolic characterization of synovial cells on a single cell

level based on fluorescent lifetime imaging microscopy. Additionally, we recommend

important points of consideration regarding the effect of different storage and handling

techniques on downstream analysis of synovial tissue samples. The introduction of

new powerful techniques in the study of synovial tissue inflammation, brings new

challenges but importantly, significant opportunities. Implementation of novel approaches

will accelerate our path toward understanding of the mechanisms involved in the

pathogenesis of inflammatory arthritis and lead to the identification of new avenues of

therapeutic intervention.
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INTRODUCTION

Inflammatory Arthritis (IA) including Rheumatoid Arthritis
(RA) and Psoriatic Arthritis (PsA) are important chronic
Rheumatic and Musculoskeletal Diseases (RMD) worldwide
causing significant joint destruction, disability, increased
mortality and are associated with co-morbidities (1–3). The
direct and indirect cost of inflammatory arthritis is significant
for the patient, their families and society at large. Importantly,
recent studies highlight that the burden associated with RA
and PsA is underreported and is significantly higher than
previously calculated while incidence rates are increasing
globally (4, 5). Current advances in clinical practice and the
increasing use of ultrasonographic and arthroscopic technologies
and patient partnerships have led to increased availability of
synovial biopsies (6, 7). This has fuelled recent advances in
understanding the underlying immunological mechanisms
involved in synovial inflammation and the development of
targeted biologic therapies which have significantly improved
outcomes for patients with IA. However, responses may be
sub-optimal or associated with adverse events, there are no
cures, and therefore patients require lifelong treatment. Indeed
a substantial percentage of patients still do not achieve low
disease activity or remission, with studies showing that only
18% of RA patients reach a state of low disease activity on their
first treatment, while 10% of patients are refractory to multiple
treatments (8). Another study examining both RA and PsA,
demonstrated remission rates on biologic disease-modifying
antirheumatic drug (bDMARD) therapy were higher in PsA
compared to RA, at 1 and 12 years following biologic therapy
(9). The low number of patients achieving lasting remission is
indicative of the heterogeneity of IA and the potential for disease
endotypes with common clinical manifestations but differential
immune mechanism involvement (10). Early intervention when
radiographic damage is low is a key predictor of sustained
DMARD free remission (11). Therefore, there is an urgent
and unmet need to identify individuals at risk, biomarkers of
disease and response to treatment in order to achieve patient
stratification and apply the right treatment early in disease. In
addition to effective patient stratification characterization of
cell-cell interactions at the site of inflammation, the synovium,
is required for the successful development of novel targeted
therapeutic interventions.

SYNOVIUM HISTOLOGICAL ANALYSIS
AND RESPONSE TO THERAPY:
CONTRIBUTIONS AND LIMITATION

To date, patient’ stratification and disease pathotype
stratification, as well as response to therapy has been mainly
obtained with histological analysis of the synovium. Although
RA and PsA have many common clinical manifestations, we and
others have demonstrated significant differences in the vascular
pattern, immune-cell infiltrates and the invasive lining-layer at
the site of inflammation (2–16), whichmay be associated with the
distinct pattern of joint involvement and bone erosion observed

between RA and PsA (12–16). Angiogenesis is dysregulated in
both conditions, with the formation of elongated, torturous blood
vessels, a distinct phenotype in the PsA joint (17). In contrast,
lining layer hyperplasia is more striking in RA than in PsA (18).
Findings vary in the histological analysis of PsA and RA, with
studies displaying extensive infiltration of polymorphonuclear
cells associated with PsA (14), and increased frequency of
macrophages, T-cell and B-cell subsets associated with RA, while
some studies show comparable frequencies in both conditions
(14, 19, 20). The synovial infiltration of immune cells including
T cells, B cells, plasma cells, monocytes, neutrophils, NK cells
and potentially innate lymphoid cells together contribute to
aberrant inflammation, ultimately resulting in bone erosion,
cartilage destruction and loss of function of the joint (21–24).
The presence of B cell and T cell rich lymphoid aggregates has
been linked to more aggressive and erosive RA disease (25).
These ectopic lymphoid structures could enable altered B and
T cell activation and effector function resulting in potentiation
of inflammation (6, 26). CD68 macrophage accumulation in
the synovial sub-lining layer and perivascular mononuclear
infiltration were found to be prominent in RA tissue, especially
in clinically-involved joints (27). Indeed, sub-lining expression
of CD68 is the only cell marker to date that correlates with
response to therapy, regardless of therapeutic intervention
(28, 29). Pontifex et al., have shown in PsA that both CD3 and
CD68 in the synovium decrease in response to anti-IL1 and
anti-TNF therapy, with CD3 expression correlating with disease
activity (30); in addition, in a multi-center study focussing
on patients pre/post rituximab treatment, CD68 has been
shown to correlate with disease activity (29). Patients taking
prednisolone presented a reduction in synovial macrophages
CD68, CD4 and CD5 (T and B cells) and CD38 (plasma cells) and
CD55 [fibroblast-like synoviocyte (FLS)] cells post-treatment
(6, 31). Histological analysis has also been used as a tool to
distinguish between disease pathotypes, with Kruithof et al.,
underlining that PsA synovium is significantly different from
RA in terms of lining layer hyperplasia and PMC infiltration,
whereas it presents similarity with SpA synovium (18). In
addition, Alivernini et al., suggest histological analysis of
ST might be considered an additional tool to discriminate
between the two diseases, as observed by the differential
distribution of CD117+ and CD138+ cells among PsA and
Abneg RA (32). As described above, another key difference
between RA and PsA is the pattern of neo-vascularization,
which has been associated, at the microscopic level, with
increased vascularity present in PsA synovium as indicated by
the increased number of blood vessels/high power field (33). In
addition, Murray-Brown et al., proposed immunohistochemistry
as a co-adjuvant tool for therapy selection in a case study of
seronegative polyarthritis (34). Stratification of RA patients
based on histological characterization of synovial immune
infiltrates has resulted in the identification of three potentially
distinct endotypes of RA that include the pauci-immune,
diffuse-myeloid and lympho-myeloid endotypes (35). RA disease
endotype distinction has also been suggested on the basis of
differential autoantibody involvement with distinct synovial T
cell cytokine responses and worst prognosis in patients positive
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for anti-citrullinated protein antibodies (ACPA) compared to
ACPA negative RA patients (22). Furthermore, synovial B cell
infiltrates and lymphoid aggregates are significantly higher in
ACPA+ RA patients, specifically in those who were naive to
treatment (36).

