
Contents lists available at ScienceDirect

Redox Biology

journal homepage: www.elsevier.com/locate/redox

Research Paper

Signaling pathways involved in HSP32 induction by hyperbaric oxygen in
rat spinal neurons

Guoyang Huang1, Jiale Diao1, Hongjie Yi, Li Xu, Jiajun Xu, Weigang Xu⁎

Department of Diving and Hyperbaric Medicine, The Second Military Medical University, 800 Xiangyin Road, Shanghai, PR China

A R T I C L E I N F O

Keywords:
Hyperbaric oxygen
Heat shock protein 32
Signal transduction
Negative regulation
Reactive oxygen species

A B S T R A C T

Spinal cord injury (SCI) is a debilitating disease, effective prevention measures are in desperate need. Our
previous work found that hyperbaric oxygen (HBO) preconditioning significantly protected rats from SCI after
stimulated diving, and in vitro study further testified that HBO protected primary cultured rat spinal neurons
from oxidative insult and oxygen glucose deprivation injury via heat shock protein (HSP) 32 induction. In this
study, underlying molecular mechanisms were further investigated. The results showed that a single exposure to
HBO significantly increased intracellular levels of reactive oxygen species (ROS) and nitric oxide (NO) and
activated MEK1/2, ERK1/2, p38 MAPK, CREB, Bach1 and Nrf2. The induction of HSP32 by HBO was
significantly reversed by pretreatment neurons with ROS scavenger N-Acetyl-L-cysteine, p38 MAPK inhibitor or
Nrf2 gene knockdown, enhanced by MEK1/2 inhibitors or gene knockdown but not by ERK1/2 inhibitor. CREB
knockdown did not change the expression of HSP32 induced by HBO. N-Acetyl-L-cysteine significantly
inhibited the activation of MEK1/2, ERK1/2, p38 MAPK, and Nrf2. Activation of Nrf2 was significantly
inhibited by p38 MAPK inhibitor and the nuclear export of Bach1 was significantly enhanced by MEK1/2
inhibitor. The results demonstrated that HBO induces HSP32 expression through a ROS/p38 MAPK/Nrf2
pathway and the MEK1/2/Bach1 pathway contributes to negative regulation in the process. More importantly,
as we know, this is the first study to delineate that ERK1/2 is not the only physiological substrates of MEK1/2.

1. Introduction

Spinal cord injury (SCI) is an unpredictable and debilitating
disease, which may be a complication of surgical operations on the
spinal column or thoracoabdominal aorta, or result from decompres-
sion sickness associated with sport or commercial diving [1,2]. The
pathological sequence of SCI is mainly mediated by edema, inflamma-
tion, excitotoxicity, ischemia-reperfusion injury, and oxidative cell
damage [3,4]. Due to the inadequate blood supply and high lipid
content in the spinal cord, which is damaged easily by free radicals,
ischemia-reperfusion injury and oxidative stress are two critical
mechanisms of SCI [3,5]. Many therapies have been suggested to
protect against SCI, including hypothermia, anti-excitotoxic agents,
calcium channel blockers, N-methyl-D-aspartate receptor antagonists,
and cerebrospinal fluid drainage, but improvements in outcome are
marginal [5]. Novel effective therapies are desperately needed to
prevent SCI. Our previous work found that hyperbaric oxygen (HBO)
preconditioning significantly protected rat from spinal cord injury after
stimulated diving [6], and in vitro study further testified that HBO
protected primary cultured rat spinal neurons from oxidative insult

and oxygen glucose deprivation injury via heat shock protein (HSP) 32
induction, which peaked at 12 h following HBO exposure [7]. The aim
of the present study was to investigate the underlying mechanisms of
HBO induced HSP32 expression in primary cultured rat spinal
neurons.

