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ABSTRACT

Although rapid progress has been made in com-
putational approaches for prioritizing cancer driver
genes, research is far from achieving the ultimate
goal of discovering a complete catalog of genes
truly associated with cancer. Driver gene lists pre-
dicted from these computational tools lack consis-
tency and are prone to false positives. Here, we devel-
oped an approach (DriverML) integrating Rao’s score
test and supervised machine learning to identify can-
cer driver genes. The weight parameters in the score
statistics quantified the functional impacts of muta-
tions on the protein. To obtain optimized weight pa-
rameters, the score statistics of prior driver genes
were maximized on pan-cancer training data. We con-
ducted rigorous and unbiased benchmark analysis
and comparisons of DriverML with 20 other existing
tools in 31 independent datasets from The Cancer
Genome Atlas (TCGA). Our comprehensive evalua-
tions demonstrated that DriverML was robust and
powerful among various datasets and outperformed
the other tools with a better balance of precision and
sensitivity. In vitro cell-based assays further proved
the validity of the DriverML prediction of novel driver
genes. In summary, DriverML uses an innovative, ma-
chine learning-based approach to prioritize cancer
driver genes and provides dramatic improvements

over currently existing methods. Its source code is
available at https://github.com/HelloYiHan/DriverML.

INTRODUCTION

Cancer is a genetic disease with somatically acquired ge-
nomic aberrations. Driver mutations are required for the
cancer phenotype, whereas passenger mutations are irrele-
vant to tumor development and accumulate through DNA
replication (1). Several major cancer sequencing projects,
such as The Cancer Genome Atlas (TCGA), the Interna-
tional Cancer Genome Consortium (ICGC) and the Thera-
peutically Applicable Research to Generate Effective Treat-
ments (TARGET), have created a comprehensive catalog
of somatic mutations across all major cancer types (2,3). A
major goal of these sequencing projects is to identify cancer
genes with mutations that drive the cancer phenotype. Bet-
ter identification of cancer driver genes would inform po-
tential therapies targeted against the products of these aber-
rant genomic alterations in addition to fundamentally ad-
vancing the knowledge of tumor initiation, promotion and
progression (4,5).

Many bioinformatics tools dedicated to driver gene iden-
tification with multi-dimensional genomic data have been
developed. Most of these tools can be classified into three
categories based on their basic principles (Figure 1A). The
first category is frequency-based methods, which consist of
identifying genes that are more frequently mutated than
the background mutation rate (BMR) (6–13). MutSigCV
is one such tool. It is widely used for TCGA projects (9). Its
significant feature is the correction for patient-specific and
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Figure 1. Computational tools for identifying cancer driver genes. (A)
Classification of 21 driver gene prediction tools evaluated in this study.
These widely used tools are classified as frequency-based, hotspot-based
and network-based methods. The block size for each tool represents its ci-
tation times according to data obtained from the Web Of Science on 27
September 2018 (the larger block size, the more the citation times). Mut-
SigCV is a widely used tool that is the most frequently cited in the literature.
It has the largest block size. Two up-to-date tools, rDriver and SCS (pub-
lished in 2018), along with DriverML, had no citation, and had the smallest
block size. (B) Summary of the main workflow of DriverML. DriverML
identifies cancer driver genes by combining a weighted score test and ma-
chine learning approach. The weights (

→
ω , T represents the total number of

mutation types evaluated in this study) in the score statistics quantify the
functional impacts of different mutation types on the protein. To assign
optimal weights to different types of non-silent mutations, the score statis-
tics of prior driver genes were maximized in pan-cancer training data based
on the machine learning approach. The U and I represent the Rao score
function and Fish information, respectively. To test cancer driver genes,
the score value of each gene was computed with the weighted score statis-
tic with the learned weight parameters. The empirical null distribution of
score statistics, from which P-values of tested genes were calculated, was
generated by Monte Carlo simulation.

gene-specific mutational heterogeneities by incorporating
DNA replication timing and transcriptional activity. This
can eliminate most of the apparent artifacts. The second
category is sub-network methods, which attempt to iden-
tify groups of driver genes based on prior knowledge of
pathways, proteins or genetic interactions (14–21). For in-
stance, the DawnRank tool ranks candidate driver genes
based on their impact on the expression of downstream
genes in molecular interaction networks (20). One of the
advantages of sub-network methods is their ability to iden-
tify driver genes with low recurrence (22). The third cate-
gory is hotspot-based methods (23–26). The term hotspot
refers to hotspot mutation regions, which are driven by pos-
itive selection and especially located in functional domains
or important residues for three-dimensional protein struc-
tures (27,28). One of the representative hotspot-based meth-
ods is OncodriveCLUST, which detects driver genes with a
significant bias toward mutations clustered within specific
protein sequence regions (24). Hotspot methods are opti-
mal for identifying gain-of-function mutations (i.e. onco-
genes) in specific protein regions, whereas loss-of-function
sites (i.e. tumor suppressors) resulting randomly from trun-
cated mutations may be missed.

Despite the rapid progress in computational approaches
to prioritize cancer driver genes with the advent of next-
generation sequencing technologies, the ultimate goal of
discovering a complete catalog of genes truly associated
with cancer is far from being achieved. Driver gene lists pre-
dicted from these tools lack consistency (22,27,29). On the
one hand, the number of drivers predicted in some cancer
types varies by more than 100-fold across these tools. On the
other hand, driver genes predicted by different tools differ
greatly. Only a few driver genes predicted by different tools
overlap (29). Furthermore, many tools are not optimally
balanced between precision and sensitivity (20). Some tools
are over ambitious and yield too many false-positive calls,
while others are overly conservative and risk missing many
true drivers. Therefore, there is a pressing need to develop
reliable and powerful tools to prioritize cancer driver genes
and optimize the balance between precision and sensitivity.

