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Background: Cisplatin (CDDP) is an efficacious anticancer agent used widely in che-
motherapy despite its severe side effect related to neurotoxicity. Redox imbalance and 
inflammatory mechanism have been implicated in the pathophysiology of CDDP-induced 
neurotoxicity. Herein, we investigated whether Tiliacora triandra (TT) extract could inhibit  
CDDP-induced redox-mediated neurotoxicity and behavioural deficit in rats.
Materials and Methods: CDDP-induced redox-mediated neurotoxicity and behavioral 
deficit in rats. Rats were administered TT for five consecutive weeks (250 and 500 mg/kg 
bw), while weekly i.p. injection of CDDP commenced on the second week (2.5 mg/kg bw) of 
the TT administration.
Results: CCDDP caused significant body weight reduction and cognitive diminution as 
revealed by Morris water maze and Y maze tests. In the CDDP-induced cognitive impair-
ment (CICI) rats, there were remarkable increases in the brain levels of TNF-α, IL-6 and IL- 
1β and malondialdehyde (MDA), whereas catalase (CAT), glutathione (GSH), glutathione 
peroxidase (GPx) and superoxide dismutase (SOD) activities considerably decreased com-
pared to normal control. The brain acetylcholinesterase (AChE) activity in CDDP control 
rats was significantly increased compared to the normal control. The expression of caspase-3 
and p53 proteins was upregulated by CDDP injection, whereas Bcl2 was downregulated 
coupled with histopathological alterations in the rat brain. Interestingly, treatment with TT 
significantly abated neurobehavioral deficits, MDA and cytokine levels and restored CAT, 
GPx, GSH, SOD, and AChE activities compared to the CDDP control rats. Caspase-3 level 
as well as Bcl2 and p53 expressions were modulated with alleviated changes in 
histopathology.
Conclusion: The findings highlight neuroprotective and cognitive function improvement 
efficacy of TT against CICI via redox-inflammatory balance and antiapoptotic mechanism in 
rats.
Keywords: Tiliacora triandra, cisplatin, neurotoxicity, oxidative stress, inflammation

Introduction
Cancer is one of the major causes of global mortality, accounting for more than nine 
million deaths in 2018. The gruesome burden including financial, physical, and 
emotional stress associated with cancer is growing at an exponential rate especially 
in low and middle-income countries with little or no adequate resources to manage 
the burden. As such, rigorous efforts have been invested into developing several 
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therapies that can increase the survival and improve the 
quality of life of cancer patients.1 Chemotherapy is one 
widely used approach for treating cancers and tumors and 
several anticancer drugs have been developed and 
approved including cyclophosphamide, doxorubicin, cis-
platin, vincristine among others.2–4

Cisplatin, a platinum-based anticancer drug is a major 
and widely used drug for treating several malignancies such 
as head and neck, testicular, and non-small-cell lung 
cancer.5,6 In spite of the relative success attained by cispla-
tin, its applicability has been extremely curtailed due to a 
number of serious side effects including ototoxicity, renal 
toxicity, testicular toxicity, and neuronal toxicity.7,8 

Cisplatin-induced cognitive impairment (CICI) also 
known as “chemobrain” encompasses a wide range of fea-
tures including reduction in processing speed, learning and 
memory dysfunction, and loss of locomotive activity.1,9 At 
present the pathophysiology of CICI is yet to be fully 
comprehended, thus making effective treatment for patients 
a daunting task. However, multiple pathophysiological 
mechanisms have been postulated to decipher CICI includ-
ing oxidative stress, inflammation, mitochondrial dysfunc-
tion, DNA damage and apoptosis.10,11 Unfortunately, there 
are no effective therapies for mitigating CICI, and as such it 
is imperative to consider alternative treatment that can 
interfere with the proposed underlying mechanism asso-
ciated with CICI.

Tiliacora triandra (TT) is an edible vegetable and 
herbal plant used for treating malaria, diabetes, fever, 
and as a detoxification agent. TT possesses multiple phar-
macological properties such as antidiabetic, antimicrobial, 
antioxidant, antimalaria, and neuroprotective effects.12–14 

The application of TT as a neuroprotective agent has been 
previously explored. The extracts from the leaves of the 
plant enhanced memory and learning as well as prevented 
neuronal death in models of cerebral ischemia/reperfusion. 
In addition, TT enhanced antioxidative enzymes and 
reduced acetylcholinesterase activity in ethanol depen-
dence animals.13,15–17 However, the protective effects of 
TT against CICI is unknown and unexplored. In this work, 
the protective effects of TT extract against CDDP induced 
CICI in rats was explored.