Free heme is produced mainly through the oxidation of hemopro-
teins, including hemoglobin, myoglobin, neuroglobin, etc [8]. In the
center of heme is a Fe atom, which can act to produce highly toxic
hydroxyl radicals derived from hydrogen peroxide [8]. Apart from
causing oxidative insult, free heme can also promote tumor necrosis
factor mediated programmed cell death [8]. HSP32, a stress responsive
protein also named heme oxygenase-1, is a rate limiting enzyme in the
catabolism of free heme; it degrades heme into three products: carbon
monoxide (CO), ferrous iron, and biliverdin [9]. In addition to
degrading free heme and neutralizing damage caused by heme, its
end products can also exert cytoprotective effects. It is already
documented that the HSP32/CO system can exert anti-inflammatory
and anti-apoptotic effects [10], ferrous iron released from heme can
enhance cell antioxidant capacity via ferritin up-regulation [11], and
the beneficial roles of biliverdin and bilirubin are to act as physiological
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antioxidants [12].
HBO is a treatment modality in which a person breathes 100%

oxygen under a pressure greater than one atmosphere absolute in a
compression chamber [13]. It is a safe, clinically viable treatment
modality, which has been widely applied as the primary treatment for
certain injuries, especially for acute CO poisoning, gas gangrene and
decompression sickness [14]. In addition to increasing tissue oxygen
supply, HBO exposure can cause moderate oxidative stress by slightly
increasing intracellular levels of reactive oxygen species (ROS) and/or
reactive nitrogen species (RNS), which can induce the expression of
cytoprotective proteins and enhance cellular tolerance against harmful
stimuli [15]. The protective effects of HSP32 induction by HBO upon
organ ischemia-reperfusion injuries are well evidenced, including in
the myocardium [16], liver [17], kidney [18], and primary cultured rat
spinal neurons [7].

However, the mechanism by which HBO induces the expression of
HSP32 in spinal neurons is still unknown. Understanding the mechan-
ism is important for the application of HBO in medical practice and the

development of new strategies to prevent SCI.

2. Materials and methods

2.1. Animals

Pregnant Sprague-Dawley rats (14–15 d) were obtained from
Shanghai SLAC Laboratory Animal Co., Ltd on the day of use. The
study protocols were approved by the Institutional Animal Care and
Use Committee of the University and all experimental procedures were
performed in accordance with University guidelines.

2.2. Cell culture

Spinal neurons were prepared from embryonic day 14–15 Sprague-
Dawley rats as previously described [7]. Briefly, spinal cords were
rapidly dissected from embryo and digested with pre-warmed 0.05%
trypsin (Invitrogen, USA) at 37 °C for 18 min. After digestion, the

Fig. 1. Effects of HBO on intracellular levels of ROS and NO and their role in HBO induced HSP32 expression in spinal neurons. ROS scavenger NAC (5 mM) or NOS inhibitor L-NAME
(100 μM) was added to the medium 30 min before HBO exposure. The intracellular ROS and NO were detected immediately after HBO exposure using immunofluorescence assay (A-H).
The expression of HSP32 was detected by western blot 12 h after HBO exposure (I). The effects of L-NAME at higher concentrations (J). Significance compared with Air group, **p <
0.01; significance compared with HBO group ††p < 0.01. HBO, hyperbaric oxygen; HSP, heat shock protein; L-NAME, NG-Nitro-L-arginine methyl ester; NAC, N-Acetyl-L-cysteine; NO,
nitric oxide; NOS, nitric oxide synthase; ROS, reactive oxygen species.
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resultant cell suspension was adjusted to 1.0×106 cells/ml in
Dulbecco's modified Eagle's medium (DMEM, Invitrogen) containing
10% heat-inactivated fetal bovine serum (Invitrogen) and 10% heat-
inactivated horse serum (Invitrogen). Cells were plated onto poly-L-
lysine (molecular weight 30,000–70,000; Sigma, USA) coated culture
plates at a density of 1.2×106 cells/well on 6-well plates or 0.6×106

cells/well on 12-well plates. Four hours later, the medium was
completely replaced with neurobasal medium (Invitrogen) supplemen-
ted with 2% B27 supplement (Invitrogen), 0.5 mM glutamine
(Invitrogen), 100 U/ml penicillin (Invitrogen), and 100 μg/ml strepto-
mycin (Invitrogen). Half the volume of culture media was replaced with
fresh media every 3 days.

2.3. Hyperbaric oxygen treatment

HBO exposure was conducted in a temperature and humidity
controlled hyperbaric cell incubator (OxyCure 3000, OxyHeal® Health
Group, USA). As described in our previous study [7], the neurons were
exposed to HBO for 60 min at 280 kPa, which is frequently used in
animal and cell studies and 280 kPa is the current upper limit of partial
pressure of oxygen applied in clinical HBO therapy [19]. Compression
and decompression were both carried out within 5 min. To maintain a
physiological pH of the culture, the chamber was flushed and com-
pressed with oxygen containing 1.79% CO2 to achieve a 5 kPa partial
pressure of CO2. All pressures described in this text are absolute.

