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Abstract

Many bacterial species are composed of multiple lineages distinguished by extensive variation in 

gene content. These often co-circulate in the same habitat, but the evolutionary and ecological 

processes that shape these complex populations are poorly understood. Addressing these questions 

is particularly important for Streptococcus pneumoniae, a nasopharyngeal commensal and 

respiratory pathogen, as the changes in population structure associated with the recent introduction 

of partial-coverage vaccines have significantly reduced pneumococcal disease. Here we show 

pneumococcal lineages from multiple populations each have a distinct combination of 

intermediate frequency genes. Functional analysis suggested these loci were likely subject to 

negative frequency-dependent selection (NFDS) through interactions with other bacteria, hosts, or 

mobile elements. Correspondingly, these genes had similar frequencies in four populations with 

dissimilar lineage compositions. These frequencies were maintained following substantial 

alterations in lineage prevalences once vaccination programmes began. Fitting a multilocus NFDS 

model of post-vaccine population dynamics to three genomic datasets using Approximate 
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Bayesian Computation generated reproducible estimates of the influence of NFDS on 

pneumococcal evolution, the strength of which varied between loci. Simulations replicated the 

stable frequency of lineages unperturbed by vaccination, patterns of serotype switching, and clonal 

replacement. This framework highlights how bacterial ecology affects the impact of clinical 

interventions.

Population genomics has revealed many bacterial species exhibit extensive variation in their 

‘accessory’ genomes. While neutral evolutionary models can account for such diversity1–3, 

allowing for heterogeneity in the evolutionary rate between genes significantly improves 

their fit to genomic data4–6, consistent with selection causing differences in gene content7. 

If recombination rates are sufficiently high, selection can alter the distribution of individual 

genes8. However, lower levels of recombination are associated with chromosome-wide 

sweeps, such that niche specialization at one or more loci can result in largely clonal 

‘ecotypes’9,10. Similarly, a recent model suggested selection acting on a high proportion of 

the genome could partition even freely-recombining bacteria into highly-diverged ‘metabolic 

types’11. As well as adaptation to particular niches, this latter model11 considered antigenic 

loci to be under negative frequency-dependent selection (NFDS), the situation in which 

alleles are most beneficial to genotypes when they are rare. This is based on the assumption 

antigens become more costly when common, because they are more frequently recognised 

by acquired immune responses.

Such NFDS has been proposed to explain the extensive antigenic diversity of the 

nasopharyngeal coloniser and respiratory pathogen Streptococcus pneumoniae (the 

pneumococcus)11–13. This variation makes anti-pneumococcal vaccine development 

challenging. The first licensed conjugate vaccine (PCV7) targeted seven of over ninety 

serotypes14, and consequently was associated with ‘serotype replacement’ as vaccine types 

(VTs) were replaced by non-vaccine types (NVTs), with no overall change in carriage 

rates15. This was driven by both serotype switching, the replacement of VTs by NVTs that 

differed at few loci other than that which determined the serotype, and clonal replacement of 

VTs by distantly-related NVTs. These population dynamics are now amenable to detailed 

study, having been tracked by genomic surveillance of isolates carried by children in both 

Massachusetts (USA) 14 and Southampton (UK) 16,17, and isolates from invasive 

pneumococcal disease in adults in Nijmegen (the Netherlands) 18. Here we use the 

distribution of the accessory genome across isolates to develop a gene frequency-based 

model of bacterial population structure based on multiple NFDS mechanisms19,20.

Results

Enrichment of loci under frequency-dependent selection in the accessory genome

Previous analyses of 5,442 clusters of orthologous genes (COGs) in the Massachusetts 

pneumococcal population suggested those present at intermediate frequencies were 

important in distinguishing sequence clusters21. To identify functions that were enriched in 

this set of genes, the 1,112 COGs present in 5% to 95% of isolates and 1,194 core COGs14 

were annotated by integrating multiple analyses (Fig 1a & Supplementary Datasets 1 and 2). 

The most substantive difference was in mobile genetic elements (MGEs; Fisher’s exact test; 
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odds ratio, OR = 336; two-sided p < 2.2x10-16). However, few of these genes were ‘cargo’ 

beneficial to the host bacterium, and were instead likely to be parasitic, consistent with the 

distribution of prophage between pneumococci21,22. Correspondingly, restriction 

modification systems (RMSs) that protect against MGE infection accounted for 2.4% of the 

intermediate-frequency genes, but were absent from the core COGs. These are most often 

advantageous when rare, such that the donor of an infecting MGE is unlikely to have the 

same system19, but typically futile when ubiquitous. Hence the co-existence of lineages 

likely involves competition between bacteria and MGEs through ‘kill-the-winner’ dynamics, 

a form of NFDS in which an increase in a genotype’s frequency would be associated with a 

counterbalancing rise in the prevalence of MGE genotypes able to infect such cells23.

Annotation also suggested direct interference competition between bacteria was likely to be 

important in maintaining a diversity of lineages24. Bacteriocins, which mediate interstrain 

killing25, were significantly enriched in the accessory genome relative to the core (Fisher’s 

exact test; OR = 24.0; two-sided p < 2.2x10-16). Although regulatory components of the 

bacteriocin-like peptide (blp) locus were conserved across the population, most of the gene 

cluster was composed of various combinations of bacteriocin and immunity protein genes, 

many of which were found in multiple loci26. Despite this diversity, each of the previously-

described fifteen monophyletic sequence clusters14 was typically associated with one 

distinctive blp allele (Supplementary Fig 1), with an exception being sequence clusters (SCs) 

3 and 14, which did not co-exist for long owing to vaccine-induced population dynamics14.

Sequence clusters also varied in their complement of rarer bacteriocin biosynthesis gene 

clusters, including pneumocyclicin27, pneumolancidin28, two loci likely regulated by the 

TprA/PhrA quorum-sensing system29, and other putative loci (Supplementary Fig 1). No 

individual gene cluster replicated the diversity of the blp locus, with sequence variation 

instead often corresponding to disruptive mutations in bacteriocin structural or biosynthetic 

genes. Assuming relevant phenotypes can be reliably inferred from the gene clusters, such 

mutations result in bacteria immune to the bacteriocin, but unable to kill competitors. These 

immune non-producers co-circulate with producer cells carrying the putatively fully-

functional allele, and susceptible cells completely lacking the gene cluster. Analogous 

variation with respect to individual bacteriocins is likely present between the blp loci, given 

their diverse complements of production and immunity genes. If both biosynthesis and 

immunity functions are costly, these phenotypes can co-exist through rock-paper-scissors 

NFDS dynamics as producers kill susceptible cells, immune non-producers outcompete 

producers, and susceptible cells outcompete immune non-producers30. Hence the distinctive 

overall bacteriocin production profile of strains may be shaped by NFDS acting on multiple 

loci.

NFDS can also result from competition for resources20,31. A particular nutrient import 

strategy, either optimized for different nutrients31 or different concentrations of the same 

nutrient32, will become less advantageous as it becomes more common, as a consequence of 

more intense competition for the same resource24. While nutrient importers account for 

11.5% of the core COGs, because many are universally necessary, they also make up 9.35% 

of the intermediate-frequency COGs. Hence they are significantly enriched relative to 

general metabolic genes in the latter category (Fisher’s exact test, OR = 2.48, two-sided p = 
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2.61x10-8). This suggests NFDS may sustain multiple nutrient acquisition strategies in the 

population as a consequence of interstrain competition for resources.

Antibiotic resistance, also variable between isolates, could be affected by similar 

competition33. If resistant bacteria are considered adapted to hosts consuming antibiotics, 

but suffering a cost in untreated hosts, then resistance will be most effective as a resource 

acquisition strategy where rare owing to the lessened competition with other strains. This 

could directly result in NFDS, although there are alternative explanations for the co-

existence of sensitive and resistant pneumococci that instead imply NFDS through other 

mechanisms34.

A further functional category to be enriched in the intermediate-frequency COGs relative to 

the core genome were genes encoding for the biosynthesis of immunogenic structures, such 

as surface proteins35 or the capsule36 (Fisher’s exact test, OR = 2.56, two-sided p = 

9.23x10-10). These can be under NFDS as long as alleles are immunologically 

distinguishable, a criterion met by the serotype-defining capsule36, as well as accessory 

antigens that are typically either present as large surface structures, or completely absent, 

such as the pili37.