Different types of mutations may have different func-
tional impacts on protein function. We developed a su-
pervised machine learning approach (DriverML) for scor-
ing functional consequences of DNA sequence alterations
to identify cancer driver genes (Figure 1B). The proposed
score statistic integrated a set of parameters to weight the
functional impacts of different types of mutations. To ob-
tain optimized weight parameters, the score statistics of
prior driver genes were maximized on pan-cancer train-
ing data based on the machine learning approach. We con-
ducted rigorous and unbiased comparisons of DriverML
with 20 other driver gene prediction methods on 31 in-
dependent datasets from TCGA (Supplementary Table
S1). Our comprehensive evaluations demonstrated that
DriverML was robust among various datasets and outper-
formed the other tools by better balancing precision and
sensitivity.
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METHODS AND MATERIALS

Overview of DriverML

DriverML identifies cancer driver genes by combining a
weighted score test and machine learning approach (Figure
1B). It provides several prominent features that were either
naı̈vely obtained or unattainable by previous tools. First,
Rao’s score statistic is mathematically suitable to combine
multiple components with a set of weight parameters to pro-
duce a weighted global statistic (30). For driver gene predic-
tion, each type of mutation (e.g. missense, nonsense, splice
site, frameshift insertion/deletion (indel) and in-frame in-
del) is regarded as one component. The weighted score
statistic that combines all mutations can globally test each
gene across the genome. Second, the weights in the score
statistics quantify the functional impacts of different muta-
tion types on the protein. To assign optimal weights to the
different types of nonsilent mutations, the score statistics
of prior driver genes were maximized on pan-cancer train-
ing data based on the machine learning approach. Third,
in reality, the BMR of some tumors is too low to observe
any occurrences of a certain type of mutation in samples.
This may violate the central limit theorem under which the
score statistic is derived. Thus, a Poisson process was used
to model the random nature of somatic mutations (10);
instead, a P-value of the score statistic was obtained by
Monte Carlo simulations. Our driver gene prediction ap-
proach was implemented by a set of R and Perl scripts,
which were integrated into the DriverML analysis pipeline
(https://github.com/HelloYiHan/DriverML).

Rao’s score test

The test has five suppositions. First, the analyzed dataset
consists of P patients (samples), G genes and T mutation
types (Supplementary Figure S1). Second, the numbers of
base pairs that can give rise to silent and nonsilent muta-
tions of mutation type t in gene g are respectively denoted
as Nsil

gt and Nnon
gt . Third, the numbers of actually observed

silent and nonsilent mutations of mutation type t in gene
g and patient p are respectively denoted by nsil

pgt and nnon
pgt .

Fourth, βpgt denotes the BMR of mutation type t of gene
g, in patient p, and αgt denotes the driver effect of mutation
type t in gene g. Fifth, the number of silent and nonsilent
mutations in mutation type t, gene g and patient p follows
a Poisson distribution with the parameters βpgt and θpgt, re-
spectively, where θpgt = βpgt + αgt (10).

The Rao score statistic (31) is used to test the significance
of a driver gene. The null hypothesis is H0 : αg1 = · · · =
αgT = 0. It suggests that the tested gene g does not have
driver effects and is not a cancer driver. The alternative hy-
pothesis is H1 : for some t in {1, . . . , T}, αgt > 0. It sug-
gests that at least one kind of mutation in the tested gene
g has driver effects and that the tested gene is likely a can-
cer driver. Observed silent and nonsilent mutation counts
of type t in gene g from patient p occur with the probability
functions:

P
(
nsil

pgt, βpgt
) =

(
βpgt Nsil

gt

)nsil
pgt

nsil
pgt!

e−βpgt Nsil
gt (1)

P
(
nnon

pgt , θpgt
) =

(
θpgt Nnon

gt

)nnon
pgt

nnon
pgt !

e−θpgt Nnon
pgt (2)

Equation (1) is used to compute the BMR. Details are
subsequently provided in the ‘Background mutation model’
section. Equation (2) is used to derive the Rao score func-
tion as:

U
(
θpgt

) = ∂ log P
(
nnon

pgt , θpgt
)

∂θpgt
(3)

Its Fisher information is expressed as:

I
(
θpgt

) = E

[
∂ log P

(
nnon

pgt , θpgt
)

∂θpgt

]2

(4)

According to the central limit theorem, we can obtain the
Rao score statistic and its asymptotic distribution under the
null hypothesis:

Sgt =
∑P

p=1 U
(
θpgt

)
√∑P

p=1 I
(
θpgt

) → N (0, 1) (5)

The advantage of a score statistic is that it is mathemati-
cally suitable to integrate a set of weight as parameters (30).
We can further deduce a weighted score statistic from equa-
tion (5) by integrating the functional impact of each muta-
tion type, which can potentially improve the performance of
our new algorithm. Specifically, the global weighted score
statistic is obtained by summing the score function of all
mutation types across all patient samples:

Sweight
g =

∑T
t=1 ωt

∑P
p=1 U

(
θpgt

)
√∑T

t=1 ω2
t
∑P

p=1 I
(
θpgt

) (6)

where the parameter ωt is the weight of the mutation type
t, which quantifies the functional impacts of mutations on
the protein. Details are subsequently provided in the ‘Func-
tional impact from machine learning’ section. Equation (6)
is employed to test the significance of gene g. The score
statistic asymptotically follows the standard normal distri-
bution under the null hypothesis, which requires large sam-
ple sizes. However, in reality, some tumors have too low
mutation rate to observe any occurrences of a certain type
of mutation in samples. Consequently, the distribution of
the score statistic may not be a standard normal distribu-
tion under the null hypothesis. To remedy this problem,
we proposed a simulation method to model the number of
somatic mutations by the Poisson distribution. The simu-
lated distribution serves well for this purpose. The simula-
tion method is subsequently detailed in the ‘Monte Carlo
simulation’ section. Detailed derivations of the above for-
mulae are found in the Supplementary Methods.