2.4. Bio-Plex phosphoprotein analysis

At specific time points, neurons were collected, and protein lysates
were prepared, and content of phosphorylated proteins was detected
using the respective Bio-Plex Phosphoprotein Detection kit (Bio-Rad,
USA) according to the manufacturer's protocol. Briefly, 50 μl of cell
lysate (adjusted to a concentration of 0.6–0.9 μg/ml) was plated in the
96-well filter plate coated with beads coupled to anti-phosphoprotein
antibody. The plate was incubated overnight at room temperature on a
platform shaker. After a series of washes to remove unbound proteins,
biotinylated detection antibodies, each specific for a different epitope,
were added to the reaction. This resulted in formation of antibody
complexes assembled around the target proteins. Streptavidin-phy-
coerythrin was then added to bind to the biotinylated detection
antibodies on the bead surface. Data were acquired with the Bio-Plex
200 system and analyzed with the Bio-Plex Manager software (Bio-
Rad).

2.5. Measurement of intracellular ROS and NO generation

Levels of intracellular ROS and NO were detected using DCFH-DA
(a ROS fluorescent probe; Beyotime, China) and DAF-FM DA (a NO
fluorescent probe; Beyotime), respectively. Spinal neurons were in-
cubated with DCFH-DA (10 μM) or DAF-FM DA (5 μM) for 20 min at
37 °C. After three washes with PBS to remove unbound fluorescent
probes, cultures were exposed to HBO. Fluorescence intensity was
observed under a fluorescence microscope (495 nm excitation wave
length and 515 nm emission wave length; ZEISS, Germany) immedi-

Fig. 2. Activation of signal molecules following HBO exposure in rat spinal neurons. The activation of signal molecules related to HSP32 induction were detected using Bio-Plex
Phosphoprotein Detection kit. Significance compared with Air group, *p < 0.05, **p < 0.01. CREB, cAMP-response element binding protein; ERK1/2, extracellular signal-regulated
kinase 1/2; p38 MAPK, p38 mitogen-activated protein kinase.
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ately after HBO exposure.

2.6. Nrf2, CREB and MEK1/2 knockdown by shRNA infection

Lentiviral vectors encoding shRNAs against rat Nrf2 or
CREB were designed and manufactured by Obio Technology Co.,
Ltd (Shanghai, China). The target sequences for rat Nrf2- and
CREB-shRNA are 5′-CCATTCCCGAGTTACAGTGTCTTAA-3′ and 5′-
GCACTTAAGGACCTTTACT-3′, respectively, whose knockdown effect
has been demonstrated previously [20,21]. For Nrf2 or CREB knock-
down, primary cultured rat spinal neurons were infected with CREB-
shRNA-lentivirus, Nrf2-shRNA-lentivirus or NC-shRNA-lentivirus at
10–30 Multiplicity of Infection (MOI). For MEK1/2 knockdown, 3
target sequences each for rat MEK1 and MEK2 were designed. The
target sequences for MEK1 are Seq1: 5′-GCGAGATCAGCATCTGCAT-
3′, Seq2: 5′-GCAGCTCATGGTACATGCT-3′ and Seq3: 5′-GGCAGCTA
ATTGACTCCAT-3′; for MEK2 are Seq4: 5′-GCTCAAGGACGACGA

CTTT-3′, Seq5: 5′-GCATCTGCATGGAGCACAT-3′ and Seq6: 5′-GGAA
CTAGAGGCCAGCTTT-3′. After 8 h infection, the medium was replaced
by fresh complete medium for another 4 days prior to further
experiments. The knockdown efficiency was validated by western blot.