Therefore multiple disparate functions enriched in the intermediate-frequency genes relative 

to the core genome can each be understood as being subject to NFDS, albeit through 

different processes. While no NFDS mechanism could be identified for 32.1% of the 

intermediate frequency COGs, this category is likely to include both metabolic enzymes and 

signal transduction proteins linked to loci under NFDS on genomic islands, and loci under 

NFDS that cannot be identified as such owing to incomplete functional information. To test 

whether these inferences applied to other pneumococcal populations in a similar manner, 

further genomic datasets were compared to those from Massachusetts.

Population similarities in frequencies of genes, but not genotypes

Overall, 4,127 isolates were combined from available reference sequences, Massachusetts, 

Southampton, Nijmegen, and the Maela refugee camp in Thailand where the population is 

unvaccinated38 (Supplementary Dataset 3). A new analysis identified 11,049 ‘global’ COGs 

(gCOGs), from which a ‘relaxed’ core of 1,447 gCOGs was extracted to generate a 

maximum likelihood phylogeny (Fig 1b; Supplementary Fig 2). Strikingly, there was little 

evidence of genetic isolation-by-distance, as both vaccine-type status and country of 

isolation had a polyphyletic distribution, indicating a history of recombination and frequent 

international migration.

The core alignment was also used to define 74 sequence clusters. Plotting the pairwise core 

genome divergence of isolates, represented by their cophenetic separation in the tree, against 

their accessory genome divergence, calculated as the Jaccard distance between the isolates’ 

gCOG content, demonstrated members of the same sequence cluster were substantially more 

similar in their accessory, as well as core, genomes (Fig 1c). These differences between 

lineages were likely biologically meaningful, as they represented a significant proportion of 

the accessory genome and were preserved despite international dissemination of some 

genotypes and ongoing horizontal DNA transfer. Although some of the previously-identified 
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atypical unencapsulated lineages were associated with extensive private gene content21, 

sequence clusters of encapsulated pneumococci each contained few unique accessory loci. 

The mean numbers of gCOGs present in ≥95% of the isolates in a given sequence cluster, 

but not meeting this criterion in any other sequence cluster in the same population, were just 

16.75 in Massachusetts, 19.94 in Southampton, 19.46 in Nijmegen, and 15.02 Maela 

(Supplementary Fig 2). Sequence clusters’ distinctiveness instead resulted from the 

polyclonal distribution of the 1,731 intermediate frequency gCOGs, present in between 5% 

and 95% of the pre-vaccination isolates in at least one population (Supplementary Fig 2). 

Hence a long history of recombination was reflected in intermediate-frequency loci being 

associated with multiple lineages, with each lineage in turn defined by a unique combination 

of intermediate-frequency loci.

Despite the lineages representing discrete and distinct sets of genotypes, their prevalences 

were highly heterogeneous between the four populations, with a significant correlation only 

between those in Massachusetts and Southampton (Fig 2a). In marked contrast, the 

frequencies of accessory gCOGs were strongly correlated between Massachusetts and every 

other population (Fig 2b; Pearson correlation, two-sided p < 10-15 in all comparisons). This 

suggests pneumococcal populations are configured by genomic islands being maintained at 

equilibrium frequencies that are conserved between populations, consistent with their 

prevalence being influenced by NFDS19. A significant deviation between populations was 

the elevated frequency of Tn916 in Maela; this transposon underlies tetracycline 

resistance21, and therefore the difference is likely to represent a location-specific selection 

pressure rather than drift39. Hence selection appears to shape pneumococcal populations to 

be similar in frequencies of genes, rather than genotypes.

Vaccination as a test of negative frequency-dependent selection

The partial-coverage vaccines introduced to limit pneumococcal disease can be used as a 

natural experiment, to test whether loci expected to change in frequency due to association 

with VTs were actually maintained at equilibrium frequencies by NFDS. Although a 

significant correlation existed between pre- and post-PCV7 sequence cluster frequencies in 

the three vaccinated populations (Fig 2c), divergence in population composition was driven 

by the replacement of some VT sequence clusters with distantly-related NVT lineages. 

Across all comparisons of pre- and post-PCV7 populations, gCOG frequencies showed a 

stronger positive correlation. This stability in gene frequencies reflected the significant 

correlation between the post-PCV7 decrease in a gCOG’s absolute frequency in VT isolates, 

and the contemporaneous increase in its absolute frequency in NVT isolates (Supplementary 

Fig 3), consistent with the NFDS hypothesis. The greatest deviation in the Massachusetts 

population was wciN, directly involved in the synthesis of the vaccine-targeted 6A and 6B 

capsules, reflecting differences in selection pressures between timepoints14. This suggested 

the equilibrium frequencies of the intermediate frequency gCOGs were likely to govern the 

post-vaccine restructuring of the population.

To quantify whether NFDS of intermediate frequency gCOGs could explain changes in 

pneumococcal populations better than a neutral model, a discrete time Wright-Fisher 
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multilocus NFDS model was constructed in which the number of offspring produced by a 

genotype i at generation t, Xi,t, was distributed as:

General density-dependent competition was parameterised by the total number of 

pneumococci in the simulated population at time t, Nt, and the environment’s carrying 

capacity κ. This was constant across t, reflecting the stable levels of pneumococcal carriage 

post-PCV715,16. The other demographic process was migration, at rate m (per month-long 

generation), by which isolates in the resident simulated population were replaced by 

genotypes randomly selected from the genomic data from the same location. VT genotypes 

were subject to a fitness cost, v, representing vaccine efficacy at preventing transmission. 

The final term parameterised NFDS, the strength of which was determined by σf and the 

exponent πi,t:

where l is an intermediate frequency locus (gCOG or antibiotic resistance phenotype), and 

gi,l is a binary variable indicating whether l is present in genotype i. Each l has an 

equilibrium frequency el, its prevalence in the pre-vaccination sample, and an instantaneous 

frequency at generation t, fl,t. Therefore fl,t determines whether l benefits its host, when it is 

rare relative to el, or has a net cost, when it is common relative to el. Model details are 

described in Supplementary Fig 4 and the Methods.

The σf, v and m parameters were estimated for the Massachusetts population using 

Approximate Bayesian Computation, an inference technique for intractable simulator-based 

models40,41. The simulated population was compared to the sequence cluster distribution 

across three time points (Fig 3a) using the Jensen-Shannon divergence (JSD) to determine 

similarity. Convergence of the parameter estimates found strong evidence for NFDS (σf 

significantly greater than its lower bound; Table 1 & Supplementary Table 1, Supplementary 

Fig 5). The precedent of other models4,6 suggested the fit could be improved by allowing 

the strength of selection to be heterogeneous across loci. Hence an expanded model featured 

a proportion, pf, of the intermediate frequency loci experiencing NFDS at strength σf, while 

(1-pf) experienced NFDS at strength σw (see Methods). Convergence of parameter estimates 

again found strong evidence for NFDS (σf and pf significantly greater than their lower 

bounds; Table 1 & Supplementary Table 1, Supplementary Fig 5), with a substantial 

improvement over the homogeneous selection model, as quantified by the significantly 

smaller JSD values from appropriately parameterised simulations (Wilcoxon test on 100 

simulation pairs, W = 9902, two-sided p = 4.73x10-33; Supplementary Fig 6).

At the locus level, those genes subject to stronger NFDS stabilised close to their equilibrium 

frequencies, whereas the frequencies of those subject to weaker NFDS drifted near-neutrally 

(Supplementary Fig 6). At the lineage level, these simulations replicated three important 
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facets of the post-vaccination population dynamics (Fig 3a & Supplementary Fig 7). The 

first was the stable post-vaccine prevalence of some NVT sequence clusters, such as SC4 

and SC8. The second was serotype switching, the replacement of VT by NVT within 

sequence clusters that remained at stable overall frequencies, as observed in SC1, SC5, SC9 

and SC15. The third was clonal replacement of VT by unrelated NVT, such as the 

contemporaneous disappearance of SC13, SC14, SC22 and SC24, and expansion of SC3, 

SC6, SC7 and SC11. These trends were not trivial to replicate. The same framework was 

used to fit a neutral model (NFDS eliminated, with σf = 0); a serotype-focused single locus 

NFDS model (el applied to serotype, rather than locus, frequencies), and an ecotype model 

(el applied to sequence cluster, rather than locus, frequencies). Both the neutral and serotype 

models poorly reproduced the stability of SC8’s frequency, serotype switching within SC9 

and SC15, or any patterns of clonal expansion. The ecotype models better reproduced NVT 

sequence cluster stability and serotype switching, but did not replicate the observed patterns 

of clonal replacement. All of these models resulted in significantly worse fits to the data than 

the heterogeneous multilocus NFDS model (Supplementary Figs 6 & 7).

