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Abstract: Compression wood is a type of reaction wood formed on the underside of 

softwood stems when they are tilted from the vertical and on the underside of branches. Its 

quantification is still a matter of some scientific debate. We developed a new technique that 

has the potential to do this based on the higher proportions of (1→4)-β-D-galactans that  

occur in tracheid cell walls of compression wood. Wood was milled, partially delignified,  

and the non-cellulosic polysaccharides, including the (1→4)-β-D-galactans, extracted  

with 6 M sodium hydroxide. After neutralizing, the solution was serially diluted, and the  

(1→4)-β-D-galactans determined by an immuno-dot assay using the monoclonal antibody 

LM5, which specifically recognizes this polysaccharide. Spots were quantified using a 

dilution series of a commercially available (1→4)-β-D-galactan from lupin seeds. Using this 

method, compression and opposite woods from radiata pine (Pinus radiata) were easily 

distinguished based on the amounts of (1→4)-β-D-galactans extracted. The non-cellulosic 

polysaccharides in the milled wood samples were also hydrolysed using 2 M trifluoroacetic 

acid followed by the separation and quantification of the released neutral monosaccharides 

by high performance anion exchange chromatography. This confirmed that the compression 

woods contained higher proportions of galactose-containing polysaccharides than the 

opposite woods. 
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1. Introduction 

Compression wood is a type of reaction wood formed by coniferous gymnosperms (softwoods) on 

the underside of stems that have been tilted from the vertical [1–6]. This type of wood is important to 

the tree because it restores normal, vertical growth to the stem. It can also be formed on the underside of 

branches where it has a role in maintaining the angle of the branch to the stem. However, it is regarded 

as a defect in the timber industry as, on drying, it exhibits higher longitudinal shrinkage than normal 

wood or wood on the opposite side of the stem (opposite wood) and contributes to warping. It is also 

more difficult to work with and pulp than normal or opposite wood [5,6]. Compression wood is often 

darker in colour than normal and opposite wood, but the chemical basis of this coloration is unknown. 

Furthermore, dark coloured compression wood can be confused with late wood [6]. There is thus a need 

to devise reliable methods for detecting compression wood. 

Compression wood differs from normal and opposite woods anatomically and chemically. Anatomically, 

the tracheids, the predominant cell type in softwoods, are shorter and more rounded in cross section in 

compression wood than in normal or opposite woods. The tracheid walls in compression wood are 

thicker, but lack the third secondary wall layer (S3) that in normal and opposite wood tracheids occurs 

adjacent to the lumen [5,6]. Chemically, the tracheid walls of normal and opposite woods are composed 

of microfibrils of cellulose set in a matrix of lignin composed predominantly of guaiacyl units (G-units), 

and the non-cellulosic polysaccharides (hemicelluloses) heteromannans (O-acetyl-galactoglucomannans) 

and smaller proportions of heteroxylans [arabino(4-O-methylglucurono)xylans] [7–11]. The tracheid 

walls of compression wood contain less cellulose, heteromannans and heteroxylans, but more lignin, 

which in addition to G-units contains p-hydroxyphenyl units (H-units) that are almost absent from 

normal and opposite woods. These walls also contain much higher proportions of (1→4)-β-D-galactans 

(up to ~10%) than normal or opposite woods [5,10,12]. All of these features of compression wood apply 

to what is frequently termed severe compression wood, although mild compression woods of different 

severities with anatomical, and possibly chemical, features intermediate between severe compression 

wood and normal and opposite woods are also known to occur, but have been subjected to much less 

research [6,13]. 