2.7. Western blot

Cytoplasmic and nuclear proteins were prepared using cell nuclear
protein extraction kits (Beyotime) according to the manufacturer’s
instructions. The total protein were harvested and lysed in Radio-
Immunoprecipitation Assay Lysis Buffer (Beyotime). Protein samples
were electrophoresed on 8% SDS-polyacrylamide gels, and transferred
onto a polyvinyldifluoridine membrane (Millipore, USA). Membranes
were blocked with 5% (w/v) non-fat milk and incubated overnight at
4 °C with rabbit monoclonal primary antibodies directed against rat
HSP32 (Abcam, USA), p38 MAPK (Cell Signaling Technology, USA), p-
p38 MAPK (Cell Signaling Technology), ERK1/2 (Cell Signaling

Fig. 3. Effects of HBO on the activation of ERK1/2, p38 MAPK, CREB and Nrf2. The phosphorylation of ERK1/2 (A), p38 MAPK (B), CREB (C) and the nuclear translocation of Nrf2
(D) were confirmed following HBO exposure. Significance compared with Air group, *p < 0.05, **p < 0.01. Nrf2, nuclear factor-E2-related factor-2.
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Technology), p-ERK1/2 (Cell Signaling Technology), CREB (Cell
Signaling Technology), p-CREB (Cell Signaling Technology), Bach1
(Cell Signaling Technology), Nrf2 (Abcam), L-amin B (Cell Signaling
Technology) or β-actin (Cell Signaling Technology). Proteins were
visualized by using HRP-conjugated goat anti-rat IgG (Cell Signaling
Technology) and the intensity of each band was measured by Image J
software (National Institutes of Health, USA).

2.8. Statistical analysis

Results are presented as mean ± standard deviation (SD). Statistical
analysis was performed with SPSS software (version 18.0), using one-
way ANOVA followed by LSD. p < 0.05 was considered statistically
significant.

3. Results

3.1. ROS is responsible for HBO induced HSP32 expression in rat
spinal neurons

In this study, the effects of HBO on intracellular ROS and nitric
oxide (NO) levels were firstly observed immediately after HBO
exposure, and their role in HBO induced HSP32 expression were
clarified using their respective inhibitor. As showed in Fig. 1, HBO
obviously elevated intracellular ROS and NO levels (Fig. 1B and F).
Pretreatment of neurons with ROS scavenger N-Acetyl-L-cysteine
(NAC 5 mM) [22] or nitric oxide synthase (NOS) inhibitor NG-Nitro-
L-arginine methyl ester (L-NAME 100 μM) [23] distinctly inhibited the
increase of intracellular ROS and NO, respectively (Fig. 1C and H). To
further explore whether there is a crosstalk between ROS and NO or
not, we observed the effects of ROS scavenger on NO production and
NOS inhibitor on ROS production. We found that ROS scavenger NAC

Fig. 4. Role of ERK1/2, p38 MAPK, CREB, and Nrf2 in HBO induced HSP32 expression in rat spinal neurons. p38 MAPK inhibitor (SB203580, 10 μM) or EKR1/2 inhibitor (U0126,
10 μM) were added to the medium 30 min before HBO exposure and the expression of HSP32 was detected by western blot 12 h after HBO exposure (A). Neurons were transfected with
shNrf2, shCREB or vector as described in the Materials and methods section, and the effects on the expression of HSP32 were detected by western blot (B). The knockdown efficiency of
shCREB (C) and siNrf2 (D) at different MOI values are presented (C, D). Significance compared with Air group, **p < 0.01; significance compared with HBO group, ††p < 0.01. MOI,
Multiplicity of Infection.
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had no effect on NO production, and vice versa (Fig. 1D and G). Next,
we investigated the role of ROS and NO in HBO induced HSP32
expression. The results showed that NAC significantly reversed the up-
regulation of HSP32 by HBO (Fig. 1I), but L-NAME had no effect on
the expression of HSP32 even at higher doses of 500 or 1000 μM
(Fig. 1J).

3.2. Signal molecules possibly involved in HSP32 induction by HBO

To elucidate the molecular mechanisms underlying HBO induced
HSP32 expression, we detected the activation of possible involved
signal molecules. The phosphorylation of nine important signal mole-
cules was screened using a Bio-Plex Phoshoprotein Detection kit at 0,
6, 12, and 18 h following HBO exposure. As showed in Fig. 2, the
phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2),
p38 mitogen-activated protein kinase (p38 MAPK), and cAMP-re-
sponse element binding protein (CREB) were significantly increased
immediately after HBO exposure and recovered at 6 h (Fig. 2D, F and
G).