Histological analysis of synovial tissue has also been used
to evaluate and predict specific responses to therapy. Rooney
at al., showed that histological analysis could be a useful
tool for discriminating responder vs. non-responder based on
CD3T cell infiltration (37); similarly, LT-α and TNF-α were
observed to decrease in patients responding to Etanercept
therapy (38), and B cells following Rituximab therapy (39).
RA patients presenting synovial lymphocyte aggregates have
been shown to respond better to infliximab therapy, and to
be sensitive to TNFi treatment (40). Immunohistochemistry
staining for cellular infiltrate, including CD3 and CD68, in
a 12 months follow-up study on a patient failing MTX,
showed that intra-articular infliximab injection led to a
significant decrease over-time of cellular infiltration and pro-
inflammatory cytokines (41). In contrast, CD68 macrophage
infiltration was not susceptible to JAK/STAT inhibition by
tofacitinib, however decreased MMPs and IFN-regulated gene
expression in the synovium of RA patients were observed
(42). Importantly, recent advances in immunofluorescence
analysis with the implementation of novel antibody multiplexing
techniques utilizing DNA barcoded antibodies allowing for
target co-detection by indexing (CODEX) have the potential
to significantly increase the number and resolution of co-
detected targets in histological analysis of synovial tissue
biopsies (43).

In addition to histological and conventional gene expression
analysis of synovial tissue pre/post therapy, ex vivo whole
tissue synovial explant cultures have also been utilized for
pre-clinical proof of concept studies to examine potential
regulators of synovial inflammatory responses. While there is
extensive literature on the regulation and blockade of pro-
inflammatory mediators in primary synovial tissue/fluid cells
(synovial fibroblasts, T cells, B cells, macrophages) and in
peripheral blood immune cell populations, very few studies
have examined the complex multicellular microenvironment
of the inflamed joint. Synovial explant cultures spontaneously
release pro-inflammatory mediators and maintain the synovial
architecture and cell-cell contact of the synovium. Therefore,
they are a more patho-physiologically relevant ex-vivo model
that closely reflect the in vivo microenvironment of the
inflamed joint. Indeed, the first studies to identify TNFα
as a key cytokine involved in driving the inflammatory
response in RA utilized RA synovial tissue cultures (44, 45).
This led to the development of clinical trials with anti-
TNF therapies in RA and later PsA. Subsequent studies
utilizing these ex vivo models have shown that spontaneous
release of pro-inflammatory mediators correlates with clinical
disease activity and response to therapy (46, 47), have
identified regulators of inflammation (48–50), in addition
to examining the effect of therapeutic intervention (51–
53). Furthermore, explant conditioned media (ECM) cultured
with specific immune cell populations have been utilized to

show that the environment of the inflamed joint can induce
pathogenic phenotypes in healthy immune cells, thus another
potential physiologically relevant model to examine immune cell
responses (54).

While these studies are important, they are still limited
with regard to in-depth analysis of immune cell involvement
in IA disease pathogenesis. Recent studies utilizing RNA
sequencing analysis of whole synovial tissue biopsies, in
addition to flow cell sorted immune and stromal cells reveal
a complex transcriptional profile of the synovial tissue as a
whole but also the transcriptional profile of specific synovial
cells and the involvement of previously unappreciated molecular
pathways (55–59). Synovial fibroblasts are the main invasive
cells and key contributors in the pathogenesis of synovitis
due to their capacity to produce pro-inflammatory cytokines,
regulate the synovial invasion of immune cells and potentially
regulate T cell activation and macrophage metabolism (60,
61). Importantly, a recent study identified different synovial
fibroblast populations, based on the expression of FAPα and
THY1, with distinct transcriptomic profiles and function,
with the FAPα

+THY1− population being responsible for
bone and cartilage degradation, while the FAPα

+THY1+

population was associated with the more severe and persistent
form of inflammatory arthritis (56). A similar approach
allowed for the identification of two distinct macrophage sub-
populations (MerTKposTREM2high and MerTKposLYVE1pos),
with the MerTKposCD206pos sub-population being associated
with remission maintenance (55).