Pinus radiata (radiata pine or Monterey pine) is a fast-growing softwood widely grown in plantations 

in many temperate countries, including New Zealand. The compression wood of this species can  

be distinguished from normal and opposite woods by detailed chemical analyses of the cell-wall  

polymers [12,13]. The aim of the present study was to develop a method of detecting compression wood 

based on the occurrence of higher proportions of (1→4)-β-galactans in the tracheid walls of compression 

wood than normal or opposite woods. The method involves extracting non-cellulosic polysaccharides 

from milled wood and determining the content of (1→4)-β-galactans using an immuno-dot assay, with 

lupin seed (1→4)-β-galactans as the quantification standard. The extracted polysaccharides are bound 

to nitrocellulose membranes as dots and then treated with the monoclonal antibody LM5, which binds 

specifically to (1→4)-β-galactans [14], as the primary antibody. An enzyme-labelled secondary antibody 

is then used followed by a substrate that gives an insoluble coloured product [15]. The intensity of the 

colour is measured by image analysis. Essentially, we developed a simplified manual version of the 

technique known as comprehensive microarray polymer profiling [16,17], but with only a single 

extraction solvent and primary antibody. 
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2. Results 

2.1. Assays Using Reference Lupin Seed (1→4)-β-Galactans 

A plot of spot integral intensities against the amounts of lupin seed (1→4)-β-galactans for a dilution 

series from 0.001 to 1.0 µg/dot was curvilinear (Figure 1), with the linear portion in the lower dilution 

range (up to 0.006 µg/dot). It is thus important to use (1→4)-β-galactan amounts in this dilution range 

for quantification purposes. 

 

Figure 1. (a) Curvilinear relationship of spot integral intensity to amount of lupin seed 

(1→4)-β-galactans in the dilution series generated with Xplore software; (b) linear 

relationship of spot integral intensity to amount of lupin seed (1→4)-β-galactans at lower 

dilutions showing a strong positive correlation of amounts of (1→4)-β-galactans to the spot 

integral intensity (R2 = 0.99; y = (2(1010)x−1(107)); (R2 = Coefficient of determination;  

y = spot integral intensity; x = amount of galactan (µg/dot)). Error bars indicate the  

standard errors. 

Blue dot images obtained from the dilution series of the standard lupin seed (1→4)-β-galactans are 

shown in Figure 2. 

All lupin seed (1→4)-β-galactan amounts, from 0.001 µg/dot upwards, were readily detected by eye 

(Figure 2). A similar control dilution series without primary antibody showed no coloration, as did a  

no-(1→4)-β-galactan control dot.  

 

a b 
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Figure 2. Immuno-dot assays of (1→4)-β-galactans extracted from non-delignified wood 

from Tree 1. Opposite wood (10 dilutions 1.5× to 6×), compression wood (15 dilutions 1.5× 

to 101×) and lupin seed (1→4)-β-galactan (twenty dilutions giving 0.001 to 0.2 µg/µL or 

dot) plotted in increasing order of dilution; each dilution has six replicates. This shows a 

scanned image (1200 dpi) of the nitrocellulose membrane with blue dots. 

2.2. Assays Using Extracts of Radiata Pine Wood 

The dilution series of the extracts from non-delignified compression wood and opposite wood from 

Tree 1 (Figure 2) showed that (1→4)-β-galactans could be detected in the opposite wood extract down 

to only a 6× dilution, but in the compression wood extract down to a 101× dilution, indicating a higher 

concentration of (1→4)-β-galactans in the compression wood extract than the opposite wood extract. 

Quantification, using dilutions on the linear part of the curve, showed 0.03% and 0.35% for the extracted 

(1→4)-β-galactan content of the opposite wood and compression wood, respectively (Table 1). (The 

0.03% and 0.35% values mean 0.003 and 0.035 mg (1→4)-β-galactan were extracted into the 6 M NaOH 

from each 10 mg of dry wood, respectively). However, when the three-year-old trees (Trees 2–7) were 

compared, no differences in extracted (1→4)-β-galactan contents were found between the compression 

wood and opposite wood of each tree (Table 1). The extracted (1→4)-β-galactan content of the opposite 

and compression wood was similar to that found in the opposite wood from Tree 1. 
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Table 1. Immuno-dot assay of (1→4)-β-galactans extracted from opposite and compression 

woods of Pinus radiata with and without delignification. 