Materials and Methods
Plant Specimen
The collection of T. triandra as well as the preparation of 
TT extract was according to a previous study.18 Briefly, the 

leaves were washed, oven dried, powdered and 200 g of 
the powder was macerated in 2 L of 70% ethanol on a 
shaker for 24 h. Thereafter, the extract was filtered and 
concentrated to one third of its original volume and kept at 
4°C overnight. The solution was decanted, centrifuged, 
and lyophilized to obtain a light brown hydroscopic pow-
der (TT), which was stored in an airtight container at 4°C 
until use.

UHPLC-DAD-ESI-QTOF-MS Profiling of 
TT Extract
The identification of bioactive metabolites in TT extract 
was performed using UPLC-ESI-Q-TOF-MS analysis. 
Briefly, 50 mg of TT was dissolved in 1 mL of 50% 
methanol, centrifuged and the supernatant obtained was 
filtered using 0.22 µm nylon membrane. The extract sub-
jected to UHPLC-ESI-QTOF-MS analysis.

Animals
Adult specific pathogen-free male Wistar rats (120±40 g) 
were used in this study. The rats were kept in stainless 
steel cages with six rats per cage and housed in a well 
ventilated animal house facility. The rats were given con-
tinuous access to tap water and normal rat food for one 
week before the commencement of the study. The study 
was approved by the Ethics Committee of Anhui Medical 
College (ethic approval number: Anhuiyxgdzkxx-2020- 
07008) and followed, the guidelines of the US National 
Institute of Health for the Care and Use of Laboratory 
Animals (NIH, revised 1978).

Experimental Design
After the seven days of adaptation, the rats were rando-
mized into four groups as follows:

(I) Healthy control rats (HNC): administered with 
normal saline.

(II) CDDP control rats (CDDP): administered with 
normal saline.

(III) TT-250-treated rats: administered with 250 mg/kg 
of TT extract.

(IV) TT-500-treated rats: administered with 500 mg/kg 
of TT extract.

The rats in the TT-250 and TT-500 groups were given 
TT on a daily basis for 35 days and were simultaneously 
given a weekly i.p. injection of 2.5 mg/kg of CDDP for 
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four weeks, beginning on the second week of TT admin-
istration. Likewise, the CDDP control rats received a 
weekly i.p. injection of CDDP (2.5 mg/kg) for four 
weeks from the second week of normal saline administra-
tion (Figure 1). The choice of TT dose was adopted from 
previous studies.12,13,18 The animals were subjected to 
behavioral studies upon completion of the treatment.

Behavioral Studies
Morris Water Maze Test
The method used for the Morris water maze (MWM) test 
was according to previous report.19 A circular pool-like 
container with the following dimensions was used for the 
MWM test: diameter of 150 cm and a height of 40 cm, with 
water depth of 30 cm. The water was made opaque with 
milk powder and a hidden platform was placed 1 cm below 
the surface of the water. The rats were trained individually 
on day 0 prior to the start of the experiment. The acquisition 
trail was conducted on days 1–4, while the fifth day was the 
exploration period. For the training and acquisition trail, the 
rats were gently placed into the pool along the walls of the 
four different arbitrary quadrants and gently released with 
their heads raised up to swim and locate the position of the 
hidden platform within 60 seconds. The time taken for the 
rats to locate the submerged platform before the expiration 
of the 60 seconds was recorded. The rats that were unable to 

locate the platform within 60 seconds were gently guided to 
the position of the platform and allowed to stay on the 
platform for 10 seconds. On the fifth day the platform was 
removed and the time that each rat stayed in the target 
quadrant where the platform was previously placed was 
recorded within 60 seconds.