Several mechanisms including metabolic changes, hypoxia,
cytokines, growth factors and immune-stromal cell crosstalk are
involved in synovial inflammation; for instance, the hypoxic
conditions of the synovial joint drives hypoxia-inducible factor
1-alpha (HIF-1α)-induced glycolysis in some of the mutual
crosstalk between synovial fibroblast and immune cells, has
been shown to evolve with the disease progression, suggesting
that synovial fibroblasts have transitional properties in RA
(59). Therefore, the joint is a very dynamic environment
and a more in-depth characterization of immune and stromal
cells at the site of inflammation, is required to elucidate
disease pathogenesis and progression (1, 35, 54, 62, 63).
Isolation of single cells suspension from the synovium by
cell sorting, CyTOF, spatial transcriptomic and advanced
imaging technology of synovial tissue will aid in improving
our understanding of synovial cell crosstalk, activation, and
disease progression.

In this review we present opportunities for novel functional
characterization of synovial cells based on optimized flow
cytometric analysis and downstream functional assays, including
T cell activation and endocytosis. In addition, here we
present advanced microscopic approaches in conjunction
with RNAsequencing (RNAseq) as tools for a detailed
analysis of synovial metabolism and cellular transcriptional
changes. Importantly we describe key processes in sample
preparation and discuss important considerations depending
on downstream application of synovial cell suspensions. Thus,
sample preparation is critical to any functional, imaging,
metabolic or “omic” analysis.
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GENERATION OF SYNOVIAL SINGLE CELL
SUSPENSIONS FOR DOWNSTREAM
APPLICATIONS

One of the main functions of the synovial tissue is to regulate
synovial fluid composition; as a result, the synovial tissue
consists of fibrous, areolar tissues with a high collagen content
(64). An important consideration is the method used for
the dissociation of the synovial tissue and the generation
of a single cell suspension that can then be utilized for
flow cytometric, -omic, metabolic and functional analysis. To
determine the best approach and achieve consistent cell recovery
we tested combined enzymatic and mechanical dissociation to
that of mechanical only dissociation of synovial tissue biopsies.
Although both dissociation methods, led to a similar frequency
of gated live cells (Figure 1A), when this was quantified and
correlated to the ratio of cells/beads and cell/gram of biopsy, the
digestion enzymes in combination with mechanical dissociation
led to the release of considerably higher numbers of total
live cells as well as CD3+ and CD14+ cells (Figure 1B),
in agreement with previous observations by Donlin et al.
(65). One important consideration when utilizing proteolytic
enzymes that break down collagen fibers leading to the release
of immune and stromal cells is the possibility of cleaving
markers used for downstream analysis and consequently the
generation of false negative results. We and others have
previously highlighted this concern regarding the generation of
synovial and intestinal cell suspensions (24, 66). Importantly,
dissociation enzymes with collagenase activity belonging to
different families of collagenases can have differential effects on
masking expression of specific markers, including commonly
used markers such as CD27, CXCR5, CD127, CD141, and
CD4 creating further implications for the interpretation of
results from different studies (24, 67). Indeed, we observed
that T cell CD27 expression is significantly reduced following
enzymatic dissociation compared tomechanical dissociation (∗∗p
= 0.003) (Figure 1C). Interestingly, we have previously shown
that incubation of the synovial tissue B cells for 6 h post-digestion
restored CD27 expression (24). Importantly, themasking effect of
the dissociation enzymes can apply to a wide array of downstream
analysis including conventional flow cytometric analysis, CyToF
and even functional assays. Therefore, extensive optimization
and characterization of staining panels and digestion protocols
is required to confirm expression of surface markers on digested
synovial tissues. Furthermore, periodic re-evaluation of staining
panels if changes have been made to antibody clones and/or
suppliers should also be performed.

CRYOPRESERVATION OF SYNOVIAL
TISSUE BIOPSIES AND SINGLE CELL
SUSPENSIONS

Donlin et al. (65), previously highlighted that the correct
handling and cryopreservation/ thawing of synovial biopsies is
essential for preserving cellular distribution, as shown by the
similar viability and T/B and monocytes cells distribution in