The estimated vaccine selection strength, v, of 0.081 per month from the heterogenous rate 

multilocus NFDS is consistent with PCV7’s halving of the rate at which VT are acquired42, 

if pneumococci transmit at least once every six months, an interval similar to the carriage 

duration of VT serotypes43. Similarly, the estimated migration rate, m, of 0.0044 per month 

suggests half the resident Massachusetts pneumococcal population is replaced by immigrant 

strains over approximately 13 years, which is realistic given the 50% probability that a 

pneumococcal lineage was detectable in different localities within Massachusetts after 3-4 

years14.

Consistent evidence of NFDS in other populations

The homogeneous and heterogeneous multilocus NFDS models were also fitted to similar 

surveillance data from Southampton (Supplementary Fig 5 & 8). The JSD values for the 

heterogenous rate model were again reproducible and significantly smaller than for the 

homogeneous rate version (Wilcoxon test on 100 simulation pairs, W = 9954, two-sided p = 

1.01x10-33). The point estimates of parameter values were again robust and, in the case of 

the three parameters determining the strength of NFDS, very similar to those for 

Massachusetts (Table 1 & Supplementary Table 1).

However, the vaccine selection strength was estimated to be 2.54-fold higher in 

Southampton than in Massachusetts. This difference is likely attributable to the substantially 

higher PCV7 coverage in children under 24 months of age in the years immediately after the 

vaccine’s introduction in the UK relative to the USA44,45, combined with the lower age 

range included in the Southampton study, excluding older children who are less likely to 

have been immunized, or in whom natural acquisition of immunity blunted the selective 

pressure of the vaccine16,46. Simulations using these point estimates again replicated the 

strain dynamics observed in the genomic sample (Fig 3b). VT SC5 and SC18 were 

eliminated at realistic rates; NVT SC3, SC19 and SC35 remained at stable frequencies; 

serotype switching occurred within SC1 and SC9, while NVT SC2 rose in prevalence at a 

much faster rate than same lineage did in Massachusetts.
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The homogeneous and heterogeneous rate multilocus NFDS models were also fitted to a 

genomic dataset from cases of invasive pneumococcal disease in Nijmegen. The 

heterogeneous model was again a significantly closer fit to the genomic data, as assessed by 

the JSDs (Wilcoxon test, W = 3988, two-sided p = 0.0135; Table 1 and Supplementary Fig 

5). Precisely replicating the observed population dynamics was difficult (Fig 3c and 

Supplementary Fig 9), owing to the sparser sampling, particularly post-PCV7, and inevitable 

bias towards more invasive genotypes in this dataset. While the estimated strength of NFDS 

was similar to both Massachusetts and Southampton, the estimated vaccine selection 

strength was lower than in these infant carriage surveillance projects, consistent with the 

Nijmegen collection being isolated in an adult population primarily protected by herd 

immunity18. Correspondingly, fitting the heterogenous rate model to the Maela dataset, 

isolated from an entirely unvaccinated community, estimated v close to zero (Table 1).

NFDS acting on genomic islands can also affect variation in the core genome. Comparisons 

between pre- and post-vaccination populations, and between different locations, revealed 

allele frequencies of core genome single nucleotide polymorphisms (SNPs) typically showed 

very similar correlations to those of accessory loci frequencies (Supplementary Fig 10). This 

was not a consequence of tight linkage between SNPs in the regions flanking genomic 

islands (Supplementary Fig 10). Nevertheless, simulations in which NFDS acted on only 

accessory loci precisely replicated the post-vaccination changes in the core SNP allele 

frequencies, and similar correlations to those between collections were observed in 

simulations where the Massachusetts population was gradually replaced with isolates from 

other datasets (Supplementary Fig 10). Therefore while it is possible core genome loci may 

also be under NFDS, the observed correlations can be attributed to NFDS acting only on 

accessory loci.

Consequences of NFDS for the impact of vaccination

Simulations were used to investigate counterfactual scenarios. In the absence of vaccination 

(v = 0), the pre-PCV7 populations were stable in Massachusetts (Supplementary Fig 7), 

Southampton (Supplementary Fig 8) and Nijmegen (Supplementary Fig 9). Eliminating 

migration (m = 0) significantly increased the proportion of VTs observed in simulations in 

all three populations (Wilcoxon tests; Massachusetts, W = 0, two-sided p = 2.56x10-34; 

Southampton, W = 0, two-sided p = 2.56x10-34; Nijmegen, W = 1453, two-sided p = 

4.50x10-18), highlighting the importance of imported or previously rare NVTs in driving out 

VTs. However, removing NFDS significantly decreased the proportion of VTs observed in 

all three populations (Wilcoxon tests; W = 10000, two-sided p = 2.56x10-34 in 

Massachusetts and Southampton; W = 9979, two sided p = 4.81x10-34 in Nijmegen). This is 

because following vaccination, those loci enriched in VT genotypes become increasingly 

advantageous to their bacterial hosts as they become rarer, resulting in NFDS slowing the 

rate at which VT genotypes are eliminated until such loci rise in frequency in NVT 

genotypes.
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Discussion

These combined analyses of multiple population genomic datasets suggest that NFDS plays 

an important role both in the stable structuring of pneumococcal populations, and their 

dynamics following disruption by vaccine-induced immunity. According to the best-fitting 

model, relatively strong NFDS acts on a few hundred accessory genes, corresponding to 

5.0% of the Massachusetts pangenome, and 8.3% of that in Southampton. This cumulative 

effect across multiple loci in complex populations is predicted to maintain stable lineage 

compositions in the absence of disruption by vaccination, without the oscillatory dynamics 

associated with some single locus NFDS processes19,30,47,48. Hence multiple lineages can 

persistently coexist within this framework despite their confinement to a niche, the human 

nasopharynx, that is physiochemically homogeneous compared with the varied 

environments inhabited by species often considered as split into ecotypes, such as 

Escherichia coli. Furthermore, although intraspecific recombinations are slow over the 

timescales simulated in this study14, horizontal DNA transfer has comprehensively 

reassorted genomic islands between genotypes over the species’ history. Their consequent 

polyclonal distribution means accessory locus frequencies can be preserved by multiple 

lineage combinations, thereby accounting for the diverse population structures observed 

globally, and the panoply of strains they contain49. While the NFDS processes represented 

in the multilocus model were also sufficient to explain the major post-vaccination population 

changes, further work is required to determine whether core loci are also involved. 

Continued development of such quantitative models with large genomic datasets promises to 

improve our understanding of how diverse selective pressures affecting bacterial populations 

shape their response to public health interventions, and how best to design novel pathogen 

control strategies.

Methods

Annotation of the accessory genome

The previously analysed Massachusetts population14,50 contained 1,112 COGs present in 

between 5% and 95% of the 616 isolates and 1,194 COGs present in a single copy in every 

isolate. Information on whether these were associated with capsule polysaccharide synthesis, 

antibiotic resistance, RMSs, Pneumococcal Pathogenicity Island 1 or MGEs was extracted 

from previously described analyses14,21,50. Coding sequences (CDSs) associated with 

proteinaceous immunogenic structures were identified through the results of protein antigen 

array data35. Candidate bacteriocins were identified using the BAGEL3 algorithm51. The 

variation at the blp locus, and the other putative bacteriocin production loci, was manually 

identified within de novo assemblies of the Massachusetts isolates using Artemis and 

ACT52. The heatmap showing the distribution of the blp alleles in Supplementary Fig 1 was 

generated by mapping Illumina reads for each of the Massachusetts isolates against the 

concatenated set of loci using BWA with default settings53. Further information on COG 

functional domains14 and previous automated annotations50 was additionally used to 

manually curate all available information into the annotation and classification in 

Supplementary Datasets 1 and 2.
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Bioinformatic analysis of genomic data

The isolate collections analysed each came from systematic sampling of defined host 

populations. The Massachusetts pneumococcal dataset, isolated from the nasopharynxes of 

children up to five years of age during routine primary care physician visits, consisted of the 

616 de novo assemblies generated with Velvet54 as described previously14,50. 