To further determine the activation rule of ERK1/2, p38 MAPK and
CREB, we detected the phosphorylation of these signal molecules at 0,
0.5, 1, 2 and 4 h following HBO exposure using western blot. The
results clearly showed that the phosphorylation of p38 MAPK, ERK1/2
and CREB significantly increased immediately after HBO exposure and
recovered at 0.5 h (Fig. 3A–C). Nuclear factor-E2-related factor-2
(Nrf2) is an important transcription factor in HSP32 induction
[24,25], that cannot be screened by the Bio-Plex Phoshoprotein
Detection kit. The nuclear translocation of Nrf2 at 0, 1, 2, 4, and 6 h
after HBO were determined by western blot. HBO exposure stimulated
nucleus accumulation of Nrf2 in spinal neurons and this peaked at 4 h
following HBO exposure (Fig. 3D). Therefore, the 4 h time point
following HBO exposure was selected to observe the effects of signaling
molecular inhibitors on the activation of Nrf2.

3.3. The induction of HSP32 relied on p38 MAPK and Nrf2 activation,
and enhanced after “ERK1/2 inhibition”

The roles of p38 MAPK and ERK1/2 in the induction of HSP32 by
HBO were studied by pretreatment with their respective inhibitor. The

expression of HSP32 was significantly inhibited by p38 MAPK inhibitor
SB203580 (Fig. 4A) or Nrf2 gene knockdown (Fig. 4B), but was
significantly enhanced by ERK1/2 inhibitor (Fig. 4A). CREB knock-
down had no effect on the expression of HSP32 (Fig. 4B). The
knockdown efficiency of CREB- and Nrf2-shRNA Lentiviral vectors at
different Multiplicity of Infection (MOI) were validated by western blot
and the results showed that both CREB and Nrf2 expression were
significantly inhibited and there was no significant difference among
10–30 MOI groups (Fig. 4C and D). Therefore, the dose of CREB- and
Nrf2-shRNA Lentiviral vectors at 10 MOI were used to knockdown the
expression of Nrf2 and CREB. These results indicated that HBO
induces HSP32 by p38 MAPK and Nrf2 activation and, meanwhile,
ERK1/2 may be negative regulators in this process.

3.4. The roles of MEK1/2-ERK1/2 in the HBO induced HSP32
expression

To confirm the negative regulation of ERK1/2 in HBO induced
HSP32 expression, the effects of another inhibitor of ERK1/2
SCH772984 was observed. Unexpectedly, the results showed that
inhibition with SCH772984 failed to change HSP32 expression induced
by HBO (Fig. 5B), even though it significantly inhibited the activation
of ERK1/2 (Fig. 5A).

Although U0126 is frequently used as an ERK1/2 inhibitor, its
actual target is mitogen-activated and extracellular signal-regulated
kinase 1/2 (MEK1/2), simply because MEK1/2-ERK1/2 is generally
considered an integrated signal pathway [26,27], while SCH772984 is a
direct inhibitor to ERK1/2. To confirm the involvement of MEK1/2 in
HBO induced HSP32 expression, the activation of MEK1/2 at 0, 0.5, 1,
2 and 4 h following HBO exposure and the effects of another MEK1/2
inhibitor trametinib or MEK1/2 knockdown were observed. As shown
in Fig. 6, the phosphorylation of MEK1/2 was significantly increased
immediately after HBO exposure and recovered at 0.5 h (Fig. 6A),
trametinib significantly enhanced the expression of HSP32 (Fig. 6C) by
inhibiting MEK1/2 activation (Fig. 6B) and MEK1/2 gene knockdown
(Fig. 7A–C) also significantly enhanced the expression of HSP32 after
HBO exposure (Fig. 7D).

Fig. 5. Effects of ERK1/2 direct inhibitor SCH772984 on HBO induced HSP32 expression. Neurons were pretreated with SCH772984 (10 μM) 30 min before HBO exposure. The
phosphorylation of ERK1/2 was detected immediately after HBO exposure (A) and the expression of HSP32 was detected 12 h later (B). Significance compared with Air group, **p <
0.01; significance compared with HBO group, ††p < 0.01.
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3.5. HBO and MEK1/2 inhibitor enhanced Bach1 export from the
nucleus

Under basal conditions, BTB and CNC homology 1 (Bach1) serves
as a repressor of HSP32 gene expression in the nucleus. The effects of
HBO and MEK1/2 inhibition on the nucleus and cytosol distribution of
Bach1 were detected. HBO exposure significantly increased the trans-
location of Bach1 outside the nucleus and this peaked at 4–6 h
following HBO exposure (Fig. 8A). As there was no significant
difference between the 4 and 6 h groups, the 4 h time point following
HBO exposure was selected to observe the effects of MEK1/2 inhibition
on the translocation of Bach1. The results showed that MEK1/2
inhibition significantly enhanced Bach1 export from the nucleus
(Fig. 8B).