fresh vs. frozen synovial tissue. To further explore this, here
we analyze three different methods for cellular analysis by
flow cytometry, where we compared two different preservation
methods to that of freshly digested synovial tissue from the same
patient and stained cells by flow cytometry. For this purpose, we
collected multiple biopsies from the same patients and randomly
divided them in three groups bearing a similar number of
biopsies (Schematic in Figure 2A). Group 1 and 2 synovial
tissue biopsies were immediately digested with the enzymatic
and mechanical protocol combination to establish a synovial
cell suspension as described above (Figure 1). Group 1 (Fresh)
was then stained for specific immune cell populations by flow
cytometry immediately after digestion. Group 2 (Frozen) was
digested and the resulting synovial cell suspension viably frozen
in cryovial in a solution of FBS/DMSO 10%. Group 3- whole
synovial tissue biopsies were instead viably frozen in FBS/DMSO
10%, prior to digestion and subsequently defrosted and digested
(Figure 2A). Both group 2 and 3 were defrosted and stained
for flow cytometry on the same day as described in methods
(Supplementary File). The cellular suspensions obtained from
all 3 groups were analyzed by flow cytometry for cell viability and
frequency of immune cells. Interestingly, in all three conditions,
similar viability was observed, with the frequency of live cells
ranging between 82.9 and 92.9% and a percentage of CD45+ cells
similar among the conditions (Figures 2B,C). Similarly, in-depth
analysis of the cellular distribution displayed a similar frequency
across the three groups for different immune cell types,
including T cells: CD3+, CD4+, CD8+, monocytic cells: CD14+

monocytes, and CD64+ macrophage, as well as myeloid dendritic
cells (mDC) (Figures 2B,C). Overall, these suggest that the
correct cryopreservation of synovial biopsies does not alter the
viability and cellular distribution of immune cells.

FUNCTIONAL STUDIES UTILIZING
SYNOVIAL TISSUE CELL SUSPENSIONS
AND POPULATIONS

As discussed above, histological evaluation, although providing
limited phenotypical information of highly complex molecular
mechanisms of synovial tissue, it displays a temporal snapshot of
the cellularity of the synovial tissue, is highly accessible and can
reveal immune and stromal cell organization linked to synovial
pathotype, endotype and response (6, 27, 35, 68); Figure 3A
shows representative images of RA synovial tissue CD3T cell
staining, where images show a diffuse infiltration pattern of
CD3T cells or a lymphoid aggregate pattern (Figure 3A).
Previous studies have addressed the role of lymphoid aggregates
in the synovium, highlighting their association with predictive
clinical response (6, 36, 40). Lymphoid aggregates associate
with specific cell signatures and disease progression, specifically,
the T cell, B cell rich lympho-myeloid IA synovial pathotype
shows enrichment of plasma cell signatures and enhanced disease
activity (35). While the full extent of altered synovial immune
processes resulting from aggregate formation remains to be
elucidated, early studies show increased AID expression in
support of synovial plasma cells and ACPA expression (36, 69).
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FIGURE 1 | Effect of enzymatic digestion of synovial tissue biopsies on cell and marker recovery. (A) Representative flow cytometric analysis and gating strategy

followed for paired enzymatic or mechanical synovial biopsy dissociation for the generation of a single cell suspension (n = 3). (B) Normalization of recovered,

following enzymatic or mechanical digestion of paired synovial biopsies, CD3+ and CD14+ cells expressed as cells/counting beads or cells/weigh of synovial tissue.

(C) Flow cytometric analysis of T cell CD27 expression following enzymatic or mechanical dissociation of paired synovial biopsies. Paired (same donor) synovial

biopsies are shown, symbols indicate independent samples n = 3. Paired Students T-test was used for statistical analysis (**p = 0.003), p-values < 0.05 were

considered significant.

The lymphoid aggregate formations are now believed to be
inversely correlated with IL-27 expression in the inflamed tissue,
as well as with the expression of IL-17 and IL-21 at mRNA level
(70, 71). The presence or absence of lymphoid aggregates can act
as a predictor of response to treatment, as observed in pauci-
immune patients, where the absence of B cell aggregate at baseline
was correlated to be less inflammatory disease phenotype post-
treatment (72). The increase in cellular infiltration observed in
the IA synovium, is due to the formation of new blood vessels

(as shown by Factor VIII staining- Figure 3A), which has been
correlated with disease activity and response to therapy (2, 73).
As discussed above, the angiogenesis formation pattern is a
useful tool to discriminate between RA and PsA, with the latter
forming distinct elongated, torturous blood vessels; in contrast,
lining layer hyperplasia is more striking in RA than in PsA
(18). This dysregulated synovial vascularisation coupled with
increased cellular infiltration leads to reduced overall oxygen
availability and results in the highly hypoxic microenvironment
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FIGURE 2 | Cryopreservation of synovial tissue biopsies and single cell suspensions. (A) Schematic (Created with BioRender.com). Multiple biopsies from the same

patients (n = 2) were randomly divided them in three groups bearing a similar number of biopsies. Group 1 and 2 synovial tissue biopsies were immediately digested

with the enzymatic and mechanical protocol combination to establish a synovial cell suspension as described above. Group 1 (Fresh) was then stained for specific

immune cell populations by flow cytometry immediately after digestion. Group 2 (Frozen) was digested and the resulting synovial cell suspension viably frozen in

cryovial in a solution of FBS/DMSO 10%. Group 3- whole synovial tissue biopsies were instead viably frozen in FBS/DMSO 10%, prior to digestion and subsequently

defrosted and digested. Group 2 and 3 were defrosted on the same day and stained for flow cytometry. (B) Representative dot-plot and (C) frequency of live cells,