VelvetOptimiser55 was used to assemble data from the Maela collection38 (3,085 genomes), 

isolated from the nasopharynxes of infants up to two years of age, and their mothers, in a 

Thai refugee camp; the Southampton collection16 (516 genomes), isolated from the 

nasopharynxes of children up to four years of age during outpatient visits; and the 

Nijmegen18 collection (337 genomes), isolated from adults hospitalised with bacteraemic 

pneumonia. These were supplemented with 20 complete, publically available reference 

genomes (Supplementary Dataset 3). To standardise these genome collections relative to the 

Massachusetts dataset, assemblies were discarded if they were less than 1.98 Mb, or greater 

than 2.19 Mb, in length; or had an N50 less than 15 kb14,50; or necessary information was 

absent from the public databases. Of the 4,586 genomes, 4,462 met these criteria and were 

included in a preliminary analysis that identified non-pneumococcal streptococci, which 

were then excluded from the final analysis. Consequently, the final dataset of 4,127 genomes 

contained 20 reference sequences, 616 Massachusetts sequences, 491 Southampton 

sequences, 337 Nijmegen sequences, and 2,663 Maela sequences.

Each genome was processed with RNAmmer v1.2, to annotate rRNA56; tRNAscan-SE 

v1.3.1, to annotate tRNA57; Rfam scan, to annotate other non-coding RNA58; scanned for 

BOX, RUP and SPRITE repeats using HMM profiles59,60; and Prodigal v2.661, to annotate 

CDSs using a model trained on the genome of S. pneumoniae ATCC 70066962. CDSs that 

overlapped with the non-coding RNA or short interspersed repeat sequences were then 

removed from the annotation, and the remaining set translated to allow a non-redundant set 

of proteins to be identified. A version without low complexity regions was generated 

through filtering with segmasker63 and masking of choline binding domains. All-against-all 

comparisons of these protein databases were then generated using BLAT v0.3464. Global 

COGs (gCOGs) were then generated using COGtriangles and COGcognitor65, and through 

linking pairs of highly similar sequences, as described previously14. The gCOG 

nomenclature was then applied to the full, redundant set of protein sequences.

To correct for misassemblies, particularly those reflecting differences between the methods 

used to assemble the Massachusetts isolates’ genomes and those from other populations, 

false positive CDSs were eliminated from the intermediate frequency gCOGs. A database 

generated from the annotation of S. pneumoniae ATCC 70066962 was used to search 

intermediate frequency gCOG DNA sequences using BLASTALL v2.2.25. This identified 

39 gCOGs corresponding to fragments of tRNA, oligomers of choline binding domains, or 

antisense fragments of insertion sequences. This left a final set of 11,049 gCOGs, of which 

1,731 were present at a frequency between 5% and 95% in the pre- or peri-vaccination 

samples (grouped as “pre-vaccination” samples in the Results section) of at least one of the 

four study populations.

To transfer the functional annotation onto the gCOG sequences, the annotated protein 

sequences from Massachusetts in Supplementary Table 1 were used to identify identical 
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proteins in the gCOG dataset. When COGs could not be matched to gCOGs through this 

approach, links were instead made through searching gCOGs for proteins with identity to 

the middle 50% of annotated protein sequences from Massachusetts. These links were then 

manually curated to categorise the 1,731 intermediate frequency gCOG sequences where 

possible, as shown in Fig 2.

Analysis of population structure

To analyse the overall population structure, a ‘relaxed’ core set of 1,447 gCOGs were 

identified that met two criteria: first, that they were present in at least 95% of the isolates; 

and second, that the total number of gCOG representatives was less than 105% of the 

number of isolates containing the gCOG, to exclude gCOGs that are present in high copy 

number in some, or all, genomes. A codon alignment was then generated for each gCOG 

using mafft v7.22166, excluding any sequences from isolates containing more than one 

representative of the gCOG. These were concatenated, with gap sites used to pad regions 

where data were missing for a particular isolate, and a 293,508 bp alignment of polymorphic 

sites extracted using SNP-sites67. A phylogeny was generated from this alignment using 

FastTree2 with the ‘fastest’ option68.

Population structure was analysed with hierarchical BAPS clustering69 using five 

independent runs of the estimation algorithm starting from the upper bound of 200-500 

clusters, which all converged to the same posterior mode. Two polyphyletic primary BAPS 

clusters were split into their secondary level clusters, yielding 73 sequence clusters that were 

almost entirely congruent with the phylogeny, and SC0, which remained polyphyletic. The 

monophyletic sequence clusters most similar to those in Massachusetts14 were numbered 

accordingly. The plot in Fig 1c combined cophenetic distances from the core genome 

phylogeny, extracted with Bioperl70, and Jaccard distance calculated from the presence and 

absence matrix of gCOGs using the R package vegan71. For each isolate, 100 comparator 

isolates were selected at random, and this sample of pairwise comparisons used to generate 

the plot.

Of the polymorphic sites in the core genome, 282,043 corresponded to a base in the S. 
pneumoniae ATCC 700669 reference genome. For each population, the set of sites that were 

both biallelic and had a non-reference allele frequency between 5% and 95% in that 

population were extracted with VCFtools v0.1.1472; there were 27,616 of these in the 

Massachusetts dataset, 26,954 in the Southampton dataset, 28,396 in the Nijmegen dataset, 

and 30,579 in the Maela dataset. The r2 statistics between these polymorphic sites, and 

between the binary presence and absence information of accessory gCOGs with a 

representative in the S. pneumoniae ATCC 700669 genome, were then calculated with 

VCFtools by treating each isolate as a phased haplotype. These were used to generate the 

linkage analysis plots in Supplementary Fig 10.

Inference of antibiotic resistance profiles

Individual isolates’ genotypes were used to predict their antimicrobial resistance profiles. 

The presence of aph3’ (the gCOG CLS350021) was inferred to cause resistance to 

aminoglycosides; the presence of tetM (CLS03712) was inferred to cause resistance to 
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tetracycline; the presence of cat (CLS01043) was inferred to cause resistance to 

chloramphenicol; and the presence of ermB (CLS01283), mef (CLS02227), or both was 

inferred to cause macrolide resistance62,73. These gCOGs themselves were removed from 

the set of loci used in the simulations, and the inferred antibiotic resistance phenotype used 

instead.

Non-susceptibility to other antibiotics is determined by core genome loci; to incorporate 

these into the model, resistant alleles of relevant loci were treated analogously to the 

presence of an accessory resistance gene. The presence of the I100L substitution in the 

dihydrofolate reductase protein (CLS03211) was inferred to result in resistance to 

trimethoprim74,75, and the presence of an insertion shortly after S61 in the dihydropteroate 

synthase protein (CLS01442) was inferred to result in resistance to sulphamethoxazole76. 

Three penicillin-binding proteins substantially contribute to β-lactam resistance. Using a 

similar approach to that of Li et al77, the population-wide protein sequences of Pbp1A 

(CLS01776), Pbp2X (CLS01031) and Pbp2B (CLS01093) were aligned with mafft 

v7.22166, and the transpeptidase domain regions extracted. Following validation using the 

isolates from Massachusetts14, sequences exhibiting less than 97% amino acid identity with 

the susceptible alleles defined by Li et al in the multiple sequence alignment were 

considered resistance-associated. These antibiotic resistance phenotypes were included as 

intermediate frequency loci if they met the criteria for a given population.

Multilocus negative frequency dependent selection model

The multilocus negative frequency dependent selection model was generated within a 

discrete-time Wright-Fisher framework78,79. Although such models were designed with a 

number of strong assumptions, the results of simulations have been found robust to 

violations of these conditions80. Each individual i had a genotype gi defined by a binary 

string representing the presence and absence of each gCOG or antibiotic resistance 

phenotype present at an intermediate frequency in the starting population. The number of 

offspring arising from i at time t is a Poisson-distributed random variable Xi,t. This Poisson 

approximation is justifiable if only a small proportion of descendants survive to the next 

generation78, as is likely to be the case for a nasopharyngeal coloniser with a small within-

host effective population size81 that experiences a strong bottleneck at transmission. To 

allow for differential reproductive success between genotypes in a manner that depended on 

the composition of the overall population, Xi,t was parameterised using the function 

(Supplementary Fig 4):

The four components of the function each correspond to a different biological process. 

General density-dependent selection depends on κ, the carrying capacity of the environment, 

and Nt, the total number of individuals at time t. This maintained an approximately stable 

population size throughout simulations. This is justifiable, as S. pneumoniae colonization 

levels did not substantially change in the years immediately after PCV7’s introduction.