Y Maze Test
The Y maze test was used to evaluate spontaneous alter-
nation of recognition using a previously described 
method.20 The maze was made up of three identical arms 
X, Y, and Z with dimensions of 35 cm long, 30 cm high, 
and a width of 15 cm, stationed at equal angles. The rats 
were introduced into the maze from the end of one arm 
and allowed to freely navigate through the maze within 
five minutes. Spontaneous alternation was evaluated by 
visually recording the pattern of complete entry into each 
arm (the rat’s hind paws goes entirely into the arm). The 
frequency of alternation into the arms was recorded based 
on successive entries into the three arms on overlapping 
triplet sets (XYZ, YZX, ZXY).

Animal Sacrifice
Following the behavioral studies, the rats were euthanized 
with pentobarbital sodium and the brain tissues were care-
fully removed from the cranium, washed with normal 

Figure 1 Experimental design and animal grouping.
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saline to remove residual blood, and weighed. Some part 
of the brain tissues was kept in 10% buffered formalin 
solution for histopathologic analyses using routine hema-
toxylin and eosin (H&E) staining techniques. The remain-
ing portion of the brain tissues was homogenized in ice- 
cold 0.1 M phosphate buffer (pH 7.4) and thereafter sub-
jected to high speed centrifugation and the resulting brain 
tissue supernatant was used in the determination of bio-
chemical analyses.

Evaluation of Biochemical Parameters in 
the Brain
Oxidative stress parameters including lipid peroxidation pro-
ducts malondialdehyde (MDA), superoxide dismutase 
(SOD), catalase (CAT), glutathione (GSH) and glutathione 
peroxidase (GPx) activities in the brain homogenates were 
assayed using assay kits from Nanjing Bioengineering 
Institute, China. Moreover, the levels of TNF-α, IL-6, IL- 
1β and caspase-3 were assayed with ELISA kits from Abcam 
(Cambridge, UK). Acetylcholinesterase (AChE) activity was 
determined using the previously reported method.21

Histology
Brain histological examination was performed on 4–5-μm 
tissue sections stained with hematoxylin and eosin using 
standard protocol.

Immunohistochemistry
Immunostaining of the brain tissues for the expression of 
Bcl2 and p53 proteins were performed following 

previously reported method.22 Quantitative analysis of 
the immunostained intensity of Bcl2 and p53 proteins 
was performed using image J software.

Statistical Evaluation
All data are shown as mean ±SD and analyzed using 
one-way ANOVA with Tukey’s HSD multiple range post 
hoc test using GraphPad Prism version 5. Data was 
considered statistically significant at p<0.05, p<0.01 or 
p<0.001.

Results
TT Ameliorated CDDP-triggered Weight 
Loss
The body weight of the rats were not significantly differ-
ent at the beginning of the experiment prior to CDDP 
injection. Whereas, the weight of the CDDP control rats 
was significantly reduced by the end of the experiment 
compared to the HNC rats (Figure 2). In contrast, TT 
significantly prevented body weight loss in the treated 
groups compared to the CDDP group. Moreover, the 
weight of the brain of the rats in the CDDP group was 
observed to be lower than the HNC and TT treated 
groups (Figure 2).

TT Alleviated CDPP Induced Cognitive 
Dysfunction in Rats
In the MWM test, the latency time of rats in the CDDP 
control group to locate the hidden platform was signifi-
cantly increased compared to the HNC rats throughout the 

Figure 2 Effect of TT on (A) body and (B) brain weight in CDDP induced neurotoxicity in rats. Results are expressed as mean ±SD (n=6) and analyzed using one way 
ANOVA followed by Tukey's post hoc test. *p<0.001 indicates significant difference compared to HNC group; **p<0.001 indicates significant difference compared to CDDP 
group.
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acquisition trial period (p<0.001; Figure 3A). In contrast, 
the time taken by the rats in the TT-treated group was 
observed to be significantly shortened from day two of the 
acquisition trial compared to the CDDP control animals 
(Figure 3A). In addition, in the exploration test, the CDDP 
control rats showed shorter retention memory as observed 
by significant reduction in the time spent in the target 
quadrant compared to the HNC and TT-treated groups, 
suggesting decreased spatial memory in CDDP control 
rats (p<0.001; Figure 3B). Furthermore, in the Y-maze 
test, the CDDP control rats showed significantly reduced 
percentage spontaneous alternation compared to HNC 
group (p<0.001; Figure 3C), but the rats in the TT-treated 
groups showed significant increase in the percentage spon-
taneous alternation when compared to the untreated CDDP 
control rats (p<0.001; Figure 3C).