CD45+, CD3+ (as frequency of CD45+ cells), CD4+ and CD8+ (as frequency of CD3+ cells), CD14+ cells (as frequency of HLADR+ cells), CD68+ (as frequency of

CD14+ cells) and mDC (as frequency of CD45+cells).

of the inflamed joint (1, 26, 70, 74, 75). Immune and stromal
cells need to adapt to the hypoxic conditions, beyond adaptation,
the increased availability of metabolic intermediates lactate,
succinate and itaconate can enhance synovial inflammation (76–
78). Increased lactate uptake by T cells can promote IL-17A and

IFN- γ production while there is an increasing appreciation of
metabolic reprograming involved in T cell polarization, effector
function and retention at the inflamed tissue (79–81). Metabolic
adaptation and nutrient sensing are also a characteristic of
synovial stromal cells with fibroblast invasiveness regulated by
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mTOR and the amino acid transporters SLC7A5 and LAT1
132, 133 (82, 83). Importantly, immune-stromal cell interactions
can potentially cause reciprocal metabolic changes leading to
increased T cell activation and cytokine production and fibroblast
responsiveness to proinflammatory signals (61).

Functional and metabolic characterization of synovial tissue
cells can be challenging due to the relatively high number
of cells required for analysis and accurate observation. Novel
applications of fluorescent lifetime imaging microscopy (FLIM)
can provide an assessment of metabolic profile on a single
cell level without the need for labeling with external florescent
probes (84). Two-photon FLIM (2P-FLIM), can be utilized in
order to assess protein bound vs. free nicotinamide adenine
nucleotide [NAD(P)H] and as a result provide an overview
of the cell’s metabolic state (85, 86). In the aforementioned
application, FLIM is utilized to capture the fluorescence signal
of NAD(P)H, a natural fluorochrome with importantly, distinct
fluorescence lifetimes dependent on whether it is protein bound
and therefore utilized in oxidative phosphorylation (OxPhos)
(fluorescent lifetime of ∼2.5 ns when bound compared to 0.4
ns if in free state) (87). Due to the single cell resolution
that FLIM offers, it has previously been utilized for the
characterization of the metabolic state of rare populations of
cells (23, 24), herein, we have implemented FLIM in order to
assess the metabolism of synovial tissue cell suspensions before
or after treatment with OxPhos inhibitor carbonyl cyanide p-
trifluoromethoxy-phenylhydrazone (FCCP) (Figure 3B) (88, 89).
FCCP treatment results in decreased average times of fluorescent
lifetime emissions indicative of a shift in the ratio between bound
and free NAD(P)H in favor of free NAD(P)H and therefore,
reduced OxPhos capacity of the cells.

Previous studies have highlighted that fast responsememory T
cells and polyfunctional T cells characterized by the production of
multiple cytokines, primarily rely onOxPhos instead of glycolysis
in order to meet their energetic demands (23, 90). To investigate
the functional consequence of OxPhos inhibition on synovial
tissue T cells, directly ex vivo synovial tissue cell suspensions
from IA patients were stimulated with PMA/Ionomycin in
the presence/absence of FCCP (30µM) followed by flow
cytometric analysis for T cell derived TNF-α, IL-2, IFN-
γ, IL-17A, and GM-CSF (Figure 4B). To examine cytokine
co-expression and polyfunctionality, the supervised algorithm
Simplified Presentation of Incredibly Complex Evaluations
(SPICE, version 5.1) was used (91). SPICE is primarily
a visualization algorithm based on Boolean gating of flow
cytometric analysis data, the pie segments represent the relative
frequency of CD4+ T cells and the arcs represent cytokine
expression; overlapping arcs indicate simultaneous cytokine
expression and therefore polyfunctionality (Figure 4C). Previous
studies have highlighted correlation between synovial T cell
polyfunctionality in RA and PsA with disease progression
(23, 92). Importantly, highly pathogenic polyfunctional and
resistant to autologous Treg mediated suppression, exTh17 and
CD4+CD8+ T cells accumulate at the inflamed joint of RA
patients (23, 93, 94). Synovial T cell polyfunctionality is not an
epiphenomenon of synovial inflammation since it is detectable
prior to clinical inflammation in “at risk” individuals (23). CD4+

T cells of synovial tissue biopsies incubated with FCPP showed
decreased cytokine co-expression as a result of OxPhos inhibition
and hence, polyfunctionality (Figures 4B,C). Specifically, we
observed a decrease in the frequency of GM-CSF+, IFN-γ+, IL-
2+ and TNF-α+ producing CD4+ T cells, as well as a decrease
in specific cytokine expression combinations, including TNF-
α
+IL-2+IFNγ

+GM-CSF+ and TNF-α+IL-2+IFNγ
+ producing

CD4+ T cells, paralleled by an increase in the frequency of
cells not producing any of the cytokines analyzed (negative
fraction) (Figures 3C,D). Metabolic adaptation is influenced
by the local environmental conditions including oxygen and
nutrient availability, additionally, metabolites have the potential
to act as signaling molecules and alter the behavior of immune
cells. Further characterization of in situ cell metabolism can
be performed based on recent advances of mass spectrometry
imaging (MSI) that enables the characterization of the proteomic
and metabolomic profile of a cell and its neighbors on a sub-
cell level (95). Importantly, MSI bypasses the need for the
generation of a single cell suspension that may inadvertently
impact cell metabolism.