3.6. The relationship between ROS, MEK1/2, p38 MAPK and Nrf2

The ROS scavenger NAC was used to reveal the role of ROS in the

activation of MEK1/2, p38 MAPK and Nrf2 by HBO. The phosphor-
ylation of MEK1/2 and p38 MAPK were detected immediately and Nrf2
was detected at 4 h after HBO exposure. NAC significantly inhibited the
activation of MEK1/2, p38 MAPK and Nrf2 (Fig. 9A–C). MEK1/2 and
p38 MAPK are the usual upstream signal molecules of transcription
factor Nrf2. To clarify their relationship, the effects of MEK1/2
inhibitor (U0126) and p38MAPK inhibitor (SB203580) on the activa-
tion of Nrf2 were determined. The results showed that only SB203580
but not U0126 inhibited the activation of Nrf2 (Fig. 9F). The relation-
ship between the MEK1/2 and p38 MAPK pathway was also explored.
As shown in Fig. 9D and E, neither the MEK1/2 inhibitor nor p38
MAPK inhibitor had any effect on the activation of each other,
indicating there was no crosstalk between these two pathways.
SB203580 works by inhibiting the activation effects of p38 MAPK to
its substrates, but does not change the phosphorylation of p38 MAPK
(15). As shown in Fig. 9E, the phosphorylation of p38 MAPK showed
no change following SB203580 inhibition.

Fig. 6. Effects of MEK1/2 inhibition on the expression of HSP32 induced by HBO. The phosphorylation of MEK1/2 was detected after HBO exposure (A). Neurons were pretreated with
U0126 (10 μM) or trametinib (10 μM) 30 min before HBO exposure, and the phosphorylation of MEK1/2 was detected immediately after HBO exposure (B), the expression of HSP32
was detected 12 h after HBO exposure (C). Significance compared with Air group, **p < 0.01; significance compared with HBO group ††p < 0.01. MEK1/2, mitogen-activated and
extracellular signal-regulated kinases; Seq, sequence.
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4. Discussion

Our previous study indicated that HBO may be an effective
prophylactic measure against SCI through induction of HSP32 or
HSP70 [6,7]. The results in this study showed that the induction of
HSP32 by HBO is through the ROS/p38 MAPK/Nrf2 signaling cascade
and, meanwhile, a MEK1/2/Bach1 mediated negative regulation path-
way exists.

HSP32 is a highly inducible protein regulated by a number of
transcription factors, and Nrf2 and Bach1 have emerged as the
predominant regulators of HSP32 gene expression [25]. Under basal
conditions, Nrf2 exists in the cytoplasm through binding to the
cytoskeletal-associated protein Kelch-like ECH-associated protein 1
(Keap1) andBach1 is associated with small Maf proteins, inhibiting
HSP32 gene expression by binding to the antioxidant-response element
(ARE) [25]. After activation, Bach1 disassociates from small Maf
proteins and translocates into the cytoplasm. Simultaneously, Nrf2
disassociates from keap1 and translocates into the nucleus to form a
heterodimer with small Maf proteins and initiates transcription of the
HSP32 gene by binding to ARE [25]. Many chemical and environ-

mental stimuli, including its substrate heme, heavy metals, ultraviolet
light, hydrogen peroxide, lipopolysaccharide, and arsenite, are known
to induce HSP32 [28]. A common character for those chemical and
environmental stimuli, capable of inducing HSP32, is their electro-
philic chemistry and the generation of ROS and/or RNS, which can
cause oxidative stress and activate Bach1 and Nrf2 [25,29].