Background mutation model

We previously computed BMR for each patient and muta-
tion type using the empirical Bayesian method (10). Since
the mutation rate varies across the genome and correlates
with gene covariates (9), we improved the BMR estima-
tion by accounting for gene-specific mutation heterogeneity.

https://github.com/HelloYiHan/DriverML
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First, all genes in the mutation dataset are clustered accord-
ing to their genomic contexts, including base composition,
size of protein coding regions (CDS), replication time, ex-
pression level, local GC content and chromatin compart-
ment (9). DriverML chooses as many clusters as possi-
ble based on the premise that the computed BMRs are all
greater than zero, because the more clusters there are, the
more accurate the computed BMR is. Interpolation is used
to fill in missing values of gene characteristics. Second, the
BMR of each cluster is computed with the empirical Bayes
method as we previously described (10). The advantage of
the use of the empirical Bayes method is its ability to bor-
row information from all the patient samples to estimate
each BMR, which produces smoother estimates. Briefly, a
prior beta distribution B(a,b) of βpgt was used, which is
more appropriate than the uniform distribution that was
commonly used in previous studies. Since it is the conjugate
prior of the binomial distribution, the posterior distribu-
tion is still a beta distribution. Thus, we can estimate β

post
pgt =

(â + nsil
pgt)/(â + b̂ + Nsil

gt ). â = β̄gt (β̄gt(1 − β̄gt)/vgt − 1)
and b̂ = (1 − β̄gt) (β̄gt(1 − β̄gt)/vgt − 1) as the moment esti-

mations of the parameters a and b, where β̄gt =
P∑

p=1
βpgt/P

is the sample mean and vgt =
P∑

p=1
(βpgt − β̄gt)2/P − 1 is the

sample variance.

Functional impact from machine learning

The score statistic described above integrates a set of weight
parameters �ω = (ω1, . . . , ωT) to quantify the functional im-
pacts of different types of mutations on protein function.
Five nonsilent somatic mutation types considered are mis-
sense, nonsense, splice site, frameshift indel and in-frame in-
del. Silent mutations are used to compute the BMR and do
not need a parameter of functional impact. For each type
of point nonsilent mutations, different base compositions
are considered (Supplementary Figure S1). The functional
impact of each mutation type is learned from the training
data according to the principle of machine learning. Due
to the driver effects, the weighted score statistic of a driver
gene is expected to be larger than that of a passenger gene.
Hence, for each prior driver gene in the training data, the
weighted score statistic (equation 6) is maximized to obtain
an optimal functional impact ωt: max

ωt
Sweight

g . For each mu-

tation type, the estimated functional impact ωt is then aver-
aged over all prior genes in the training data and is used in
the weighted score statistic (equation 6) to predict new can-
cer drivers in the testing data. To avoid the potential over-
fitting problem, we used completely different datasets for
training and testing. Non-TCGA datasets from ICGC and
previous studies (32–34) were employed as training muta-
tion data (Supplementary Table S2), whereas TCGA data
as testing data (Supplementary Table S1). The prior gene
lists were obtained from non-TCGA data in IntOGen (35)
and DriverDBv2 databases (22,27). Since some cancer types
are either not presented or have small sample sizes in non-
TCGA datasets from ICGC and previous studies (32–34),

we estimated general functional impact weights without re-
gard to cancer types by using all of non-TCGA pan-cancer
datasets.

Monte Carlo simulation

As described above in the ‘Rao’s score test’ section, the
real distribution of the weighted score statistics (equation
6) is perhaps not asymptotically standard normal due to
low BMR in tumor samples. Thus, the Monte Carlo pro-
cedure is used to generate a null distribution of score statis-
tics from which empirical P-values could be computed for
these statistics using real data. First, the random nature of
somatic mutations is modeled by the Poisson distribution
(10) under the null hypothesis:

nsim
pgt ∼ Poisson

(
Nnon

gt β̂pgt
)

(7)

where nsim
pgt denotes the number of simulated nonsilent mu-

tations of mutation type t in gene g and patient p. β̂pgt is
the estimated BMR of mutation type t in gene g of pa-
tient p. In each simulation, the P × G × T dimension ar-
ray of mutation data will be generated according to Poisson
distribution, where P represents the total number of ana-
lyzed patients, G represents the total number of analyzed
genes and T represents the total number of analyzed muta-
tion types. Then, the weighted score statistic is computed for
each gene from the simulated mutation data to form a null
distribution. By default, simulations are repeated 10 000
times, which is sufficiently large to form an empirical dis-
tribution that satisfies the central limit theorem.

Calculation of empirical P-values

After the generation of simulated null distributions from
the above Monte Carlo procedure, for each gene g, a score
statistic is computed according to equation (6) using real
data. Then, the P-value of that gene is estimated as p̂ =
r/n, where n is the number of replicate samples that have
been simulated and r is the number of these replicates that
produce a score statistic greater than or equal to that calcu-
lated for the actual data. Finally, the Benjamini–Hochberg
procedure (36) is applied to control the false discovery rate
(FDR). Examples of generated null distribution versus ob-
served statistics are provided in Supplementary Figure S2.

Implementation of DriverML

Three types of data––mutation data, training data and a
mutation table––are input into DriverML. The mutation
data in the Mutation Annotation Format (MAF) are in-
put by a user, whereas the training data and mutation ta-
ble are provided by the program and will be regularly up-
dated upon the arrival of a newer version of gene annota-
tion and more comprehensive prior information. The mu-
tation table contains the number of base pairs in CDS of
each gene that can give rise to different types of mutations.
The output of DriverML is a summary of putative driver
genes, including the numbers of each mutation type, value
of the statistic, P-value and adjusted P-value. DriverML is
implemented using a set of R, Perl and Shell scripts inte-
grated into a user-friendly analysis pipeline. Source code
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and example data can be accessed at https://github.com/
HelloYiHan/DriverML.