Beyond the characterization of T cell derived cytokine
production and metabolic profile, additional functional assays
can be performed elucidating the characteristics of synovial
tissue monocytes and dendritic cells (Figure 3E). Endocytosis
mediated antigen uptake is a controlled process that reflects
distinct developmental stages of dendritic cells (DC) with mature
DC capable of performing antigen presentation, exhibiting
reduced endocytic activity compared to immature DC (96).
Importantly, endocytosis facilitates several immune functions
including cytokine and cytokine receptor availability, signaling
and metabolism for immune and stromal cells (97, 98). While
the contribution of endocytosis in IA requires further study, we
have recently showed that tofacitinib mediated JAK1/3 inhibition
resulted in reduced endocytosis in patients with PsA, and at
less extent RA, patient monocyte-derived DC (99). Importantly,
optimized protocols allow for endocytic activity measurements
to be performed on multiple populations simultaneously without
the need for cell sorting from synovial tissue cell suspensions (see
Supplementary File) (100). We observed similar endocytosis
activity of the CD45+ population between PsA and RA patients
(Figure 3E), calculated as % ratio between cells incubated at 37◦C
(specific uptake) and cells incubated at 4◦C (non-specific uptake).
However, when gating for more specific population within the
CD45+ cells, we observed a decrease in endocytic activity in both
CD14+ monocytes and mDC from RA patient when compared
to PsA (Figure 3E), in agreement with previous observations
(99). While identification and characterization of cell types and
populations that associate with aspects of synovial pathology in
arthritis, further characterization of the communication between
synovial cell populations is needed. Altered distribution of
synovial fibroblast subsets between distinct disease pathotypes
characterized by differential immune cell composition, highlights
that disease pathotypes are characterized by potentially unique
immune-fibroblast cell interaction pathways (101). Further
studies that incorporate scRNAseq and spatial transcriptomic
analysis will elucidate cell-cell interactions and their connection
to distinct arthritis pathotypes.

Frontiers in Medicine | www.frontiersin.org 7 March 2022 | Volume 9 | Article 830998

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Floudas et al. Advances in Synovial Tissue Analysis

FIGURE 3 | Metabolic and functional characterization of synovial tissue cells. (A) Representative H&E analysis of RA patient synovial tissue biopsies for expression of

CD3 or Factor VIII. (B) Representative fluorescent lifetime imaging microscopy (FLIM) of synovial tissue cell suspension at baseline or following treatment with OxPhos

(Continued)
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FIGURE 3 | inhibitor FCCP. (C) Flow cytometric analysis of synovial tissue T cell cytokine expression following stimulation ex vivo in the presence or absence of FCCP

(n = 2). (D) SPICE algorithm analysis of T cell cytokine expression and polyfunctionality. Pie segments are indicative of percentage of CD4T cells while pie arcs

represent cytokine expression. (E) Endocytic activity assessment via flow cytometric analysis of fluorescent DQ-OVA uptake for the indicated synovial cell populations

from synovial tissue biopsies of RA and PsA patients (n = 2).

FIGURE 4 | Implementation of transcriptomics in the study of synovial inflammation. (A) Term plot following pathway enrichment analysis of RA and HC synovial tissue

biopsies. Only significantly upregulated (green) or downregulated (red) gene members of the pathway are shown. Gene dot size represents significance of change for

the corresponding gene. (B) Transcription factor usage score of female compared to male RA patients based on differential expression of know target genes. (C) RA

patient and HC synovial tissue enrichment scores for specific cell populations based on transcriptional signature deconvolution of bulk RNAseq data.

RNA SEQUENCING IN THE STUDY OF
SYNOVIAL INFLAMMATION

The recent implementation of bulk and single cell RNA
sequencing has significantly impacted our understanding of
molecular and transcriptomic pathway involvement in synovial
inflammation. For instance, RNAseq of whole tissue biopsies
from stratified patients based on active disease, low synovial
inflammation or clinical remission has identified subclinical
inflammation in RA patients in remission and a “core” gene
expression signature associated with synovial inflammation
(102). Extrapolation of synovial immune cell infiltration based
on synovial tissue biopsy RNAseq analysis can be utilized to
advice on therapeutic approaches, with lympho-myeloid RA
pathotype patients requiring biological therapy at a higher
frequency than diffuse-myeloid or pauci-immune RA (103).