TT Attenuated CDDP-induced Oxidative 
Stress in the Brain of Rats
Figure 4 portrays the effects of TT on oxidative stress 
indices in the brain of the experimental rats. The adminis-
tration of CDDP elicited significant increase in MDA 
levels in the CDDP control rats in comparison with HNC 
group (p<0.001; Figure 4A). However, treatment with TT 
markedly abated MDA levels compared to CDDP control 
rats (p<0.001; Figure 4A). In addition, Figure 3B–E 
depicts the effect of TT on antioxidant enzymes activities 
in the brain of experimental rats. The activities of brain 
GPx, SOD, GSH, and CAT in CDDP control animals were 
markedly reduced compared with the HNC group. 
Treatment with TT upregulated the activities of these 
antioxidative enzymes in the brain tissues in comparison 
with CDDP control group (p<0.001; Figure 4B–E).

Figure 3 Effect of TT on neurobehavioral parameters in CDDP induced neurotoxicity in rats. (A and B) Morris water maze test (C) Y maze test. Results are expressed as 
mean ±SD (n=6) and analyzed using one-way ANOVA followed by Tukey's post hoc test. *p<0.001 indicates significant difference compared to HNC group; **p<0.001 
indicates significant difference compared to CDDP group.
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TT Improved AChE Activity in the Brain 
Tissue of Rats
The AChE activity in the brain tissue of CDDP control rats 
was significantly increased in comparison with HNC 
group. Conversely, TT administration elicited marked 
improvement by reducing the activity of AChE in the 
brain of the treated rats (p<0.001; Figure 4F).

TT Suppressed Biomarkers of 
Inflammation and Apoptosis
As depicted in Figure 5, TNF-α level was significantly 
increased in the brain tissues of CDDP animals when 
compared with the HNC counterpart. IL-6 and IL-1β 
levels were also observed to be markedly increased in 
the CDDP control group. The concentration of TNF-α, 
IL-6 and IL-1β were significantly reduced in comparison 
with CDDP control rats in the TT treated groups (p<0.001; 
Figure 5A–C). In addition, CDDP significantly upregu-
lated the concentration of caspase-3 in the brain tissues 
of the CDDP control rats relative to the HNC group. 
Treatment with TT at 250 and 500 mg/kg significantly 
decreased the concentration of caspase-3 in the brain 

tissues of treated rats compared to CDDP alone group 
(Figure 5D).

TT Alleviated Pathological Damages in the 
Brain Tissues of Rats
The histopathological results according to H&E staining 
revealed normal brain architecture including neurons of 
variable sizes without any obvious indications of apoptosis 
and glial proliferation of the neurons. In contrast, the 
CDDP control rats showed obvious signs of neuronal 
apoptosis, inflammation of neuronal cells, disordered pyr-
amidal cell layer as well as glial proliferation. Treatment 
with TT produced significant alleviation to the pathologi-
cal alterations in the brain tissues of the treated rats 
(Figure 6A–D).

Effect of TT on Immunostaining Intensity 
of Bcl2 and p53 Proteins
The effect of TT on immunostaining intensity of Bcl2 and 
p53 proteins are presented in Figures 7 and 8. Treatment 
with CDDP only showed reduced immunostaining inten-
sity of Bcl2, whereas p53 protein immunostaining 

Figure 4 Effect of TT on brain oxidative stress biomarkers (A) MDA, (B) GPx, (C) SOD, (D) GSH, (E) CAT and (F) brain acetylcholinesterase activity in CDDP-induced 
neurotoxicity in rats. Results are expressed as mean ±SD (n=6) and analyzed using one-way ANOVA followed by Tukey's post hoc test. *p<0.001 indicates significant 
difference compared to HNC group; **p<0.001 indicates significant difference compared to CDDP group.
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intensity increased (Figures 6 and 7). However, combined 
treatment with TT indicated significantly increased inten-
sity for Bcl2 and reduced intensity for p53 in relation to 
CDDP control (Figures 6 and 7).