Data collection

Our comprehensive evaluations were based on DriverDBv2
database that was developed by our co-authors (22,27).
The DriverDBv2 incorporated cancer driver genes was pre-
dicted by 15 commonly used tools from 31 TCGA datasets
(Supplementary Table S1). The TCGA datasets covered
all kinds of cancer mutation signatures and were large
enough to evaluate these bioinformatics tools. MAF files
of these TCGA datasets were preprocessed so that silent,
missense, nonsense, splice site, frameshift insertion/deletion
(indel) and in-frame indel mutation types were retained
in subsequent analyses. Gene expression and copy num-
ber variation (CNV) data that are required for some
methods were downloaded at GDC (https://portal.gdc.
cancer.gov/). The gene list in Cancer Gene Census (CGC)
was downloaded in April 2017 from the COSMIC web-
site (https://cancer.sanger.ac.uk/cosmic). Mut-driver and
HiConf driver gene lists were extracted from published
studies (37,38) (Supplementary Table S3). In addition, the
pan-cancer training data consisted of 145 788 somatic mu-
tations encompassing 2263 tumor samples from 17 spe-
cific cancer types from non-TCGA samples in the ICGC
datasets and previous studies (32–34) (Supplementary Ta-
ble S2). These training samples did not overlap with any of
the TCGA samples used for the evaluation and testing.

Other bioinformatics tools for cancer driver prediction

We comprehensively assessed DriverML by comparing it
with 20 other commonly used tools for driver gene predic-
tion in the 31 TCGA datasets. Predictions of driver genes
in ActiveDriver, Dendrix, MDPFinder, Simon, NetBox,
OncodriverFM, MutSigCV, MEMo, CoMDP, DawnRank,
DriverNet, e-Driver, iPAC, MSEA and OncodriveCLUST
were obtained from the DriverDBv2 database (27). In ad-
dition, five other top-of-the-line tools were also evaluated:
DrGaP (10), OncodriveFML (12), rDriver (13), SCS (21)
and ExInAtor (11). DriverML and the other five tools ran
the same TCGA datasets as DriverDBv2, according to their
manuals, with default parameters used. For those methods
that can generate P-values, an adjusted P-value < 0.05 (i.e.
FDR < 0.05) was used as the threshold to claim driver
genes. For those methods that cannot produce P-values, the
same criteria as DriverDB database were adopted instead
(22,27) (Supplementary Table S4). In addition to mutation
data, the SCS required tumor-normal paired expression and
CNV data from the same patients. Only 19 TCGA datasets
with available expression and CNV were computed with
SCS. BiomaRt (39) was used to convert Ensembl id to gene
symbol. Gene annotation file (release 19) for ExInAtor was
downloaded from GENCODE (https://www.gencodegenes.
org/).

In vitro cell-based assays

Cell culture. H520 and H1703 lung squamous cell carci-
noma (LUSC) cell lines were obtained from American Type

Culture Collection (Manassas, VA, USA). They were cul-
tured under conditions specified by the manufacturer. All
cells were grown at 37◦C in an atmosphere of 95% air and
5% CO2.

Transient transfection with small interfering RNA (siRNA).
H520 and H1703 cells were transfected for 24 h with syn-
thesized NPAT or negative control siRNA (GenePharma,
Shanghai, China) using six-well plates with 50 nmol of
siRNA and 4 �l of GenMute™ transfection reagent (Sig-
naGen Laboratories, Rockville, MD, USA).

RNA isolation, real-time RT-PCR. TRIzol reagent (In-
vitrogen, Carlsbad, CA, USA) was used to extract RNA
from cells. The primers for NPAT were 5′-CGCTGTGTTT
GCTTTAACCTG-3′ and 5′-GAGATGACATTATTGC
TGGGAC-3′. Quantitative RT-PCR was carried out using
the ABI 7300 Real-Time PCR System (Invitrogen) in a 20-
reaction volume containing 2 �l cDNA.

Cell proliferation assay. Cell proliferation was determined
by incorporation of cell counting kit-8 (Dojindo Labora-
tories, Kumamoto, Japan). In brief, cells were transfected
with siRNA using GeneMute™ reagent (SignaGen Labo-
ratories). Twenty-four hours after transfection, ∼2000 cells
were placed into each well of 96-well plates. CCK-8 solu-
tion was added at 0, 24, 48, 72 and 96 h after placing. After
adding 10 �l CCK-8 solution, cells were incubated for 1.5
h at 37◦C. The absorbance was measured at 450 nm.

Clone formation assay. Lung cancer cells were transfected
with the siRNAs for 24 h. Cells (n = 1500) were then plated
in wells of six-well culture plates and cultured in RPMI 1640
medium supplemented with 10% fetal bovine serum (FBS)
for 1 week. These cells were fixed with methanol and stained
with crystal violet solution.

Invasion assay. In vitro invasion assays were performed us-
ing Transwell chambers. H520 and 1703 cells were trans-
fected with siRNA or negative siRNA for 24 h. The cells
were cultured with serum-free RPMI 1640 for 24 h, de-
tached and resuspended in serum-free RPMI 1640 medium.
Cells (3 × 104) suspended in 300 �l serum-free RPMI 1640
medium were added in the upper chambers of Transwell de-
vices for the migration assay or the upper chambers coated
with Matrigel for the invasion assay. For both assays, RPMI
1640 with 10% FBS was added to the bottom chamber. Mi-
grating and invasive cells were stained with 0.1% crystal vi-
olet. Images were captured from either side of each mem-
brane and the number of migrating cells was counted under
a microscope.