It is well known that moderate oxidative stress is fundamental to
HBO induced cytoprotective proteins, which can enhance the cellular
tolerance against harmful stimuli [15]. This study began with observa-
tion of the effects of HBO on intracellular ROS and NO levels after HBO
exposure using DCFH-DA [30] and DAF-FM DA [31], respectively. The
results showed that HBO exposure obviously elevated intracellular ROS
and NO levels immediately after HBO exposure, which could be
inhibited by NAC or L-NAME. DCFH-DA is the most widely used
probe for detecting intracellular ROS. However it reacts with many
types of ROS, so the specific ROS increased after HBO exposure was
not clear in this study [32,33]. In addition to cause oxidative stress,
intracellular ROS and NO can also act as signal molecules, and in some
cases, they can regulate each other’s production [34,35]. However, in
the present experimental scenario, no interaction between them was

Fig. 7. Effects of MEK1/2 knockdown on HBO induced HSP32 expression. Neurons were transfected with vector, shMEK1 (Seq1, Seq2 and Seq3) or shMEK2 (Seq4, Seq5 and Seq6) as
described in the Materials and Methods section. Transfection efficiency was confirmed by checking MEK1 and MEK2 mRNA transcription levels (A, B). The combined effects of shMEK1
(Seq 2) and shMEK2 (Seq 4) on the expression of MEK1/2 (C) and on the expression of HSP32 (D) was observed by western blot. Significance compared with Air group, **p < 0.01;
significance compared with HBO group, ††p < 0.01.
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found.
Since ROS and NO are two well established inducers of HSP32

[25,36], their involvements in HBO induced HSP32 expression were
further observed. The results indicate that ROS but not NO participated
in HBO induced HSP32 expression. A similar finding has been reported
in human umbilical vein endothelial cells [37].

Recent studies suggested that the induction of HSP32 requires
activation of several signaling pathways, including Akt, ATF-2, BCR-
Abl-2, MEK1/2-ERK1/2, JNK, p38 MAPK, STAT3, NF-κB, CREB, and
Nrf2 [25,38]. Apart from these signal molecules, under hypoxic
conditions, HIF-1α is another important regulator of HSP32 gene
expression, which, however, will rapidly degrade at normal oxygen
tension or in a hyperoxic environment [25]. To elucidate the signal
pathway(s) mediated between HBO and HSP32 expression in spinal
neurons, the activation of the above signal molecules and the upstream
and downstream relationship were observed, and revealed that HBO
induced HSP32 expression is mediated via the ROS/p38 MAPK/Nrf2
pathway.

One finding of significance and interesting in this study was the
discovery that a negative regulation mechanism simultaneously worked
with the positive induction pathway for HSP32, which was further
highlighted by the finding that MEK1/2 acted through a non-ERK1/2
pathway. The existing data showed that activation of ERK1/2 played a
mostly positive role in the regulation of HSP32 [25,39], and ERK1/2 is
the only known physiological substrates of MEK1/2 [26]. U0126 is a
specific inhibitor of MEK1/2 and is commonly used to inhibit the
activation of the MEK1/2-ERK1/2 cascade [27,40]. As far as we know,
this is the first finding that MEK1/2 may work via pathways other than
ERK1/2.

How did MEK1/2 exert inhibition of the expression of HSP32
induced by HBO? Bach1 is the main suppressive transcription factor of
ARE regulated genes, including HSP32 [25]. The translocation from
nucleus to cytoplasm was increased following HBO exposure, which
was further enhanced by MEK1/2 inhibition. This suggests that Bach1

was the nuclear factor mediating the negative regulation downstream
to MEK1/2. However, whether other molecules were involved between
MEK1/2 and Bach1 needs further study.

A growing body of data indicates that, although HSP32 serves a
cytoprotective function, the surge of heme metabolites can also result
in neuronal cell death [41,42]. The existence of a MEK1/2 negative
regulation pathway may be a self-protection mechanism in spinal
neurons. Meanwhile, the present results show that the activation of
all cytosol signal molecules occurred and recovered within 0.5 h,
activation of the Nrf2 and Bach1 lasted for more than 6 h, and in our
previous study, the activated expression of HSP32 lasted for more than
30 h with the peak appearing at 12 h [7]. The negative regulation may
play pivotal role on the suspension of activation. The physiological
significance of this in vivo deserves further study.

In conclusion, this study revealed that HBO induced HSP32
expression in primary cultured rat spinal neurons through ROS/p38
MAPK/Nrf2 pathway is synchronized by MEK1/2/Bach1 mediated
negative regulation, and the effects of MEK1/2 was not exerted via
ERK1/2, which are generally regarded as its only physiological
substrates.
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