UHPLC-DAD-ESI-QTOF-MS Profiling of 
TT
The results of the phytochemical profiling of the bioactive 
compounds in TT extract using UHPLC-ESI-QTOF-MS/ 
MS analysis (negative mode) is shown in Table 1. The 
data revealed the presence of various classes of com-
pounds majorly flavonoid and phenolic glycosides, includ-
ing kaempferol-7 O-glucoside, isovitexin, luteolin 3ʹ- 

methyl ether 7,4ʹ-dixyloside, luteolin 6-C-glucoside 8-C- 
arabinoside, okanin 4ʹ-O-(4″,6″-di-O-acetyl glucoside), 
cutellarein 7,4ʹ-dirhamnoside and vestitone 7-glucoside. 
Other compounds such as nonglycosylated flavones 
including amentoflavone, a para-benzoquinone (embelin), 
fatty acids and coumarin derivative (esculetin) were also 
identified.

Discussion
Cisplatin (CDDP) is one of the leading anticancer agents 
in cancer chemotherapy. The consistent worry of clinicians 
about cisplatin use is the variegated side effects chiefly 
linked with neurotoxicity, nephrotoxicity, and testicular 

Figure 5 Effect of TT on brain proinflammatory cytokines (A) TNF-α, (B) IL-6, (C) IL-1β and (D) caspase-3 activity in CDDP induced neurotoxicity in rats. Results are 
expressed as mean ±SD (n=6) and analyzed using one-way ANOVA followed by Tukey post hoc test. *p<0.001 indicates significant difference compared to HNC group; 
**p<0.001 indicates significant difference compared to CDDP group.
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damage.7,23,24 However, studies probing into the mechan-
isms of CDDP toxicity show that a network of oxidative 
stress, pro-inflammation and redox-mediated apoptosis 
play a pivotal role.25 Emerging research reports have 
revealed increasing interest for exploration of natural pro-
ducts to combat the integrated mechanism underlying the 
severe side effects of CDDP. We thus explored whether TT 
could mitigate CDDP neurotoxicity and to evaluate possi-
ble mechanism of action.

In this study, the intraperitoneal injection of CDDP at 
2.5 mg/kg triggered significant loss of body weight in 
CDDP group compared to the normal control. Previous 
studies have also reported loss of body weight due to 
injection of CDDP.26,27 We observed that the intake of 
food by the rats reduced as well as the water intake. 
Conceivably, reduced food consumption occasioned by 
the CDDP may contribute to the loss of weight as energy 

expenditure may be greater than energy harvested during 
the reduced food intake. The study of Fulco et al suggests 
that CDDP causes metabolic dysfunction and inhibits 
citrate synthase contributing to depressed energy 
generation.28 The co-administration of TT was found to 
improve the food intake and consequently prevented loss 
of weight in TT+CDDP groups. Accumulating evidence 
depicts neurotoxicity and/or CICI as the overriding off- 
target tissue toxicity of CDDP.29,30 Cisplatin is a potent 
penetrator of the blood–brain barrier, and so it can debil-
itate mature neurons to induce cognitive impairment and 
behavioral deficit.29,31 Cisplatin is clinically known to 
cause structural CNS mutilations which correlate with 
the cognitive deficits observed in CDDP-treated patient.23 

Therefore, our study examined CICI and behavior of rats 
after CDDP injection via MWM and Y maze tests. Morris 
water-maze test is a very common behavioral model to test 

Figure 6 H&E photomicrographs showing histology of brain tissues of (A) HNC, (B) CDDP, (C) TT250 and (D) TT500 groups, respectively. H&E ×400.
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rodent spatial memory and learning.32 The learning and 
memory exercise demonstrates that the CDDP adversely 
affected the rat brain such that there were considerable 

alterations in latency time and retention memory of rats 
compared to normal control rats. Furthermore, in the 
Y-maze test, the CDDP control rats showed significantly 

Figure 7 Effect of TT on immunostaining intensity for Bcl2 protein in CDDP induced neurotoxicity in rats. (A) Representative photomicrographs (×400) of Bcl2 
immunohistochemistry of rat brain, (B) Quantitative expression of Bcl2. Results are expressed as mean ±SD (n=6) and analyzed using one-way ANOVA followed by 
Tukey's post hoc test. *p<0.001 indicates significant difference compared to HNC group; **p<0.001 indicates significant difference compared to CDDP group.