In addition to patient stratification or response to treatment,
synovial tissue bulk RNAseq analysis can be utilized for the
identification of specific mechanisms of synovial inflammation.
For example, CD40 and CD40L expression and CD40-
CD40L pathway members are significantly elevated in RA
synovial tissue samples compared to healthy control (HC)
subjects and associate with progression from arthralgia to
early RA to established RA (58). Joint involvement in IA
can follow different patterns with more frequent involvement
of specific joints. Recent studies highlight transcriptional
and epigenetic joint specific modulations of stromal cells,
leading to distinct pro-inflammatory responses and invasive
characteristics of synovial fibroblasts located in different joints
(104, 105). This transcriptionally dictated positional memory
of stromal cells can have a significant impact on the patient’s
response to therapy and exemplifies the need for more
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detailed characterization of the synovial microenvironment in
IA (104, 105).

For the study of specific synovial cell populations directly ex
vivo or following in vitro co-culture or activation, recent studies
have utilized bulk and single cell RNAseq of flow cell sorted
synovial cells (55, 106, 107). Single cell RNAseq analysis of flow
cell sorted synovia CD4 and CD8T cells revealed enrichment
in activated memory CD8T cells in PsA patient synovial fluid
and importantly, convergence of T cell receptor gene signatures,
highlighting shared CD8T cell clone involvement across PsA
patients (106). In addition to whole synovial tissue analysis,
scRNAseq approaches can be used for specific applications
on synovial cell microcultures (55). Recent scRNAseq studies
of synovial fibroblasts cocultured with MerTK−CD206−

or MerTK+CD206+ synovial macrophages shows that
MerTK−CD206− macrophages evoke proinflammatory
transcriptional adaptation of synovial fibroblasts (55).

Importantly, fast developing bulk and scRNAseq analysis
can be combined in novel approaches for the identification
of biomarkers of disease and response to treatment. RNAseq
analysis provides a temporal snapshot of the joint, the
standardization of those procedures and the growing ability
to perform minimally invasive repeat ultrasound biopsy or
key hole arthroscopic biopsy can mitigate this limitation of
RNAseq and guide the investigation of novel biomarkers
and pathways of inflammation (108). The aforementioned
approach is further supported by novel studies that have
identified pathogenic as well as protective roles of TNF
depending on its cellular source and temporal expression
(109). Importantly, the utilization of sequential biopsies in
combination with high dimensionality transcriptomic analysis
show superior efficacy in patient stratification compared to
histological approaches and may reveal why certain patients
show inadequate response to treatment, therefore leading to
improved patient stratification and clinical practice (110). Recent
combinatorial use of bulk and single cell RNAseq revealed
the presence of three major fibroblast clusters with distinct
transcriptomic profiles based on expression of CD34 and
THY1(57). CD34+ fibroblasts are characterized by expression of
proinflammatory cytokines including IL-6, while CD34−THY1−

and CD34−THY1+ fibroblasts promote osteoclastogenesis and
may contribute to bone erosion (57). Interestingly, subsequent
histological analysis of RA patient synovial tissue samples based
on the markers identified by RNA sequencing, showed distinct
synovial localization of the three identified major fibroblast
clusters (57). Studies in synovial tissue organization, cell-cell
interactions and transcriptomic profiles will become more
elaborate with the expected emergence of spatial transcriptomics
(111). However, currently publicly available RNAseq data can
be repurposed and reanalyzed to answer further questions
regarding synovial pathogenesis. The accelerating introduction
of novel algorithms of differential gene expression and pathway
enrichment can lead to improved visualization of molecular
pathways involved in IA pathogenesis (Figure 4A) (112).
Importantly, as resolution of transcriptional regulation increases
and transcription factor regulation of downstream target genes
is identified, transcription factor activity can be inferred

bioinformatically based on differential gene expression data
(Figure 4B). Preliminary analysis utilizing the aforementioned
approach shows a clear demarcation of female and male RA
patients based on synovial tissue transcription factor activity
with female patients showing increased activity of the epigenetic
regulator PRDM14 (58, 113–115) (Figure 4B). One of the
main disadvantages of whole synovial tissue RNAseq is the
inability to separate between different cell types and assess tissue
compositions and cell specific transcriptional signatures. New
analysis approaches help provide an overview of whole tissue
cellular composition by deconvolution of bulk RNAseq data
based on predetermined transcriptional signatures associated
with specific cell populations (116). Such approaches can provide
an overview of the cellularity of the synovial landscape utilizing
bulk whole tissue RNAseq data and allow for comparison of cell
specific enrichment scores between sample groups. As shown in
Figure 4C, there is an increase in NKT and Th1 associated gene
signatures in RA patients compared to HC synovial tissue.

The implementation of spatial transcriptomics and
novel scRNAseq and bulk RNAseq analysis approaches will
revolutionize our understanding of synovial inflammation.
Importantly, advances in microfluidic applications for RNAseq
and streamlined analysis workflows, will reduce the costs
associated with clinical application of transcriptomic analysis
and their utilization in personalized medicine (117). However,
-omic approaches provide a temporal or spatio-temporal view
of the inflamed joint, therefore functional assay involvement
will need to be more frequently and robustly implemented to
match advances in RNAseq. The exciting and novel applications
of high throughput techniques and functional studies need
to be based on well-optimized synovial tissue handling and
dissociation approaches.