Tree 

Amounts of (1→4)-β-Galactans Extracted 

Without Delignification 

Amounts of (1→4)-β-Galactans Extracted 

after Delignification 

OW CW 
CW/OW 

OW CW 
CW/OW 

Mean ± SE Mean ± SE Mean ± SE Mean ± SE 

Tree 1 0.03 ± 0.00 0.35 ± 0.03 11.7 0.38 ± 0.09 9.95 ± 1.39 26.2 

Tree 2 0.02 ± 0.00 0.01 ± 0.00 0.5 0.60 ± 0.11 8.34 ± 0.60 14.0 

Tree 3 0.01 ± 0.00 0.01 ± 0.00 1.0 0.42 ± 0.08 8.25 ± 0.02 19.5 

Tree 4 0.03 ± 0.00 0.02 ± 0.00 0.7 0.60 ± 0.03 6.63 ± 0.95 11.1 

Tree 5 0.01 ± 0.00 0.02 ± 0.00 2.0 0.39 ± 0.02 5.92 ± 0.76 15.3 

Tree 6 0.03 ± 0.00 0.04 ± 0.00 1.3 0.22 ± 0.04 4.27 ± 0.50 19.5 

Tree 7 0.03 ± 0.00 0.03 ± 0.00 1.0 0.74 ± 0.08 3.14 ± 0.10 4.2 

OW = Opposite wood; CW = Compression wood. CW/OW = ratio of amounts of (1→4)-β-galactans extracted 

from compression and opposite woods. Amounts of galactans extracted are expressed as weight percentages 

extracted from dry wood (means of three aliquots of milled wood). 

We therefore examined the effect of partially delignifying the milled wood on the amounts of  

(1→4)-β-galactans extracted by the 6 M NaOH solution. After partial delignification, much greater 

amounts of (1→4)-β-galactans were extracted, particularly from the compression wood. For example, 

with the wood from Tree 7, (1→4)-β-galactans were detected in the opposite wood extract down to only 

a 50× dilution, but in the compression wood extract, (1→4)-β-galactan was still detected at a 500× 

dilution (Figure 3). The particular dilutions were chosen because 20× to 50× for opposite wood and  

200× to 500× for compression wood were on the linear part of the curve. The calculated extracted 

concentrations ranged from 0.22% to 0.74% for opposite wood and 3.14% to 9.95% for compression 

wood, with the highest concentrations of extracted (1→4)-β-galactans being in the compression wood 

of Tree 1 (Table 1). 

The upper value for extracted (1→4)-β-galactans in opposite wood was 0.74% (Tree 7) and could 

represent the upper value for wood not containing any compression wood. The lowest concentration for 

compression wood was 3.14% (Tree 7) and could represent one of the lowest that may be obtained from 

severe compression wood. However, although the Tree 7 compression wood sample was dark coloured, 

it was not examined microscopically and may not be pure severe compression wood. It may have also 

contained some tracheids better described as mild compression wood tracheids, which may have 

extracted (1→4)-β-galactan concentrations intermediate between opposite (or normal) wood and severe 

compression wood [13]. We thus tested the immuno-dot assay method on mixtures of compression wood 

and opposite wood to simulate different mild compression woods. Such mixtures would also simulate 

samples containing adjacent compression and normal (or opposite) woods. As expected, the relationship 

between the content of extracted (1→4)-β-galactans and percentage of compression wood in the mixture 

was linear (Figure 4). 
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Figure 3. Immuno-dot assays of (1→4)-β-galactans in extracts of delignified wood of  

Tree 7. Extracts of opposite wood (five dilutions 0× to 50×) and compression wood  

(five dilutions 0× to 500×; each dilution has six replicates. This shows a scanned image  

(1200 dpi) of the nitrocellulose membrane with blue dots. 

 

Figure 4. The amount of (1→4)-β-galactans extracted from delignified mixtures of 

compression wood and opposite wood from Tree 1 showing a linear relationship with 

amount of compression wood in the mixture, with a strong positive correlation (R² = 0.98;  

y = 0.0905x−0.0866). (R² = Coefficient of determination; y = spot integral intensity;  

x = amount of galactan (µg/dot)). Error bars indicate standard errors (some values have 

negligible standard errors, so the error bars are not visible). 