Figure 8 Effect of TT on immunostaining intensity for p53 protein in CDDP induced neurotoxicity in rats. (A) Representative photomicrographs (×400) of p53 
immunohistochemistry of rat brain, (B) Quantitative expression of p53. Results are expressed as mean ±SD (n=6) and analyzed using one-way ANOVA followed by 
Tukey's post hoc test. *p<0.001 indicates significant difference compared to HNC group; **p<0.001 indicates significant difference compared to CDDP group.
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reduced spontaneous alternation compared to healthy nor-
mal control. However, Y-maze test assesses short-term 
hippocampus-dependent spatial working memory.33 

Taken together herein, the tests suggest that the neurotoxic 
effect of CDDP reduced learning and memory capacity of 
the rats. This finding is consistent with our observation of 
the effect of CDDP on AChE activity in this study. In the 
CDDP control rats, the brain AChE activity markedly 
increased compared to normal control rats.34,35 This 
implies increased hydrolysis of acetylcholine, a crucial 
neurotransmitter involved in regulating cognitive function 
and cholinergic integrity. These findings are in consonance 
with the earlier investigations which demonstrated that 
CDDP treatment induced learning and memory dysfunc-
tions in rats.36–38 In contrast, the rats in TT-treated groups 
showed significant improvement in latency time, retention 
memory and increase in the percentage spontaneous alter-
nation when compared to the untreated CDDP control rats. 
It is noteworthy that the TT-250 treated group showed 
higher percentage spontaneous alternation than the TT- 
500 treated group albeit not statistically different. TT 
inhibited the brain activity of AChE for restoration of 
cognitive integrity. Therefore, AChE inhibition may be 
pivotal to ameliorating CDDP side effect on the brain. 
The neuroprotective efficacy of TT in our study is consis-
tent with reports in previous studies. In a systematic study 
of Phunchago et al, TT improves memory impairment, 
neurodegeneration and cholinergic disruption induced by 
ethanol.14 The study suggests that the HPLC-detected gal-
lic acid, cyanidin, and quercetin may be responsible for the 
neuroprotective potential of TT. In a recent publication by 
Thong-asa and Bullangpoti, the neuroprotective potential 
of TT was observed against brain infarction and neuronal 
death in the cerebral cortex and hippocampus in a model 
of cerebral ischemia reperfusion.16

Publications have implicated oxidative stress as the 
leading contributor to the pathogenesis of CDDP-induced 
neurotoxicity. Redox imbalance orchestrates cellular 
machinery triggering DNA damage, inflammation and 
apoptosis.39,40 Cisplatin generates reactive oxygen species 
(ROS), including hydrogen peroxide and hydroxyl radicals 
which attack lipid membrane and inhibit antioxidant 
enzyme activity to promote lipid peroxidation and oxida-
tive stress, respectively.29,41 In this study, the injected 
CDDP instigated preponderant elevations in the brain 
MDA levels in the CDDP model compared to the normal 
control. In addition, the brain activities of SOD, CAT, 
GSH, and GPx were also appreciably reduced compared 

to the normal control. In normal physiological interplay, 
cell antioxidant mechanisms modulate metabolic genera-
tion of ROS to maintain homeostasis. However, alterations 
to this milieu usually aggravate ROS generation. Herein, 
CDDP altered the milieu and increased ROS production 
leading to inhibition of SOD, GSH, CAT, and GPx activ-
ities and the consequent attack on brain cell membrane, 
hence, increased levels of MDA. Depressed activities of 
SOD and CAT may provoke accumulation of superoxide 
radical and hydrogen peroxide evolving further damage 
consistent with oxidative histopathological lesions found 
in the rat brain. Our findings regarding the aforementioned 
redox indices agreed with earlier reports on the oxidative 
effect of CDDP on the brain, kidney, and testis.7,23,39,42,43 

It was interesting to observe that TT co-administration 
mitigated MDA release and significantly restored brain 
antioxidant defences dose dependently. Therefore, the ben-
eficial health effect of TT in the current study demon-
strates its antioxidant property and also support the 
reported action of TT in previous studies.14–16