Cell cycle assay. Cell cycle assay was used to detect
whether NPAT regulated the cell cycle. Cells transfected
with siRNA for 24 h were cultured with serum-free RIPM
1640 medium for 24 h. Next, cells were cultured with serum-
containing medium for another 18 h. Cells were collected,
fixed with ice-cold 70% ethanol for 20 min and stained with
propidium iodide (PI; BD, San Diego, CA, USA). The cell
cycle was determined by flow cytometry using a FACS Cal-
ibur apparatus (BD).

https://github.com/HelloYiHan/DriverML
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Western blotting. Cells were suspended in lysis buffer (50
mM Tris–HCl, pH 8.0, 1% sodium dodecyl sulfate (SDS), 1
mM ethylenediaminetetraacetic acid, 5 mM dithiothreitol,
10 mM phenylmethylsulfonyl fluoride, 1 mM NaF, 1 mM
Na3VO4 and protease inhibitor cocktail) and denatured in
boiling water for 10 min. The cell lysates were centrifuged
at 13 000 rpm for 30 min. The protein concentration was
determined using a BCA assay (Thermo Fisher Scien-
tific, Waltham, MA, USA). Equal amounts of proteins (40
�g) were separated by 10% SDS-polyacrylamide gel elec-
trophoresis (PAGE) and transferred to a polyvinylidene flu-
oride (PVDF) membrane. The membrane was blocked with
5% skim milk and immunoblotted with antibodies against
Cyclin A2 (#BF683, Cell Signaling Technology, Beverly,
MA, USA), Cyclin E2 (#4132, Cell Signaling Technology),
p27 (#3680, Cell Signaling Technology) or glyceraldehyde-
3-phosphate dehydrogenase (GAPDH, ab181602, Abcam,
Cambridge, UK). Immunoreactive bands were developed
by enhanced chemiluminescence reaction (Pierce, Rock-
ford, IL, USA) following standard protocols.

RESULTS

Strategies for evaluating performance of various tools

Due to the lack of a generally accepted gold standard (i.e.
bona fide cancer driver genes), it has been difficult to de-
termine which software tools performed best and which,
if any, of the software tools performed adequately in pre-
vious studies (18,20,29). However, two systematic bench-
marking measures are useful indicators of the excellence
of a method for driver gene prediction. One benchmark is
the ability to recapitulate many of the well-studied cancer-
associated genes. The CGC database manually curates a list
of genes whose mutations have been causally implicated in
cancer (40). It is widely acknowledged that a higher propor-
tion of predictions in the CGC database indicates better per-
formance (18,20,29). Besides this database, Vogelstein et al.
reported a list of Mut-driver genes using their ‘20/20 rule’
(37). The Mut-driver genes were identified through their
pattern of mutation rather than through their mutation fre-
quency. In addition, a curated set of 99 high-confidence
(HiConf) cancer genes was identified by Kumar et al. in a lit-
erature search (38). Overlap with the CGC, Mut-driver and
HiConf gene lists is a benchmark for cancer driver genes,
similar to the descriptions of Tokheim et al. (18,20,29).

The second benchmark is the ability to identify a core set
of driver genes that are also predicted by several other meth-
ods. The likelihood that predicted driver genes are actually
associated with cancer increases with the number of tools
that identify them, because false positives of one tool are
likely to be discarded by other tools (29,41).

In the above two benchmarks, the high proportion of
unique predictions that do not overlap with the CGC, Mut-
driver genes, HiConf genes or other methods are prone to
false positives. On the contrary, too few predictions are
prone to false negatives, without regard to the high fraction
of drivers that overlap the CGC, Mut-driver genes, HiConf
genes or other methods.

In the following sections, we benchmarked DriverML
and 20 other computational tools according to the over-
lap of the predicted driver genes with those presented in the

CGC, Mut-drivers and HiConf genes, and those identified
by other methods in 31 cancer-specific mutation datasets
from TCGA.

Driver gene lists predicted from different tools lack consis-
tency

We performed a comprehensive evaluation of the novel
DriverML and 20 other driver gene prediction tools in 31
independent datasets from TCGA using the above bench-
marking measures. The number of drivers predicted in some
cancer types varied by more than 100-fold among these
tools (Supplementary Figure S3 and Supplementary Table
S5). Overall, MEMo was over-conservative and predicted
the smallest number of drivers per cancer type (median =
0), and no driver genes were identified in many cancer types
(FDR < 0.05); whereas iPAC was too ambitious and iden-
tified the largest number of drivers per cancer type (me-
dian = 1740). DriverML identified a moderate number of
drivers per cancer type (median = 11). In addition, the list of
driver genes predicted by these 21 tools lacked consistency
in the same TCGA datasets. For instance, NetBox predicted
only two drivers, whereas iPAC predicted 4821 drivers in the
same dataset of breast invasive carcinoma (BRCA). A total
of 5741 drivers were identified by these 21 tools in BRCA.
However, only eight genes were consistently detected by 10
or more of these tools. These results suggested that currently
existing tools predicted a largely inconsistent list of cancer
driver genes.

Ability to recapitulate genes casually implicated with cancer
in the CGC database

There were 616 genes in the CGC database as of April 2017
(Supplementary Table S3). Figure 2 displays the proportion
of predicted driver genes that were also presented in the
CGC across the 31 TCGA datasets (Supplementary Table
S6). Each panel represents one tool and is arranged in the
order of its median fraction of predicted driver genes in the
CGC. For a specific tool, the fraction of its predicted drivers
in the CGC varied among different cancer types. The top
five tools were DriverML, MutSigCV, rDriver, DawnRank
and oncodriveFML. DriverML ranked first and 42.9% of
its predicted driver genes were presented in the CGC. Mut-
SigCV, DawnRank and rDriver tied for second place and
33.3% of their predicted driver genes overlapped with those
of the CGC. The fraction of predicted drivers in the CGC
was generally <10% using tools including MSEA, ExlnA-
tor, iPAC, CoMDP, MEMo and SCS.