Corander et al. Page 12

Nat Ecol Evol. Author manuscript; available in PMC 2018 April 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Migration into the population occurred at rate m, subject to the limits 0 ≤ m ≤ 1, and 

therefore the reproductive fitness of resident individuals was reduced by a factor of (1-m) 

accordingly to maintain an approximately constant population size of κ. The number of 

immigrating individuals at time t, Nm,t, was a random variable calculated as:

Migrant individuals were selected, with replacement, from all isolates observed at any time 

point in the geographically-specified dataset being studied. Therefore it was the only 

mechanism by which genotypes not present in the pre-vaccine genome samples could enter 

the simulated population. To prevent artefactually improving the fit of the model at high 

values of m through sampling all isolates in proportion to their observed frequency, the 

selection of an immigrating isolate was biased such that it was equally likely to come from 

any sequence cluster with at least one representative in the studied population, although 

these were present at very different frequencies within each population. Hence the 

probability of an immigrating individual being of genotype i and sequence cluster s, pm,s,i, 

was:

Where S is the number of sequence clusters in the population, ns,i is the number of isolates 

in sequence cluster s of genotype i in the genome dataset, and ns was the number of isolates 

in the sequence cluster s in the genomic dataset.

The vaccine selection pressure to which individual i was subject, vi, depended on whether 

the individuals were of a vaccine serotype or not; for PCV7, the vaccine serotypes were 4, 

6B, 9V, 14, 18C, 19F and 23F, as well as 6A, a vaccine-related type to which PCV7 elicited 

strong cross-immunity14. Consequently, vi was determined as:

Where v was subject to the constraint 0 ≤ v ≤ 1.

In the homogeneous rate multilocus model of NFDS, the magnitude of this pressure was 

determined by the term (1 + σf)πi,t , where σf ≥ 0. The selection pressure depended on the 

genotype gi and distribution of intermediate frequency loci at time t, as summarised by the 

exponent πi,t. The calculation of πi,t necessitated determining the frequency fl,t of each locus 

l at time t in the simulation, using the binary variables gi,l that represent presence or absence 

of l in i:
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These were compared to the equilibrium frequencies, el, of the same loci, which were 

assumed to correspond to their frequencies in the sample of G0 genomes from isolates 

sampled pre- or peri-vaccination:

The overall deviation of the L accessory genome loci included in the simulations, for 

individual i at time t, πi,t, was calculated as:

Therefore if all accessory genes are at their equilibrium frequencies, then (1 + σf)πi,t = 1, 

and NFDS has no effect on an individual’s reproductive fitness. When a genotype contains 

many genes rarer than their equilibrium frequencies, (1 + σf)πi,t > 1, and NFDS increases an 

individual’s reproductive fitness. Lastly, when a genotype contains many genes more 

common than their equilibrium frequencies, (1 + σf)πi,t < 1, and therefore NFDS reduces an 

individual’s reproductive fitness. In the absence of l from an individual’s genotype, fl,t has 

no direct effect on its fitness.

Extension to heterogeneous frequency-dependent selection

Two further parameters were introduced when accessory genes were split into two 

categories, each subject to a different level of frequency dependent selection. The σw 

parameter represented the strength of weaker NFDS acting on a fraction, (1-pf), of the 

accessory genes included in the model. To facilitate inference of these two parameters, it 

was assumed that loci under weaker negative frequency dependent selection would vary in 

frequency to a greater extent between the initial and final genomic samples; therefore the 

accessory loci were ordered by the statistic Δl:

Where el is the frequency of the gCOG or antibiotic resistance phenotype across all pre- or 

peri-vaccination samples, as defined previously, and fl,t>0, is its frequency across all post-

vaccination samples. The denominator is intended to emphasise the effects of gCOGs at 

frequencies of approximately 50%, which are likely to have a large effect on the overall 

population structure. The proportion pf of genes for which Δl was smallest were considered 

subject to NFDS with strength (1+σf), whereas the rest where subject to NFDS of strength 

(1+σw). If the L loci were ordered by ascending values of Δl, then lf was the highest ranking 

meeting the criterion,  This resulted in two distinct measures of the deviation of fl,t 

from el:
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And:

Hence the modified offspring distribution was:

Simulations and parameter estimation

The model was implemented in C++ using the GNU scientific library, and is available for 

download from https://github.com/nickjcroucher/multiLocusNFDS. In each simulation, 

genotypes were represented by the gCOGs and antibiotic resistance phenotypes present in 

between 5% and 95% of the pre- or peri-vaccination population. Hence L was 1,090 for 

Massachusetts, 1,175 for Southampton, 1,090 for Nijmegen and 1,254 for Maela. For 

simplicity, κ was assumed to represent the number of pneumococci likely to transmit 

between individuals in the sampled population. This was estimated to correspond to 25% 

colonisation of children under ten years of age in the USA and European samples. In 

Massachusetts15, an under ten population of 828,129 in 2000 82 implied a bacterial 

population size of 2x105 (105 was actually used for model fitting for computational 

efficiency; comparing simulations demonstrated this had no detectable effect on the results); 

in Southampton (including Hampshire and Portsmouth), an under ten population of 202,404 

in 201183 implied a bacterial population size of 5x104; and in Nijmegen (including 

Arnhem), an under ten population of 77,753 in 201184 implied a bacterial population of 

2x104. An elevated colonisation rate of 50%85 was used for Maela, where estimating that 

15% of the 40,000 residents being under 10 implied a bacterial population size of 3x103.

Each simulation was run for a number of timesteps corresponding to the number of months 

spanned by the genomic collection, excluding early or late years in which sampling was 

sparse. The well-sampled periods were the 72 months between spring 2001 and spring 2007 

for Massachusetts50; the 48 months between spring 2007 and spring 2011 for 

Southampton16; the 120 months between 2001 and 2011 for Nijmegen18; and the 24 

months between 2007 and 2009 for Maela85. All isolates from a single winter were assigned 

to the year in which the season ended. In simulations of the Nijmegen population, where a 

substantial proportion of samples pre-dated the vaccine’s introduction, v = 0 for years up to 

2007. In each case, the starting population for the simulation, of size κ, was generated by 

randomly resampling with replacement from the genotypes present in the pre- and peri-

vaccination samples in each study; hence the ‘pre-vaccination’ population consisted of 
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isolates sampled up to spring 2001 in Massachusetts, up to spring 2007 in Southampton, and 

up to 2007 in Nijmegen. These were the genomic samples used to calculate el for all 

intermediate frequency loci; all later samples were used to calculate fl,t>0 in the definition of 

Δl.

At each time t at which a genomic sample was available, the equivalent number of genotypes 

was randomly sampled from the simulated population. The similarity between the simulated 

and genomic samples at t was then calculated as the Jensen-Shannon divergence86 (JSDt) 

between the real and simulated samples:

Where ft,s,v is the simulated frequency of genotypes of sequence cluster s and vaccine type 

status v at time t, and at,s,v is the equivalent value from the genomic sample. This value was 

summed over all vaccine type statuses and sequence clusters for each timepoint sampled in 

the genomic dataset to calculate the overall divergence of the simulation from the sampled 

data.

Each set of simulations was run with variation in the parameters v (range 0-0.5); m (range 

0-0.2); σf (range 10-6-0.22); σw (range 10-6-0.15; only in the heterogeneous rates model), 

and pf (range 0-1; only in the heterogeneous rates model). Model fitting was achieved 

through Approximate Bayesian Computation with the BOLFI algorithm40, run for 2,000 

iterations of Bayesian optimisation to identify best-fitting parameter sets through 

minimizing the JSD (Table 1, Supplementary Fig 5). Point estimates of parameter values 

were generated based on the Gaussian process minimisers, with the distribution of the 

projected JSD values shown for each fit in Supplementary Fig 5. Exploration of parameter 

space was performed with logarithmically transformed values to avoid discontinuity of the 

approximate likelihood function near the natural boundary and to enable better fit of the 

Gaussian process regression. The 95% posterior credible intervals for the parameters were 

obtained using three generations of sequential Monte Carlo sampling with the same default 

settings as used in Gutmann and Corander40 for the pneumococcal day care transmission 

model.