The molecular mechanisms of CDDP neurotoxicity 
are multifactorial and complicated, consisting of oxida-
tive stress, inflammation, apoptosis and autophagy lead-
ing to cell death.20,44 Accumulating evidence cleared 
that CDDP toxicity is a trigger of pro-inflammatory 
cascades through a significant decline in antioxidant 
mechanism. Meanwhile aberrant alterations in redox- 
inflammatory processes provoke apoptosis and autop-
hagy by changes in signalling protein expression, 
including Bcl2 and p53.25,45,46 Our results depict that 
CDDP administration caused deteriorating pro-inflam-
mation by considerable unregulation of pro-inflamma-
tory cytokines, TNF-α, IL-6 and IL-1β, in CDDP rats. 
Supportive evidence confirms that CDDP-induced oxi-
dative stress-mediated activation of NF-κB unlocks 
translation of nuclear TNF-α, IL-6 and IL-1β genes.43,47 

Several studies have shown that injection of CDDP 
induces increased expression of NF-κB, TNF-α, IL-6 
and IL-1β and other inflammatory mediators.24,29,43,47 

The co-treatment with TT prevented overexpression of 
TNF-α, IL-6 and IL-1β compared to the CDDP rats. 
Tiliacora triandra leaves and a Thai polyherbal remedy 
containing TT have been shown to possess anti-inflam-
matory effects.48,49

Studies indicate Bcl-2 family and the caspase family 
play an extremely important regulatory role in the apopto-
tic pathway.25 The expression of the antiapoptotic marker, 
Bcl2, was markedly reduced, while caspase-3 and p53 

Journal of Inflammation Research 2021:14                                                                                          https://doi.org/10.2147/JIR.S340176                                                                                                                                                                                                                       

DovePress                                                                                                                       
6745

Dovepress                                                                                                                                                           Huang et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


protein levels increased in CDDP rats. Cisplatin has been 
reported to reduce Bcl2 expression.44 The modulation of 
p53 determines the fate of stressed cells either by a cycle 
arrest or by removal of these cells by inducing apoptosis.45 

The significant alterations in Bcl2 and caspase-3 expres-
sions in our study suggest CDDP-induced brain apoptosis. 
These results suggest that CDDP evokes apoptosis in the 
brain of experimental rats confirming data in published 
papers.25,29 Interestingly, TT alleviated these altered patho-
logical expression.

Antioxidant compounds, particularly flavonoids and 
phenolics, are one of the most prevalent class of com-
pounds identified in a vast number of plant species. 
These classes of compounds have been a source of exten-
sive research over several decades due to their various 
pharmacological properties, especially in oxidative and 
inflammatory related disorders.50,51 Weerawatanakorn 
et al and Pasachan et al identified the presence of a high 
content of phenolic constituents in T. triandra leaves 
extract and these compounds were adjudged as the active 
principles showing antioxidant, anti-inflammatory and 
antidiabetic effects in their study.48,52 Our UHPLC-DAD- 
ESI-QTOF-MS analysis of TT extract indicated the pre-
sence of phenolic and flavonoids, which may have 
accounted for the excellent antioxidant and anti-inflamma-
tory effects against CDDP induced neurotoxicity. For 
instance Liu et al reported that isovitexin protected against 
CDDP induced renal injury via anti-inflammatory and 
antioxidative properties.53 Amentoflavone, a bioflavonoid 
tentatively identified in TT was reported to show antiox-
idant and anti-inflammatory effects. It was also reported to 
display neuroprotective properties including antidepressant 
and anxiolytic effects, and ameliorated scopolamine- 
induced memory via inhibition of AChE and increasing 
antioxidant enzyme activities.54 In addition, kaempferol 7- 
O-glucoside and esculetin have also been reported as 
excellent antioxidant, anti-inflammatory, and neuroprotec-
tive agents.55–57

Conclusion
In conclusion, this study elucidated, for the first time, that 
TT can attenuate the neurotoxicity caused by CDDP via 
improving cognitive function and integrity associated with 
enhanced antioxidant defense mechanism, anti-inflamma-
tory and antiapoptotic pathways. The protective effect of 
TT involves restoration of redox balance and suppression 
of AChE, TNF-α, IL-6, IL-1β levels and apoptotic Bcl2/ 
caspase-3/p53.
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