Ability to recapitulate genes in Mut-driver list according to
mutation patterns

The list of Mut-driver genes included 125 genes from 3284
tumors defined by the 20/20 rule (37). According to this
rule, to be classified as an oncogene, more than 20% of the
mutations in the gene need to be missense mutations and
located at recurrent positions. To be classified as a tumor
suppressor gene, more than 20% of the mutations in the
gene need to be inactivating (Supplementary Table S3). We
also compared driver genes predicted by DriverML and 20
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Figure 2. Fraction of predicted driver genes presented in CGC. The Can-
cer Gene Census (CGC) in COSMIC consists of 616 genes containing mu-
tations that were associated with cancer. Overlap of the predicted driver
genes with the CGC was evaluated. Tools were ordered by the median frac-
tion of predicted drivers in the CGC. For each dataset, the fraction of tools
predicting too few genes (<3) was set to zero in case of an abnormally high
fraction of overlap. Thirty-one datasets as a whole, DriverML, MutSigCV,
DawnRank and rDriver had the highest fractions (42.9%, 33.3%, 33.3%
and 33.3%, respectively).

Figure 3. Fraction of predicted genes presented in the list of Mut-driver
genes. The list of Mut-driver included 125 genes that were identified from
3284 tumors according to the mutation pattern of 20/20 rule (Vogelstein et
al., 2013). DriverML, MutSigCV, DawnRank and rDriver had the highest
fractions (34.8%, 30.6%, 23.3% and 23.3%, respectively).

Figure 4. Fraction of predicted driver genes presented in the HiConf list.
HiConf includes 99 cancer genes that were manually curated by Kumar
et al. (2015) through a literature search on OMIM and PubMed (Kumar
et al., 2015). DriverML, MutSigCV and DawnRank were the top three
methods (overlap fractions of 30%, 27% and 23.3%, respectively).

other tools with those found by the 20/20 rule (Figure 3 and
Supplementary Table S6). Among these tools, DriverML,
MutSigCV, rDriver, oncodriveFML and DawnRank again
ranked in the top five according to the proportion of pre-
dicted drivers in the list of Mut-driver genes. DriverML per-
formed best among the 21 tools and predicted 34.8% (me-
dian fraction) of cancer drivers in the list of Mut-driver
genes. MutSigCV ranked second, with 30.6% of predicted
drivers being in the list of Mut-driver genes. Over ten tools,
which included SCS, MEMo, CoMDP, ExlnAtor and iPAC,
predicted <10% of drivers in the list of Mut-driver genes.

Ability to recapitulate well-studied cancer genes in the
HiConf list identified in a literature search

A set of 99 HiConf cancer genes was manually curated by
Kumar et al. through a literature search on OMIM and
PubMed (38). The CGC served as highly selected candi-
dates for HiConf (Supplementary Table S3). Genes qual-
ified for the HiConf panel if there were scientific publica-
tions that demonstrated a cancer-like phenotype when the
genes were activated or inhibited or demonstrated genes
as causative agents of a tumor syndrome. The overlap of
predicted cancer driver genes with the HiConf panel was
evaluated (Figure 4 and Supplementary Table S6). The top
five tools for driver gene prediction were DriverML, Mut-
SigCV, DawnRank, DriverNet and rDriver. Consistently,
DriverML ranked first among 21 tools and predicted ∼30%
of cancer drivers in the HiConf panel. Whereas, half of tools
such as SCS, MEMo, CoMDP, ExlnAtor and iPAC pre-
dicted <10% of cancer drivers in the HiConf panel.
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Figure 5. Fraction of predicted driver genes for each method by consen-
sus among the methods. The average fraction of predicted driver genes for
each method was determined by consensus among the other methods for
the 31 datasets. Tools were sorted by the fraction of uniquely predicted
drivers (indicated in red) from small to large. OncodriveCLUST was re-
moved because it did not predicted any unique driver genes on 31 data sets.
MEMo was also removed because it predicted too few genes. DriverML,
MutSigCV and MDPFinder had the smallest fractions of uniquely pre-
dicted driver genes (2.5%, 5.2% and 10.8%, respectively). iPAC, SCS and
CoMDP had the highest fractions (73.8%, 66.7% and 61.6%, respectively).

Ability to identify core set of genes also predicted by other
tools

Genes predicted by more than one tool may be more likely
to be drivers (29,41). For each tool, we calculated the pro-
portion of predicted drivers that were also predicted by
other tools (Figure 5 and Supplementary Table S6). Over-
all, DriverML, MutSigCV, MDPFinder, OncodriveFML
and DrGaP displayed the smallest fraction of uniquely
predicted driver genes. Similar to the above three bench-
marks, DriverML maintained outstanding and reliable per-
formance when analyzing the predicted drivers that over-
lapped with other tools. DriverML predicted over 95% of
driver genes that were also predicted by at least one other
tool. In contrast, drivers predicted by iPAC, EnlnAtor, SCS,
CoMDP and ActiveDriver were much less frequently pre-
dicted by the other tools. For instance, more than 60%
of driver genes predicted by iPAC, SCS or CoMDP were
unique and were not detected by any other method. Thus,
they are prone to false positives.

Novel cancer driver genes identified by DriverML

Besides the higher fraction of overlapping predictions with
the above four benchmarks, DriverML identified a num-
ber of novel driver genes, which included histone deacety-
lase 5 (HDAC5, FDR = 0.008) and heat-shock protein
5 (HSPA5, FDR = 0.012) in BRCA, EPH receptor A2
(EPHA2, FDR = 0.001) in cholangiocarcinoma (CHOL)
and DNA Methyltransferase 1 (DNMT1, FDR = 2.56e-
6) in pancreatic adenocarcinoma (PAAD) (Supplementary
Table S7). These novel drivers were not detected by the
widely used tools, such as MutSigCV and OncodriveFML,
and most of the other tools, and were not presented in
the CGC. Many of them were strongly supported by con-

vincing studies. For instance, HDAC5, which was identified
in BRCA, is crucial in regulating lysine-specific demethy-
lase 1 (LSD1) protein stability through post-translational
modification and is important in promoting breast cancer
progression (42). Deacetylation of HSPA5, another iden-
tified candidate BRCA driver gene, by HDAC6 reportedly
leads to GP78-mediated HSPA5 ubiquitination at K447
and suppresses the metastatic property of breast cancer
(43). Aberrant expression and activation of EPHA2, iden-
tified in CHOL, have been associated with more aggres-
sive metastatic growth and poorer differentiation (44). In-
hibitors of signal transducer and activator of transcription
3 (STAT3) or DNMT1, identified in PAAD, might be novel
strategies for treating pancreatic cancer because activated
interleukin-6 (IL-6) /STAT3 signaling can induce cytokine
signaling 3 (SOCS3) methylation via DNMT1, which pro-
motes growth and metastasis of pancreatic cancer (45).