Alternative model formulations

To test whether equivalently good fits to the genomic data could be achieved using different 

approaches within the same framework, alternative model formulations were tested. The 

neutral model was fitted in the same way as the multilocus NFDS models, except that σf was 

fixed at zero. The serotype NFDS model assumed all serotypes were present at equilibrium 

frequencies in the pre-vaccine samples, and therefore πi,t was calculated as the deviation of 

an isolate’s serotype from its initial frequency. This was fitted using both the homogeneous 

and heterogeneous selection rate models. In the latter case, Δl was calculated by comparing 

the serotype el values with their post-vaccination frequencies, as for the intermediate 

frequency loci. The same parameter ranges were used as for the multilocus NFDS model, 

except σf and σw were allowed to take values within the range 10-6-25 to compensate for the 
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single locus contributing to πi,t and ωi,t. Additionally, to avoid many lower frequency 

sequence clusters evolving neutrally, serotypes were considered to be at intermediate 

frequencies if they were between 1% and 99% prevalence in the pre- or peri-vaccination 

population.

The ecotype NFDS model assumed each sequence cluster was adapted to a specific 

ecological niche, and therefore was present at an equilibrium frequency in the pre-vaccine 

samples. Therefore πi,t and ωi,t were calculated as the deviation of an isolate’s sequence 

cluster from its initial frequency. This was fitted using both the homogeneous and 

heterogeneous selection rate models using the same parameter ranges and intermediate 

frequency range as for the serotype NFDS model, as well as the same approach to the 

calculation of Δl. For both the serotype and ecotype models, model fitting was conducted 

with BOLFI40 as for the multilocus NFDS model, using JSDs to quantify the differences 

between the simulated and sampled populations. Results are shown in Table 1. These 

implementations are not intended to represent the optimal versions of each model, but 

instead demonstrate that the fits of the multilocus NFDS models cannot be trivially 

replicated through changing the genetic basis of NFDS.

Simulations in which isolates from two populations were combined used the pre-vaccination 

population from Massachusetts and post-vaccine isolates from one of the alternative 

populations. The initial population was drawn only from Massachusetts; both these isolates, 

and those from the alternative dataset, could enter the simulated population through 

migration. When the alternative population corresponded to Southampton or Nijmegen, the 

population size, number of generations, parameter point estimates, Δl and el values were 

those of the alternative population. When the alternative population was Maela, the el and Δl 

values were those of the alternative population, but the simulations were otherwise 

parameterised for the Massachusetts population, due to the difficulty of obtaining robust 

point estimates for parameters from the Maela population as a consequence of the lack of 

vaccine introduction in this location.

Statistical analyses

Statistical analyses, including calculation of Pearson’s R2, Wilcoxon tests, interquartile 

ranges and Fisher’s exact tests, were performed in R87. Estimation of parameter values and 

credibility intervals through model fitting were performed with BOLFI40. All reported p 
values are two-sided.

Code availability

The model code used in this analysis is freely available from the GitHub repository, https://

github.com/nickjcroucher/multilocusNFDS.

Data availability

The sequence datasets analysed in the current study are available in the public sequence 

databases with the accession codes listed in Supplementary Dataset 3. The epidemiological 

and phylogenetic data analysed in the current study are available from https://microreact.org/

project/multilocusNFDS.

Corander et al. Page 17

Nat Ecol Evol. Author manuscript; available in PMC 2018 April 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://github.com/nickjcroucher/multiLocusNFDS
https://github.com/nickjcroucher/multiLocusNFDS
https://microreact.org/project/multilocusNFDS
https://microreact.org/project/multilocusNFDS


Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Dr Rebecca Gladstone, Dr Johanna Jefferies, Dr Saul Faust and Dr Stuart Clarke for sharing 
epidemiological data on the Southampton isolates. NJC was funded by a Sir Henry Dale fellowship, jointly funded 
by the Wellcome Trust and Royal Society (Grant Number 104169/Z/14/Z). JC was funded by the COIN Centre of 
Excellence. ML was funded by NIH grant R01 AI048935 and W.P.H. by NIH grant R01 AI106786.

References

1. Haegeman B, Weitz JS. A neutral theory of genome evolution and the frequency distribution of 
genes. BMC Genomics. 2012; 13:196. [PubMed: 22613814] 

2. Baumdicker F, Hess WR, Pfaffelhuber P. The infinitely many genes model for the distributed 
genome of bacteria. Genome Biology and Evolution. 2012; 4:443–456. [PubMed: 22357598] 

3. Marttinen P, Croucher NJ, Gutmann MU, Corander J, Hanage WP. Recombination produces 
coherent bacterial species clusters in both core and accessory genomes. Microb Genomics. 2015; 
1doi: 10.1099/mgen.0.000038

4. Hogg JS, et al. Characterization and modeling of the Haemophilus influenzae core and 
supragenomes based on the complete genomic sequences of Rd and 12 clinical nontypeable strains. 
Genome Biol. 2007; 8:R103. [PubMed: 17550610] 

5. Collins RE, Higgs PG. Testing the infinitely many genes model for the evolution of the bacterial 
core genome and pangenome. Mol Biol Evol. 2012; 29:3413–3425. [PubMed: 22752048] 

6. Lobkovsky AE, Wolf YI, Koonin EV. Gene frequency distributions reject a neutral model of genome 
evolution. Genome Biol Evol. 2013; 5:233–242. [PubMed: 23315380] 

7. McInerney JO, McNally A, O’Connell MJ. Why prokaryotes have pangenomes. Nat Microbiol. 
2017; 2:17040. [PubMed: 28350002] 

8. Shapiro BJ, et al. Population Genomics of Early Events in the Ecological Differentiation of Bacteria. 
Science. 2012; 336:48–51. [PubMed: 22491847] 

9. Cohan F. Bacterial species and speciation. Syst Biol. 2001; 50:513–524. [PubMed: 12116650] 

10. Cohan FM. What are Bacterial Species? Annu Rev Microbiol. 2002; 56:457–487. [PubMed: 
12142474] 

11. Watkins ER, et al. Vaccination Drives Changes in Metabolic and Virulence Profiles of 
Streptococcus pneumoniae. PLoS Pathog. 2015; 11:e1005034. [PubMed: 26181911] 

12. Regev-Yochay G, et al. Re-emergence of the type 1 pilus among Streptococcus pneumoniae 
isolates in Massachusetts, USA. Vaccine. 2010; 28:4842–4846. [PubMed: 20434550] 

13. Cobey S, Lipsitch M. Niche and neutral effects of acquired immunity permit coexistence of 
pneumococcal serotypes. Science. 2012; 335:1376–1380. [PubMed: 22383809] 

14. Croucher NJ, et al. Population genomics of post-vaccine changes in pneumococcal epidemiology. 
Nat Genet. 2013; 45:656–663. [PubMed: 23644493] 

15. Huang SS, et al. Continued impact of pneumococcal conjugate vaccine on carriage in young 
children. Pediatrics. 2009; 124:e1–11. [PubMed: 19564254] 

16. Gladstone RA, et al. Five winters of pneumococcal serotype replacement in UK carriage following 
PCV introduction. Vaccine. 2015; 33:2015–2021. [PubMed: 25776920] 

17. Gladstone RA, et al. Pre-vaccine serotype composition within a lineage signposts its serotype 
replacement – a carriage study over 7 years following pneumococcal conjugate vaccine use in the 
UK. Microb Genomics. 2017; 3:119.

18. Cremers AJH, et al. The post-vaccine microevolution of invasive Streptococcus pneumoniae. Sci 
Rep. 2015; 5:14952. [PubMed: 26492862] 

19. Levin BR. Frequency-dependent selection in bacterial populations. Philos Trans R Soc Lond B 
Biol Sci. 1988; doi: 10.1098/rstb.1988.0059

Corander et al. Page 18

Nat Ecol Evol. Author manuscript; available in PMC 2018 April 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



20. Maynard Smith, J. Evolutionary Genetics. New York: 1998. p. 2

21. Croucher NJ, et al. Diversification of bacterial genome content through distinct mechanisms over 
different timescales. Nat Commun. 2014; 5:5471. [PubMed: 25407023] 

22. Croucher NJ, et al. Horizontal DNA Transfer Mechanisms of Bacteria as Weapons of Intragenomic 
Conflict. PLOS Biol. 2016; 14:e1002394. [PubMed: 26934590] 

23. Takeuchi N, Cordero OX, Koonin EV, Kaneko K. Gene-specific selective sweeps in bacteria and 
archaea caused by negative frequency-dependent selection. BMC Biol. 2015; 13:20. [PubMed: 
25928466] 

24. Cordero OX, Polz MF. Explaining microbial genomic diversity in light of evolutionary ecology. 
Nat Rev Microbiol. 2014; 12:263–273. [PubMed: 24590245] 