2.3. Monosaccharide Compositions of Radiata Pine Wood 

To show that the compression and opposite woods examined in the present study contained different 

proportions of galactosyl-containing polysaccharides, the woods were acid hydrolysed and analysed. 
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The proportions of the neutral monosaccharides in the 2 M TFA hydrolysates of the opposite and 

compression woods are shown in Table 2. The highest proportions of particular monosaccharides  

were for galactose in compression wood hydrolysates, probably mostly from (1→4)-β-galactans.  

The proportions ranged from 38.1% (Tree 7) to 58.5% (Tree 3). Galactose also showed the greatest 

differences in proportions between compression and opposite woods, with the proportions in the opposite 

woods ranging from 7.7% (Tree 3) to 10.5% (Trees 2 and 5). This gave ratios of the proportion of 

galactose in the compression wood to opposite wood ranging from 4.3 (Tree 7) to 7.6 (Tree 3).  

The proportions of xylose (mostly from heteroxylans) and mannose (mostly from heteromannans) were 

higher in hydrolysates of opposite than compression woods, giving ratio (opposite/compression)  

ranges of 1.8–3.4 and 1.5–2.5, respectively. A similar ratio range, 1.3–2.3, was also found for  

arabinose (probably mostly from heteroxylans), but the proportions were lower. In contrast, the 

proportions of glucose in hydrolysates of opposite and compression woods were similar, giving a ratio 

(opposite/compression) range of 0.8–1.2. 

Table 2. Neutral-monosaccharide compositions of opposite and compression woods (% of 

all neutral monosaccharides). 

 Monosaccharides 

  Arabinose Xylose Galactose Glucose Mannose CW/OW Galactose 

Tree Wood Type Mean ± SE Mean ± SE Mean ± SE Mean ± SE Mean ± SE  

Tree 1 
OW 10.2 ± 0.53 32.2 ± 0.12 8.4 ± 0.07 13.6 ± 0.26 35.6 ± 0.24 

6.3 
CW 4.7 ± 0.36 15.3 ± 0.29 52.7 ± 0.25 11.4 ± 0.11 16.0 ± 0.28 

Tree 2 
OW 13.2 ± 0.23 35.8 ± 0.47 10.5 ± 0.20 9.4 ± 0.30 31.2 ± 0.18 

5.5 
CW 5.8 ± 0.06 13.1 ± 0.13 56.9 ± 0.49 9.8 ± 0.23 14.3 ± 0.25 

Tree 3 
OW 12.0 ± 0.33 38.7 ± 0.11 7.7 ± 0.10 10.1 ± 0.37 31.8 ± 0.46 

7.6 
CW 5.3 ± 0.26 11.4 ± 0.17 58.5 ± 0.28 12.2 ± 0.27 12.6 ± 0.29 

Tree 4 
OW 13.3 ± 0.35 31.4 ± 0.71 10.2 ± 0.17 12.4 ± 0.25 32.7 ± 1.03 

4.9 
CW 6.5 ± 0.24 15.9 ± 0.18 49.3 ± 0.12 10.4 ± 0.34 17.8 ± 0.78 

Tree 5 
OW 10.2 ± 1.44 30.4 ± 0.61 10.5 ± 0.05 13.1 ± 0.31 35.8 ± 0.89 

4.6 
CW 7.6 ± 0.29 15.7 ± 0.08 47.7 ± 0.89 11.9 ± 0.16 17.3 ± 0.39 

Tree 6 
OW 12.3 ± 0.21 29.5 ± 0.31 7.9 ± 0.08 12.5 ± 0.23 37.8 ± 0.19 

6.8 
CW 6.8 ± 0.02 11.9 ± 0.07 53.7 ± 0.41 11.2 ± 0.29 16.5 ± 0.11 

Tree 7 
OW 10.2 ± 0.90 34.4 ± 0.35 8.9 ± 0.09 11.1 ± 0.23 35.4 ± 0.29 

4.3 
CW 7.4 ± 0.13 18.9 ± 0.39 38.1 ± 1.46 11.3 ± 0.29 24.4 ± 0.85 

Mean of determinations on three hydrolysates. CW/OW Galactose is the ratio of the percentage of galactose in 

compression wood and opposite wood. 