We also performed in vitro cell-based assays for a novel
driver gene NPAT in LUSC cells in further validation
of DriverML. NPAT is a nuclear protein, coactivator
of histone transcription and was uniquely identified by
DriverML in lung cancer (FDR = 0.040). Seven missense,
and one nonsense mutations, and one frameshift indel
were observed in NPAT in LUSC from TCGA (Supple-
mentary Figure S4A). The majority of somatic mutations
in NPAT are missense in the COSMIC (Supplementary Fig-
ure S4B). NPAT was significantly upregulated in lung tumor
tissues as compared with adjacent normal lung tissues (P
= 0.004) (Supplementary Figure S4C). NPAT is essential
for histone mRNA 3’ end processing and recruits CDK9
to replication-dependent histone genes (46). NPAT is the
first (and so far only) gene implicated in nodular lympho-
cyte predominant Hodgkin lymphoma predisposition (47).
To investigate the potential cancer-related roles of NPAT,
loss-of-function assays were performed using two LUSC
cell lines: H520 and H1703. NPAT expression was substan-
tially reduced after transfection of cells with siRNA (Figure
6A). Knockdown of NPAT significantly suppressed both
cell growth and clone formation in both H520 and H1703
cell lines (Figure 6B and C). Inhibition of NPAT also signifi-
cantly reduced cell invasion in these LUSC cell lines (Figure
6D). Furthermore, depletion of NPAT dramatically sup-
pressed the transition from the G1 phase to the S and G2
phases of the cell cycle (Figure 6E). This was confirmed by
western blot analysis in which the protein expression levels
of Cyclin A2, Cyclin E2 and p27 were significantly altered
upon the knockdown of NPAT in the lung cancer cell lines.
These collective preliminary results indicate that the newly
identified gene, NPAT, is potentially involved in the devel-
opment of lung cancer.

Learned weights improve performance of DriverML

Different types of mutations may have different impacts on
protein function. Although the score test was asymptoti-
cally equivalent to the likelihood ratio test used in our previ-
ous tool, DrGaP (10), the advantage of the score test is that
it is mathematically suitable to integrate a set of weights as
parameters (30). The weight parameters in the score statis-
tic measure the functional impact of mutations in cancer.
The optimized weights could be obtained by maximizing
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Figure 6. In vitro assays of a novel driver gene NPAT predicted uniquely by DriverML. (A) The expression of NPAT in H520 and H1703 lung cancer cells
transfected with siRNA by real-time PCR. (B) CCK-8 cell proliferation assay for lung cancer cells transfected with siRNA. (C) Invasion assay following
knockdown of NPAT in lung cancer cells. (D) Colony formation assay in lung cancer cells transfected with NPAT siRNA or control siRNA. (E) Cell cycle
profile of control and NPAT knockdown cells. (F) Western blot analysis of protein makers related to cell cycle in control and NPAT knockdown cells.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein is used as control. All cell assays were performed in triplicate. The error bars indicate SD
of three independent experiments. **P < 0.01, ***P < 0.001 using the two-sided Student’s t test.

the score statistic of prior driver genes on pan-cancer train-
ing data on the basis of machine learning. To evaluate their
effects on performance, we set the weight parameters as 1
in the score statistic and compared it with DriverML using
optimal weights. As shown in Supplementary Figure S5A,
when the weight parameters were set as 1, the fraction of
predicted driver genes in the CGC, Mut-driver and HiConf
benchmarks were consistently lower than that in DriverML
using optimal weights. Similarly, DrGaP showed substan-
tially lower performance than DriverML among different
benchmarks (Figures 2–5). These results suggest that the
improved performance of DriverML is mainly attributable
to its learned weights.

Additionally, the functional role of driver genes may
be different among cancer types. However, some cancer
types either are not presented or have small sample sizes in
our training samples (Supplementary Table S2). Therefore,
we estimated general functional weights without regard to
cancer types using all the non-TCGA pan-cancer datasets
from ICGC and previous studies (32–34). The results pre-
sented in the above comparisons were based on the general
functional weights. To evaluate their potential influences
on driver gene prediction, cancer-type-specific functional
weights were individually estimated for several cancer types
(e.g. HNSC, KIRC, BLCA LAML and LUSC) that have
large training sample sizes (Supplementary Figure S5B). As
expected, the cancer-type-specific functional weights in-
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creased the performance of predicting driver genes over
the non-cancer-type-specific functional weights. Therefore,
DriverML is capable of further improvement if cancer-type-
specific functional weights are adopted when additional
cancer-specific training datasets become available.

DriverML has relatively small system bias

It is important to check the systematic bias of these meth-
ods in predicting driver genes. To comprehensively check
the systematic bias among the 31 datasets, we constructed
box plots of the mean absolute log2 fold change (MLFC).