CONCLUSIONS

Increased synovial tissue availability and synovial tissue
research have been instrumental in recent advances in our
understanding of the immunological mechanisms involved
in joint inflammation and have subsequently led to improved
clinical practice. Herein, we outline important steps and
considerations for the successful analysis of synovial tissue
biopsies. Additionally, we describe opportunities for the
utilization of –omic approaches and novel functional assay
applications in the study of synovial immune and stromal cell
responses (Figure 5).

The interrogation of synovial tissue cells and immune
mechanisms contributing to synovial pathology, depends on
synovial tissue processing and cryopreservation. Importantly,
the compatibility of tissue dissociation method and downstream
application needs to be examined depending on the relevant
experimental approach and hypothesis (66). Another point
of consideration is the need and method of synovial tissue
cryopreservation. Cryopreservation can potentially help alleviate
aspects of batch-to-batch variation and allow for direct
comparison of multiple samples from distinct patient groups or
time points. However, it needs to be noted that downstream
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FIGURE 5 | Illustration of key techniques used in synovial tissue research. Created with BioRender.com.

functional or transcriptomic characterization of synovial tissue
samples may be impacted by cryopreservation and testing of
specific cryopreservation methods and adaptation of cell sorting
requirements based on downstream applications is advised (118).

High dimensionality flow cytometric and RNAseq analysis
provide a temporal snapshot of the synovial tissue, therefore,
to appreciate the significance of identified molecular pathways,
functional assays are essential. A key obstacle in synovial tissue
research is the low number of available cells; the implementation
of novel approaches, optimized protocols and advanced
microscopy-based techniques can provide opportunities for
functional interrogation of synovial cells bypassing the need
for high numbers of available cells. One exception to the
high cell number requirement for the implementation of

functional studies, is synovial fibroblasts due to available,
well-characterized and optimized protocols of in vitro expansion
of these cells. As a result fibroblasts from IA patient synovial
biopsies can be utilized in invasion and migration assays
following response treatment, metabolic characterization and
even co-culture with immune and stromal cells, including the
recently characterized pro-inflammatory MerkTK−CD206−

synovial tissue macrophages (17, 55, 61, 119). These studies have
significantly improved our understanding of synovial fibroblast
involvement in IA pathogenesis, however, once removed from
the synovial environment and expanded in vitro transcriptional
characteristics of specific synovial fibroblasts are potentially
altered (120). Therefore, investigation of the full potential and
involvement of synovial fibroblasts in IA pathogenesis may
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require novel experimental approaches. The inflamed joint is
a dynamic environment of constant adaptation of immune
and stromal cells to unique environmental conditions of
oxygen and nutrient availability (121). Metabolic processes are
fundamental in regulating inflammation, as such metabolism
is not a steady state, rather a continuous adaptation to
changing environmental conditions (122). Metabolic states
can change rapidly due to altered nutrient, metabolite and
oxygen availability, with recent reports demonstrating that
metabolism can be significantly impacted during the process of
flow cell sorting (123). Techniques that allow for examination
of cell metabolism following minimal handling can potentially
provide a more accurate and representative assessment of
metabolic processes at the site of inflammation. Early studies of
histological examination of synovial tissue biopsies demonstrated
a fundamental role for T cells in IA pathogenesis (6). Recent
advances in high dimensionality flow cytometric data analysis,
exploration and visualization, have substantiated histological
findings of T cell involvement leading to growing appreciation
of T cell polyfunctionality in IA pathogenesis (23, 92, 93).
With the expanding utilization of single cell RNAseq in the
study of synovial tissue inflammation, further development and
implementation of functional assays will be important for the
translatability of transcriptomic approaches.

Recent applications of single cell RNAseq and mass cytometry
have considerably increased the resolution of the synovial
landscape due to the identification of transcriptionally distinct
synovial and immune cell clusters (55, 56, 106, 120, 124).
While scRNAseq approaches have distinct advantages over
bulk RNAseq analysis, the rapid and continues improvement
of analysis algorithms for bulk RNAseq datasets can lead
to their re-utilization for further interrogation of synovial
inflammation pathogenesis and patients’ stratification (58, 125).
Novel approaches for the interrogation of cell-cell interactions
based on transcriptomic data are required and can lead to
significant advances in the development of novel targeted
therapeutic interventions that will disrupt specific cell-cell
interactions. Such tools have been described recently, however,
their application in the study of complex systems will need
extensive testing and validation (126). An important milestone in
synovial tissue research that will unlock several opportunities for
novel targeted therapeutic approaches will be the interrogation

of cell-cell interactions using transcriptomic data in conjunction
with “geographical” knowledge of immune and stromal cells
based on recent advances in spatial transcriptomics (127).
Implementation of spatial transcriptomics will validate recent
attempts to transcriptionally characterize the synovial cell
landscape based on scRNAseq analysis.

Synovial tissue research is undergoing an exciting
transformation with the implementation of –omic approaches
and novel mechanistic, functional interrogations of synovial
tissue pathogenesis; these opportunities can exacerbate known
obstacles and present new ones. Overcoming those has
the potential to propel forward our understanding of IA
pathogenesis and lead to substantial advances in clinical practice.
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