The rankings of the compression woods of the three-year-old trees (Trees 2–7) for percentages of 

galactose in hydrolysates and percentages of (1→4)-β-galactans in extracts were similar; the only major 

difference was for Tree 6, which ranked higher in terms of percentage galactose than percentage of 

(1→4)-β-galactan extracted. 

As with the extracted (1→4)-β-galactan concentrations, upper limits of ranges can be set for opposite 

wood and compression wood. The highest galactose percentage for opposite wood of 10.5% could be 

used as the upper limit for wood not containing compression wood. The lowest galactose percentage for 
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compression wood, 38.1%, could be used as the lowest percentage for severe compression wood, 

although the compression wood for this tree may not be pure severe compression wood. 

For the mixtures of compression wood and opposite wood, the relationship between percentage 

galactose and percentage of compression wood in the mixture was again linear [18]. 

3. Discussion 

Comprehensive microarray polymer profiling and its methods for polysaccharide extractions was 

developed and has subsequently been used most frequently on plant tissues containing principally  

non-lignified primary cell walls [16,17]. However, in wood science, the non-cellulosic polysaccharides 

are usually extracted from wood cell walls after they have first been delignified, yielding a fraction 

known as holocellulose. This is because non-cellulosic polysaccharides are difficult to extract from 

lignified walls, particularly those of softwoods [19,20]. This is consistent with our finding that partial 

delignification of the milled radiata pine wood with acid chlorite [21] resulted in the subsequent 

extraction of more (1→4)-β-galactans. Similar (1→4)-β-galactans were also more easily extracted  

from the compression wood of Norway spruce (Picea abies) after acid chlorite delignification [22].  

The original acid chlorite delignification process [21] aimed to achieve complete delignification and 

involves prolonged treatment with fresh charges of sodium chlorite and acetic acid being added at 

intervals. However, in the present study, we simplified the delignification treatment by omitting fresh 

charges. This was done to simplify the process, and to reduce the likelihood of the (1→4)-β-galactans 

being degraded or extracted during the delignification. Although the delignification is unlikely to have 

been complete, the process can easily be reproduced and is sufficient. Using the immuno-dot assay, the 

percentage of (1→4)-β-galactans extracted from the compression wood of Tree 1, 9.95%, compared well 

with the 10.3% for the galactose content of compression wood from a tree of the same genotype  

(an analogous ramet), but a different age, using a two-stage sulphuric acid hydrolysis [12]. Using the 

immuno-dot assay, we found only trace amounts of (1→4)-β-galactans in the acid chlorite solution after 

treatment of compression wood. In a study of the delignification of black spruce (Picea mariana) by the 

chlorite process [21], it was found that during the first 60% of delignification only lignin was dissolved, 

and beyond that point small quantities of galactoglucomannans were also dissolved [23]. 

The increased amounts of (1→4)-β-galactans extracted from both compression and opposite woods 

of radiata pine after partial delignification suggests these polysaccharides are held in the tracheid walls 

by being covalently linked to lignin. Lignin-carbohydrate complexes, containing such covalent bonds, have 

been isolated from a variety of woods [10], including a complex containing lignin and (1→4)-β-galactans 

from the compression wood of Japanese red pine (Pinus densiflora) [24]. These lignin-polysaccharide 

cross links are formed by reactions involving quinone methide intermediates, produced during lignin 

synthesis, and polysaccharides [25]. Consistent with covalent links between lignin and (1→4)-β-galactans 

has been the finding, using immunomicroscopy with LM5, that lignins and (1→4)-β-galactans are 

colocated in the tracheid walls of radiata pine. In normal and opposite woods, the small proportion of 