25. Dawid S, Roche AM, Weiser JN. The blp bacteriocins of Streptococcus pneumoniae mediate 
intraspecies competition both in vitro and in vivo. Infect Immun. 2007; 75:443–451. [PubMed: 
17074857] 

26. Miller EL, Abrudan MI, Roberts IS, Rozen DE. Diverse Ecological Strategies Are Encoded by 
Streptococcus pneumoniae Bacteriocin-Like Peptides. Genome Biol Evol. 2016; 8:1072–90. 
[PubMed: 26983823] 

27. Bogaardt C, van Tonder AJ, Brueggemann AB. Genomic analyses of pneumococci reveal a wide 
diversity of bacteriocins - including pneumocyclicin, a novel circular bacteriocin. BMC Genomics. 
2015; 16:554. [PubMed: 26215050] 

28. Maricic N, Anderson ES, Opipari AME, Yu EA, Dawid S. Characterization of a multipeptide 
lantibiotic locus in Streptococcus pneumoniae. MBio. 2016; 7

29. Hoover SE, et al. A new quorum-sensing system (TprA/PhrA) for Streptococcus pneumoniae D39 
that regulates a lantibiotic biosynthesis gene cluster. Mol Microbiol. 2015; 97:229–243. [PubMed: 
25869931] 

30. Kerr B, Riley MA, Feldman MW, Bohannan BJM. Local dispersal promotes biodiversity in a real-
life game of rock-paper-scissors. Nature. 2002; 418:171–174. [PubMed: 12110887] 

31. Stewart FM, Levin BR. Partitioning of Resources and the Outcome of Interspecific Competition: A 
Model and Some General Considerations. Am Nat. 1973; 107:171.

32. Levin BR. Coexistence of two asexual strains on a single resource. Science. 1972; 175:1272–1274. 
[PubMed: 4551427] 

33. Colijn C, Cohen T. How competition governs whether moderate or aggressive treatment minimizes 
antibiotic resistance. Elife. 2015; 4

34. Lehtinen S, et al. Evolution of antibiotic resistance is linked to any genetic mechanism affecting 
bacterial duration of carriage. Proc Natl Acad Sci U S A. 2017; 114:1075–1080. [PubMed: 
28096340] 

35. Croucher NJ, et al. Diverse evolutionary patterns of pneumococcal antigens identified by 
pangenome-wide immunological screening. Proc Natl Acad Sci U S A. 2017; 114:E357–E366. 
[PubMed: 28053228] 

36. Croucher NJ, et al. Selective and Genetic Constraints on Pneumococcal Serotype Switching. PLoS 
Genet. 2015; 11:e1005095. [PubMed: 25826208] 

37. Bagnoli F, et al. A second pilus type in Streptococcus pneumoniae is prevalent in emerging 
serotypes and mediates adhesion to host cells. J Bacteriol. 2008; 190:5480–5492. [PubMed: 
18515415] 

38. Chewapreecha C, et al. Dense genomic sampling identifies highways of pneumococcal 
recombination. Nat Genet. 2014; 46:305–309. [PubMed: 24509479] 

39. Goossens H, et al. Outpatient antibiotic use in Europe and association with resistance: a cross-
national database study. Lancet. 2005; 365:579–587. [PubMed: 15708101] 

40. Gutmann MU, Corander J. Bayesian Optimization for Likelihood-Free Inference of Simulator-
Based Statistical Models. J Mach Learn Res. 2016; 16

41. Lintusaari J, Gutmann MU, Dutta R, Kaski S, Corander J. Fundamentals and Recent Developments 
in Approximate Bayesian Computation. Syst Biol. 2017; 66:e66–e82. [PubMed: 28175922] 

42. Rinta-Kokko H, Dagan R, Givon-Lavi N, Auranen K. Estimation of vaccine efficacy against 
acquisition of pneumococcal carriage. Vaccine. 2009; 27:3831–3837. [PubMed: 19490983] 

Corander et al. Page 19

Nat Ecol Evol. Author manuscript; available in PMC 2018 April 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



43. Lipsitch M, et al. Estimating rates of carriage acquisition and clearance and competitive ability for 
pneumococcal serotypes in Kenya with a Markov transition model. Epidemiology. 2012; 23:510–
9. [PubMed: 22441543] 

44. Health Protection Agency COVER programme, October to December 2008. Quarterly vaccination 
coverage statistics for children aged up to five years in the United Kingdom. Heal Prot Rep. 2009; 
3:8–15.

45. Nuorti JP, Martin SW, Smith PJ, Moran JS, Schwartz B. Uptake of pneumococcal conjugate 
vaccine among children in the 1998-2002 United States birth cohorts. Am J Prev Med. 2008; 
34:46–53. [PubMed: 18083450] 

46. Huang SS, Finkelstein JA, Rifas-Shiman SL, Kleinman K, Platt R. Community-level predictors of 
pneumococcal carriage and resistance in young children. Am J Epidemiol. 2004; 159:645–654. 
[PubMed: 15033642] 

47. Durrett R, Levin S. Allelopathy in Spatially Distributed Populations. J Theor Biol. 1997; 185:165–
171. [PubMed: 9344720] 

48. Gupta S, Ferguson N, Anderson R. Chaos, persistence, and evolution of strain structure in 
antigenically diverse infectious agents. Science. 1998; 280:912–915. [PubMed: 9572737] 

49. Henriques-Normark B, Blomberg C, Dagerhamn J, Bättig P, Normark S. The rise and fall of 
bacterial clones: Streptococcus pneumoniae. Nat Rev Microbiol. 2008; 6:827–837. [PubMed: 
18923410] 

50. Croucher NJ, et al. Population genomic datasets describing the post-vaccine evolutionary 
epidemiology of Streptococcus pneumoniae. Sci Data. 2015; 2:150058. [PubMed: 26528397] 

51. van Heel AJ, de Jong A, Montalbán-López M, Kok J, Kuipers OP. BAGEL3: Automated 
identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified 
peptides. Nucleic Acids Res. 2013; 41

52. Carver T, et al. Artemis and ACT: viewing, annotating and comparing sequences stored in a 
relational database. Bioinformatics. 2008; 24:2672–2676. [PubMed: 18845581] 

53. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. 
Bioinformatics. 2009; 25:1754–1760. [PubMed: 19451168] 

54. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. 
Genome Res. 2008; 18:821–829. [PubMed: 18349386] 

55. Gladman, S. VelvetOptimiser. 2010. at <http://www.vicbioinformatics.com/
software.velvetoptimiser.shtml>

56. Lagesen K, et al. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic 
Acids Res. 2007; 35:3100–3108. [PubMed: 17452365] 

57. Lowe TM, Eddy SR. tRNAscan-SE: A program for improved detection of transfer RNA genes in 
genomic sequence. Nucleic Acids Res. 1997; 25:955–964. [PubMed: 9023104] 

58. Burge SW, et al. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res. 2013; 41

59. Croucher NJ, Vernikos GS, Parkhill J, Bentley SD. Identification, variation and transcription of 
pneumococcal repeat sequences. BMC Genomics. 2011; 12:120. [PubMed: 21333003] 

60. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011; 7

61. Hyatt D, et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. 
BMC Bioinformatics. 2010; 11:119. [PubMed: 20211023] 

62. Croucher NJ, et al. Role of conjugative elements in the evolution of the multidrug-resistant 
pandemic clone Streptococcus pneumoniaeSpain23F ST81. J Bacteriol. 2009; 191:1480–1489. 
[PubMed: 19114491] 

63. Camacho C, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009; 10:421. 
[PubMed: 20003500] 

64. Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res. 2002; 12:656–664. [PubMed: 
11932250] 

65. Kristensen DM, et al. A low-polynomial algorithm for assembling clusters of orthologous groups 
from intergenomic symmetric best matches. Bioinformatics. 2010; 26:1481–1487. [PubMed: 
20439257] 

Corander et al. Page 20

Nat Ecol Evol. Author manuscript; available in PMC 2018 April 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.vicbioinformatics.com/software.velvetoptimiser.shtml
http://www.vicbioinformatics.com/software.velvetoptimiser.shtml


66. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in 
performance and usability. Mol Biol Evol. 2013; 30:772–780. [PubMed: 23329690] 

67. Page AJ, et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb 
Genomics. 2016; 2

68. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large 
alignments. PLoS One. 2010; 5:e9490. [PubMed: 20224823] 

69. Cheng L, Connor TR, Sirén J, Aanensen DM, Corander J. Hierarchical and spatially explicit 
clustering of DNA sequences with BAPS software. Mol Biol Evol. 2013; 30:1224–1228. 
[PubMed: 23408797] 

70. Stajich JE, et al. The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 2002; 
12:1611–1618. [PubMed: 12368254] 

71. Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003; 14:927–930.