MLFC = (1/n)
n∑

i = 1
|log2(pi/qi )|, where n is the number of

tested genes, pi is the observed P-value of gene i and qi is the
expected P-value from the uniform distribution of gene i.
MLFC close to 0 indicates a small discrepancy between the
distribution of observed P-values and uniform distribution
(29). For each method, the significant predicted driver genes
(FDR < 0.05) and genes in the CGC were removed from the
MLFC calculation. We evaluated 13 of 21 methods that can
generate P-values in the driver gene predictions. DriverML
produced a relatively small MLFC, whereas iPAC yielded
the largest MLFC among these methods across 31 cancer
types (Supplementary Figure S6). The observations imply
that iPAC can result in many false positives, which may ex-
plain why iPAC predicted the largest number of driver genes
in almost all datasets.

DISCUSSION

A major challenge in cancer genome sequencing is to iden-
tify cancer-associated genes with mutations that drive the
cancer phenotype (3,48). Computational tools that priori-
tize cancer driver genes are needed. Although many such
tools have been actively developed during the past few years,
few are robust and powerful in the presence of multiple-level
mutational heterogeneity across genomes within a patient,
across patients within a given cancer type and across various
cancer types. As a result, there is little consensus in the pre-
diction of driver genes among these tools. Therefore, there is
a pressing need to develop a reliable and powerful tool for
driver gene prediction that optimizes the balance between
sensitivity and precision. In this study, we developed a su-
pervised machine learning approach (DriverML) to score
the functional consequences of DNA sequence alterations
to identify cancer driver genes (Figure 1B). DriverML pro-
vides several advanced features compared with currently ex-
isting methods. These advanced features include the use of
score statistics to integrate multiple mutation types with a
set of weight parameters, the quantification of functional
consequences of somatic mutations by the machine learn-
ing algorithm, and the estimation of sample distribution of
the score statistics by simulating the Poisson process of so-
matic mutations.

We applied DriverML to the 31 cancer-specific muta-
tion datasets from TCGA and benchmarked it with the 20
other commonly used tools. To our knowledge, the present
study is the most thorough evaluation of computational
tools for identifying cancer driver genes. Our study eval-
uated the largest number of methods (DriverML and the

other 20 commonly used tools) for predicting driver genes
using more than 10 000 tumor samples across 31 cancer
types. DriverML was always among the best tools in predic-
tion performance and had relatively small systematic bias
among these tools. It achieved a good balance between pre-
cision and sensitivity by identifying a moderate number of
drivers and a relatively high fraction of genes known to be
associated with cancer. The median number of driver genes
predicted by DriverML per tumor ranges from one to three
among most cancer types (Supplementary Figure S7). On
average, 87% of tumor samples carried somatic mutations
in at least one driver gene (Supplementary Figure S8).

In addition to many known cancer-associated genes,
DriverML identified several novel driver genes, includ-
ing HDAC5, HSPA5, EPHA2 and DNMT1, which were
strongly supported by prior studies. In vitro experiments
further demonstrated that a novel driver gene, NPAT, con-
fers a cell growth advantage and participates in the reg-
ulation of the cell cycle in lung cancer (Figure 6), prov-
ing the validity of the DriverML prediction. These novel
driver genes have potentially immediate clinical relevance,
because some are promising targets of cancer-related drug
therapy. Further investigations are required to understand
the molecular mechanisms of these novel driver genes in the
development of cancer.

The availability and quality of biologically annotated
data have substantially increased during the past decades
(49). Many driver gene prediction approaches make use of
prior biological knowledge from these well-annotated data
using data-driven techniques and machine learning algo-
rithms (29,50). For instance, sub-network methods often
rely on prior knowledge from protein–protein interactions,
molecular networks and signal transduction pathways (14–
20). Hotspot-based methods often need prior knowledge
from the protein domain and three-dimensional structure
(23–26). DriverML employs a supervised machine learning
algorithm to quantify the functional impacts of different
types of nonsilent mutations on proteins. Integration of ad-
ditional high-quality, well-annotated datasets like CGC in
training samples will further enhance the performance of
DriverML over currently existing methods. It is worth not-
ing, however, that CGC and other well-annotated databases
were used as benchmarks to evaluate the performance of
DriverML and 20 other tools in the present study. For a fair
comparison with other tools, these well-annotated datasets
were not used as training samples in DriverML. On the
other hand, the data indicate that there is still room for im-
provement in DriverML when integrating additional high-
quality, well-annotated datasets (e.g. CGC) into training
samples.

Driver genes predicted by multiple tools are more likely
to be true cancer drivers, because false positives of one tool
are likely to be discarded by others (29,41). The identifica-
tion of an overlapping set of driver genes that are simulta-
neously predicted by several methods (Supplementary Fig-
ure S9A) is a sound strategy. Presently, although the frac-
tion of these overlapped drivers in the CGC was increased
(Supplementary Figure S9B), the number of the overlapped
drivers was dramatically decreased. For instance, MuSigCV
and OncodriveFML, which are two commonly used tools,
ranked in the top five in our evaluations. The fraction of
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their overlapping driver genes in the CGC dataset increased
to more than 75%. However, the median number of over-
lapping driver genes by the two methods was only five per
cancer type. Too few predictions run the risk of false neg-
atives. On the contrary, combining predictions from mul-
tiple tools will significantly increase the number of driver
genes. Presently, however, the fraction of the combined set
of drivers in the CGC was dramatically reduced (Supple-
mentary Figure S9). Too many predictions run the risk of
false positives. These proactive analyses suggest that either
overlapped or combined sets of driver genes predicted by
multiple methods are not the best solution to the discov-
ery of cancer drivers; each has advantages and disadvan-
tages. Therefore, it is urgently necessary to develop novel
and powerful tools, such as DriverML, for driver gene pre-
diction that optimizes the balance between sensitivity and
precision.

In summary, DriverML uses an innovative, machine
learning-based approach to prioritize cancer driver genes
and provides dramatic improvements over other top-of-the-
line tools in this field. DriverML will be immediately appli-
cable to various cancer genome sequencing studies and is
expected to identify a more complete array of driver genes
and pathways in the cancer genome.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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