(1→4)-β-galactans found in these woods have been localized to the tracheid primary wall [26,27]. This 

is consistent with the (1→4)-β-galactans occurring as side chains of the pectic polysaccharide 

rhamnogalacturonan I (RG-1), which is known to occur in the primary cell walls of coniferous 

gymnosperms [12,28]. The highest concentrations of lignin in these wood types also occur in the 
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compound middle lamella comprising the middle lamella and primary wall. In the mature tracheids of 

compression woods, the (1→4)-β-galactans have been localized to the outer S2 layer, a region in which 

the highest concentration of lignin also occurs and is hence referred to as the S2L layer. Using the same 

antibody, the (1→4)-β-galactans were also localized to the same layer in mature compression wood 

tracheids of Japanese cedar (Cryptomeria japonica) [29]. Interestingly, in that study, the intensity of the 

labelling over the S2L layer was higher after acid chlorite delignification of the wood. 

The immuno-dot method could also be extended to other species of coniferous gymnosperms. It is 

likely to be particularly useful for species where other galactose-containing polysaccharides are  

known to occur in the wood because the method is specific to (1→4)-β-galactans. For example, the  

wood of larches (Larix spp.), especially the heartwood, contains high proportions of water-soluble  

arabino-3,6-galactans, which are non-structural polysaccharides. However, compression wood of larches 

also does contain (1→4)-β-galactans [30]. Lower proportions of arabino-3,6-galactans occur in the 

heartwoods of other coniferous gymnosperms, including Norway spruce (Picea abies) and Scots pine 

(Pinus sylvestris) [10,11,31–33]. Previous studies using 2D NMR [12] on compression and opposite 

wood samples from a tree of the same genotype (an analogous ramet), as Tree 1, but a different age, 

showed that the higher proportions of galactose in the compression wood hydrolysates were due to higher 

proportions of (1→4)-β-galactans; there was no evidence for the presence of arabino-3,6-galactans. 

Although a TFA hydrolysis method was used in the present study to show differences in proportions 

of galactosyl-containing polymers between the opposite and compression woods, this method of acid 

hydrolysis could itself be used as a method to detect compression wood, although it is, of course, not 

specific for (1→4)-β-galactans. In wood science, the usual method of hydrolysing wood cell walls is the 

two-stage sulphuric acid method [12,34], which hydrolyses all the cell-wall polysaccharides, including 

cellulose. However, in studies of primary cell walls, the TFA hydrolysis method [35], which does not 

hydrolyse crystalline cellulose [36], is often used to study non-cellulosic polysaccharides. The TFA can 

be easily removed, so analyses can be carried out on very small samples, if required. We found this 

method of hydrolysis excellent for comparing the percentages of neutral monosaccharides from opposite 

and compression woods, with galactose being a high proportion of the neutral monosaccharides released 

from compression woods, but not from opposite woods. By simply using relative percentages of neutral 

monosaccharides rather than absolute yields of each monosaccharide on a wood dry weight basis, 

accurate weighing of the wood samples and addition of an internal quantification standard are 

unnecessary. We separated and quantified the neutral monosaccharides in the TFA hydrolysate using 

HPAEC, but these monosaccharides could also be converted to alditol acetates and separated and 

quantified by gas chromatography [37,38]. 

In contrast to HPAEC and gas chromatography, the immuno-dot method of detecting compression 

wood uses relatively simple equipment, but it is time consuming and labour intensive, particularly 

grinding of the wood. However, the comprehensive microarray polymer profiling technique [16,17], on 

which it is based, uses robotics. A high-throughput platform, which also includes a grinding step,  

has been developed for screening milligram quantities of plant biomass to determine cell-wall  

digestibility, and uses the iWALL robot [39]. Similar robotic techniques could be adapted for quantifying  

(1→4)-β-galactans in wood using the immuno-dot method. This method could then be used in wood 

research and to screen the wood of saplings in breeding programmes. 
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4. Experimental 

4.1. Wood Samples 

Samples of compression and opposite woods were obtained from seven saplings of Pinus radiata  

(D. Don) grown tilted at ~45° from the vertical; we refer to these as Trees 1–7. Tree 1 (clone A; 

96047/98015, Arborgen Australasia, TeTeko, Whakatane, New Zealand) was grown in an unheated 

glasshouse at the University of Canterbury, Christchurch, New Zealand, for nine months [40] and then 

outside for 11 months. Trees 2–7, from six different control-pollinated families (one tree per family), 

were grown for three years in the field at Amberley, Canterbury, New Zealand. The families  

were as follows: Tree 2 (family 05–854), Tree 3 (family 99–405), Tree 4 (family 05–829), Tree 5  

(family 05–862), Tree 6 (06–524) and Tree 7 (05–844) [41]. 