72. Danecek P, et al. The variant call format and VCFtools. Bioinformatics. 2011; 27:2156–2158. 
[PubMed: 21653522] 

73. Croucher NJ, et al. Rapid pneumococcal evolution in response to clinical interventions. Science. 
2011; 331:430–434. [PubMed: 21273480] 

74. Pikis A, Donkersloot JA, Rodriguez WJ, Keith JM. A conservative amino acid mutation in the 
chromosome-encoded dihydrofolate reductase confers trimethoprim resistance in Streptococcus 
pneumoniae. J Infect Dis. 1998; 178:700–706. [PubMed: 9728538] 

75. Maskell JP, Sefton AM, Hall LMC. Multiple mutations modulate the function of dihydrofolate 
reductase in trimethoprim-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother. 
2001; 45:1104–1108. [PubMed: 11257022] 

76. Haasum Y, et al. Amino acid repetitions in the dihydropteroate synthase of Streptococcus 
pneumoniae lead to sulfonamide resistance with limited effects on substrate Km. Antimicrob 
Agents Chemother. 2001; 45:805–809. [PubMed: 11181365] 

77. Li Y, et al. Penicillin-Binding Protein Transpeptidase Signatures for Tracking and Predicting β-
Lactam Resistance Levels in Streptococcus pneumoniae. mBio. 2016; 7

78. Fisher RA. The Genetical Theory of Natural Selection. Genetics. 1930; 154:272.

79. Wright S. Evolution in Mendelian populations. Genetics. 1931; 16:97–159. [PubMed: 17246615] 

80. Der R, Epstein C, Plotkin JB. Dynamics of neutral and selected alleles when the offspring 
distribution is skewed. Genetics. 2012; 191:1331–1344. [PubMed: 22661323] 

81. Li Y, Thompson CM, Trzciński K, Lipsitch M. Within-host selection is limited by an effective 
population of Streptococcus pneumoniae during nasopharyngeal colonization. Infect Immun. 
2013; 81:4534–4543. [PubMed: 24082074] 

82. US Census Bureau. Census 2000. US Census Bureau. 2000. at <http://quickfacts.census.gov/qfd/
states/13/13135.html>

83. Office for National Statistics. Census 2011. Census. 2011. at <http://www.ons.gov.uk/ons/guide-
method/census/2011/index.html>

84. Statistics Netherlands. Dutch Census 2011. 2011. at <https://ec.europa.eu/CensusHub2/>

85. Turner P, et al. A Longitudinal Study of Streptococcus pneumoniae Carriage in a Cohort of Infants 
and Their Mothers on the Thailand-Myanmar Border. PLoS One. 2012; 7:e38271. [PubMed: 
22693610] 

86. Wong AKC, You M. Entropy and Distance of Random Graphs with Application to Structural 
Pattern Recognition. IEEE Trans Pattern Anal Mach Intell. 1985; PAMI-7:599–609.

87. R Core Development Team. R: A language and environment for statistical computing. R 
Foundation for Statistical Computing; 2011. 

Corander et al. Page 21

Nat Ecol Evol. Author manuscript; available in PMC 2018 April 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://quickfacts.census.gov/qfd/states/13/13135.html
http://quickfacts.census.gov/qfd/states/13/13135.html
http://www.ons.gov.uk/ons/guide-method/census/2011/index.html
http://www.ons.gov.uk/ons/guide-method/census/2011/index.html


Figure 1. 
Diversity and structure of the pneumococcal population. a Functional classification of the 

1,112 intermediate-frequency and 1,194 core COGs in the Massachusetts pneumococcal 

population, as detailed in Supplementary Datasets 1 and 2. Each barchart compares the 

frequencies of functional categories in intermediate-frequency and core COGs. Categories 

are grouped as likely to be under NFDS resulting from bacterium-MGE interactions (pink 

segments), bacterium-bacterium interactions (blue segments), or bacterium-host interactions 

(green segments). The chart with orange segments shows the frequencies of loci with roles 

in general metabolism or signal transduction, or otherwise could not be classified. b 
Population structure of the 4,127 isolates from Massachusetts (Mass), Southampton (Soton), 

Nijmegen and Maela (Supplementary Dataset 3). The maximum likelihood phylogeny was 

generated from 1,447 core gCOGs. The adjacent columns contain a row for each genome, 

which represent the population in which the bacterium was isolated, its susceptibility to 

PCV7-induced immunity, and sequence cluster classification. c Comparison of core genome 

divergence, quantified as the cophenetic distance between isolates in the core genome 

phylogeny, and the accessory genome divergence, quantified as the Jaccard distance between 

the gCOG content of isolates. Each point is a pairwise comparison between randomly 

sampled isolates (excluding the polyphyletic SC0), which was coloured orange if the isolates 

belonged to the same sequence cluster; purple if they belonged to different sequence clusters 

but were both encapsulated; or otherwise dark blue, revealing the presence of some 
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genetically divergent unencapsulated genotypes. Isocontour lines quantify the distribution of 

points in each category.
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Figure 2. 
Distribution of genetic diversity between populations. Column (a) compares the distribution 

of sequence clusters between populations; the frequency of each sequence cluster in 

Massachusetts is shown on the horizontal axis, and the corresponding frequencies in Maela, 

Southampton and Nijmegen are shown on the vertical axes in the plots from top to bottom. 

Red points correspond to predominantly VT (≥75%) sequence clusters; blue points to 

predominantly NVT (≥75%) sequence clusters, and black points to mixed sequence clusters. 

Column (b) compares the distribution of gCOGs between populations. The frequency of 

each in Massachusetts is shown on the horizontal axis, and the corresponding frequencies in 

Maela, Southampton and Nijmegen are shown on the vertical axes. Only gCOGs present at a 

mean frequency between 5% and 95% across the two compared populations were included, 

and the corresponding points are coloured according to the functional annotation of COGs in 

Fig 1a. The elevated frequencies of gCOGs encoded by Tn916, including the tetM 
tetracycline resistance gene, in Maela are annotated. Column (c) compares the pre- and post-

vaccination frequencies of sequence clusters in Massachusetts, Southampton and Nijmegen. 

Points are coloured as in (a), showing the general decline in the frequency of VT sequence 

clusters. Column (d) compares the pre- and post-vaccination frequency of gCOGs in 

Massachusetts, Southampton and Nijmegen. Only gCOGs with an overall frequency 

between 5% and 95% in the relevant population were included in the panels. Points are 

coloured as in (b). The reduced frequency of the wciN allele involved in synthesis of the VT 
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6A and 6B capsules is annotated. As the relationships between gCOG frequencies were 

linear, each panel displays Pearson's correlation statistics, including two-sided p values.
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Fig. 3. 
Comparing the sampled and simulated pneumococcal populations. In each barplot, the 

bacterial population is split into sequence clusters by vertical black lines, annotated at the 

top of the graph. Each sequence cluster is split into three timepoints: pre-vaccination, a 

midpoint sample and a late sample. Only sequence clusters present at greater than 2.5% 

frequency at one of these timepoints in the genomic sample are included in the graphs; full 

results are shown in the supplementary materials. The bars at each timepoint are split into 

red segments, for VT isolates, and blue segments, for NVT isolates. In each comparison, the 

top row is the genomic sample against which simulations were evaluated. The bottom row 

summarises the output of 100 simulations using the heterogeneous rate multilocus NFDS 

model performed using the point estimate parameter values from Table 1. At the times at 
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which samples were present in the respective genomic collections, the same numbers of 

isolates were randomly selected from the simulated populations. The bars represent the 

median result, and the error bars (orange for VT isolates, and purple for NVT isolates) 

represent the interquartile range observed across the simulations. (a) The results for 

Massachusetts split isolates into pre-vaccination (2001; 133 isolates), midpoint (2004; 203 

isolates) and late (2007; 280 isolates) samples. (b) The results for Southampton, splitting 

isolates into pre-vaccination (up to 2007; 100 isolates), midpoint (2008-2009; 194 isolates) 

and late (2010-2011; 195 isolates) samples. (c) The results for Nijmegen, splitting isolates 

into pre-vaccination (up to 2007; 209 isolates), midpoint (2008-2009; 80 isolates) and late 

(2010-2011; 48 isolates) samples.
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