A basal segment (about ~15 cm long) was cut from each tree, debarked, cut longitudinally into 

compression wood and opposite wood (based on the dark coloration of the compression wood) with a 

band saw and chisel, and dried at 35 °C to ~4% moisture content. The wood was then milled to pass a 

60-mesh screen (251 μm pore size) using a Wiley® mini-mill (Thomas Scientific, Swedesboro, NJ, 

USA), dried at 105 °C and stored over silica gel. Mixtures of milled compression wood and opposite 

wood (75, 50 and 25% w/w compression wood) were also prepared from Tree 1 to simulate samples 

containing adjacent compression and normal (or opposite) woods or mild compression woods of 

different severities [42]. 

4.2. Extraction of Non-Cellulosic Polysaccharides from the Wood Samples 

Milled wood was extracted either directly or after partial delignification that was done as follows. 

Milled wood (10 mg) was treated with a freshly-prepared aqueous mixture of sodium chlorite (1% w/v) 

(1 mL) and 17.4 M acetic acid (20 µL) for 3 h at 70 °C using a Thermomixer Comfort (Eppendorf AG, 

Hamburg, Germany) operated at 1400 rpm [21]. After cooling to room temperature, the mixture was 

centrifuged (15,700× g, 10 min), the supernatant removed, and the pellet washed (3×) with water (1 mL) 

followed by centrifugation (5 min). The remaining holocellulose preparation or dry milled wood (10 mg) 

was extracted on an orbital shaker at 180 rpm for 16 h at 37 °C with 6 M NaOH containing 1% NaBH4 

(500 μL) to prevent alkaline peeling. After centrifuging (10 min), the supernatant was removed and 

neutralized with 17.4 M acetic acid, using a 2:1 (v/v) ratio of supernatant to acetic acid to achieve a  

pH >5 <6. A dilution series was prepared from each of these extracts using water. These dilutions are 

referred to as × dilutions; for example a 1.5× dilution was prepared by adding 0.5 volumes of water to a 

1.0 volume of extract. 

4.3. Immuno-Dot Quantification of (1→4)-β-Galactans 

Six replicates (1 μL) of each successive extract dilution were applied as dots to a Protran® 

nitrocellulose membrane (0.45 μm pore size; Schleicher & Schuell BioScience, Dassel, Germany) and 

dried at 30 °C for 1 h [16,17]. The membrane was incubated in phosphate-buffered saline (PBS)  

(0.01 M sodium phosphate buffer, pH 7.4; 0.14 M NaCl) containing 5% (w/v) milk powder (0.1% fat; 

Alpine, Dairyworks Ltd, Christchurch, New Zealand) (MP-PBS) for 2 h at 30 °C to block all nonspecific 
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binding sites. It was then incubated with the monoclonal antibody LM5 (PlantProbes, Leeds, UK) diluted 

1:10 in MP-PBS, followed by goat anti-rat IgG (H + L chains) secondary antibody conjugated with 

alkaline phosphatase (Invitrogen, Auckland, New Zealand) diluted 1:100 in MP-PBS. Both antibodies 

were incubated for 2 h at 30 °C, and after each incubation, the membrane was washed (5×) with PBS on 

an orbital shaker (600 rpm). Finally, the membrane was treated for 15 min with substrate solution 

containing 5-bromo-4-chloro-3-indolyl phosphate (BCIP), nitro-blue tetrazolium (NBT) and water 

(1:1:8 v/v) (BCIP/NBT substrate kit, Invitrogen, New Zealand). Alkaline phosphatase reacts with the 

substrate to produce an insoluble blue product. The membrane was then washed in running water for  

20 min and dried at 30 °C. Two types of negative control were used: a no primary antibody control and 

a no extract control in which 6 M NaOH (containing 1% NaBH4) after the addition of acetic acid  

(see above) was used. 

The dried nitrocellulose membranes were scanned to produce TIFF images (1200 dpi) using a desktop 

scanner (Model DCP-130C; Brother International, Bridgewater, NJ, USA) that were then converted into 

inverted 16-bit grey-scale images using Adobe Photoshop (Creative Suite 6; Adobe Systems, San Jose, 

CA, USA). Xplore image processing software (LabNEXT Inc, West New York, NJ, USA), which 

includes grids, was then used to generate spot integral intensities (heat map values) of the spots, which 

were exported as comma separated values (csv) and opened in Excel format. The spot integral intensity 

is a specific numerical value generated by the Xplore program and is based on the numbers of spots per 

unit area defined by a grid. Mean values for each set of six replicate spot integral intensities were 

computed. The final spot integral intensities were calculated by subtracting the values of blank  

(no sample) spots. These were converted into mg of (1→4)-β-galactans extracted per 100 mg of dry 

wood (i.e., weight percentages) by comparing the intensities with those given by the lower range  

(0–0.006 µg/dot) (Figure 1) of a dilution series of lupin seed (1→4)-β-galactans. In the final calculation, 

it was assumed that the lupin seed (1→4)-β-galactans preparation contained 91% (1→4)-β-galactan as 

indicated in the Megazyme literature. 

4.4. Neutral Monosaccharide Compositions of the Wood Samples 

Triplicate samples (5 mg) of dry milled opposite and compression woods were hydrolysed using 2 M 

trifluoroacetic acid (TFA) (0.5 mL, 121 °C, 1 h) in a sealed tube under argon [35,38]. After cooling,  

D-ribose (500 µg) was added as a retention time standard, and the hydrolysate evaporated to dryness in 

a stream of air. The residue was dissolved in water (5 mL), filtered using a polytetrafluoroethylene 

disposable filter (diameter 13 mm, pore size 0.22 µm; Shandong Hapool Medical Technology, Heze, 

China), and the filtrate made up to 50 mL. 

Neutral monosaccharides were separated and quantified using high-performance anion-exchange 

chromatography with pulsed amperometric detection (HPAEC-PAD) on a Dionex BioLC system 

(Dionex, Sunnyvale, CA, USA) fitted with an ED50 electrochemical detector and GP50 gradient pump. 

A CarboPac PA20 guard column (3 × 30 mm) and a CarboPac PA20 analytical column (3 × 150 mm) 

were used. Column temperature was kept at 25 °C by a TCC-100 thermostatted column compartment. 

Separation was achieved using isocratic elution (1 mM NaOH for 30 min) and the column was then 

washed for 5 min with 200 mM NaOH before equilibration for 5 min with 1 mM NaOH. The injection 

volume was 20 µL, and the flow rate 0.4 mL min−1. The order of elution of monosaccharides was 
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confirmed by running solutions of individual reference monosaccharide. Before the hydrolysate runs, a 

water blank was run followed by a reference solution containing 10 µg mL−1 each of L-arabinose,  

D-galactose, D-glucose, D-xylose, D-mannose, D-xylose and D-ribose, which was used to determine the 

relative responses of equal weights of each monosaccharide. 

5. Conclusions 

The present study shows that the immuno-dot assay method using the LM5 antibody can be applied, after 

partial delignification, to milled (ground) wood of radiata pine for the quantification of (1→4)-β-galactans. 

The percentages of extracted (1→4)-β-galactans from opposite wood and compression wood were quite 

different and the method could thus be used to identify the presence of compression wood in wood 

samples. The present study is a proof of principle, but more extensive studies need to be carried out to 

determine the range in percentages of extracted (1→4)-β-galactans in microscopically characterized 

compression woods, both severe and mild, as well as normal and opposite woods, in trees of different 

species, genotypes and ages. 
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