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Abstract

Getting a grip on how we may age healthily is a central interest of biogerontological

research. To this end, a number of academic teams developed platforms for life- and health-

span assessment in Caenorhabditis elegans. These are very appealing for medium- to high

throughput screens, but a broader implementation is lacking due to many systems relying

on custom scripts for data analysis that others struggle to adopt. Hence, user-friendly rec-

ommendations would help to translate raw data into interpretable results. The aim of this

communication is to streamline the analysis of data obtained by the WorMotel, an economi-

cally and practically appealing screening platform, in order to facilitate the use of this system

by interested researchers. We here detail recommendations for the stepwise conversion of

raw image data into activity values and explain criteria for assessment of health in C. ele-

gans based on locomotion. Our analysis protocol can easily be adopted by researchers, and

all needed scripts and a tutorial are available in S1 and S2 Files.

Introduction

While a bliss for individuals in good health, the continued increase in human life expectancy is

also associated with an increased prevalence of age-related diseases, warning our societies to

tackle this socio-economic challenge. Therefore, amelioration of the quality of life in aged pop-

ulations will be an important task in years to come.

It is well understood in the research field that the concept of being healthy is much more

ambiguous than the concept of being alive, and different individuals have a different percep-

tion of what is understood as ‘being healthy’ [1]. Healthspan is generally described as the

period in life during which the organism is in good health and free from disease [2]. It is

immediately clear that this fluid definition reflects a similar lack of consensus amongst

researchers, which translates to a variety of proposed parameters for healthspan evaluation. In

human clinical settings, grip strength, gait analysis and ability to perform daily tasks (e.g. bath-

ing) are often used as criteria for good health [3–5].
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To find interventions that affect aging, considerations in cost and time-efficiency have led

to the use of different model organisms. The nematode C. elegans is a well-established model

for aging with the advantages of a short lifespan and ease of cultivation. Work in this model

indicates that a longer lifespan does not always correlate with proportional increases in healthy

life [6–9], reaffirming the notion that understanding how organisms can age healthily is

important.

As summarized by [6], several physiological and functional parameters that change with

age can be studied in C. elegans, such as lipofuscin accumulation or pharyngeal pumping.

Among these, the most powerful predictor of longevity seems to be movement [8,10–13]. Sim-

ilar to humans, the ability of C. elegans to move diminishes with aging [14], as they decline

towards a state of frailty where they are only able to move their head, characteristic of late

phases of life. Research into C. elegans aging is often challenging due to labor-intensive follow-

up of experiments and the collection of longitudinal data at the population level, rather than at

the level of the individual. To address these impediments, several groups developed semi-auto-

mated systems that bypass (some of) these issues and assess movement longitudinally in aging

animals [7,15–18]. All these systems rely on longitudinal imaging of either individual

[7,12,13,16,19] or populations of [17,18,20,21] worms, after which image processing and analy-

sis are used for determination of lifespan and activity decline. While relying on similar princi-

ples, these systems differ in high-throughput potential, detail in image acquisition, the way the

worms are stimulated to move and whether populations or individuals are studied.

The WorMotel [22] allows longitudinal measurements of activity in 240 individual animals

simultaneously. Time-lapse images of the aging worms are used to quantify their movement

for life- and healthspan determination. Because 240-well plates are typically imaged for only

20 minutes per day, one imaging station can collect data for thousands of individuals each day.

Due to the aspired throughput of this system, having a clear-cut analysis protocol that can dis-

tinguish phenotypes, is crucial. In terms of lifespan, this is straightforward, but because of the

ambiguous definition of healthspan, criteria to determine whether an animal is healthy or not

are currently lacking. While basic programming tools to calculate movement based on images

taken with the WorMotel system were developed and reported [7], users are faced with several

choices for image processing parameters during data analysis. These include deciding on a

time interval for activity calculation, condensing data of the intermittent monitoring periods

into data points along longitudinal activity curves, setting a reasonable threshold for health,

and considering the applicability of chosen settings to long- and short-lived populations. A

systematic study on how these choices affect outcomes such as individual life- and healthspan

has not been carried out. We therefore aimed to determine the most robust choices for

straightforward selection of interventions that may affect healthy ageing.

We performed a proof of concept study on data of wild-type, long-lived daf-2 RNAi-treated

and short-lived daf-16 RNAi-treated animals. This work provides insight into recommended

standard settings and can serve as a basis for users of the WorMotel to tune their own data pro-

cessing choices and highlight specific behaviors of interest.

Materials and methods

Strains, maintenance and worm synchronization

In this study, wild-type N2 animals fed on E. coli OP50 were used. Strain maintenance and

experiments were performed at 20˚C. Mixed cultures were bleached and eggs were collected

by standard procedures [23].
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WorMotel plate preparation and RNAi

WorMotel plates were prepared as described by [7]. We used E.coli strain HT115 transformed

with the L4400 vector containing no (= control), daf-2 or daf-16 RNAi constructs as derived

from the Ahringer library [24]. Bacterial strains were grown at 37˚C for a minimum of 12

hours, whereafter 1 mM IPTG was used for induction (2 hours, 37˚C). To minimize effects of

diet, equal amounts of bacterial solutions were seeded onto WorMotel wells, and potential

positional effects were minimized by doing so according to a quadrant design (60 wells per

strain–one control and three test strains per plate). Hatched N2 L1 stage worms were grown

on Nematode Growth Medium (NGM) plates containing carbenicillin (50 μg/ml) seeded with

E. coli HT115 containing the (empty) L4440 vector and reared at 20˚C for 48 hours. At late L4

stage, worms were sorted using a COPAS Biosort (Union Biometrica) onto WorMotel plates.

Image processing and parameter extraction

Each plate was monitored daily for 20 minutes with an Imaging Source DMK 23GP031 camera

(2592 x 1944 pixels) equipped with a Fujinon lens (HF12.5SA-1, 1:1.4/12.5 mm, Fujifilm Corp.,

Japan) as previously described [7]. We used IC Capture (Imaging Source) to acquire time-lapse

images through a gigabit Ethernet connection, this over a period of approximately 40 days.

Images were taken every five seconds and a five-second blue light stimulation was applied at

minute 10. For the blue light stimulation, three high-power LEDs (at a current of 20 A, Luminus

PT-121, Sunnyvale, CA, irradiance at plate 1.2 mW/mm2) were used. Image subtraction with a

custom-made MATLAB script was performed, where for every captured image (~ 120 pictures

post blue light stimulation) pixel value intensity changes are calculated in comparison with an

image preceding it by a defined interval (not necessarily the preceding image in the series). For

this study, pixel differences were calculated for intervals of 5, 20, 60, 80, 100, 150, 200, 250, 300

and 540 seconds (S1 File). Calculations were executed according to [7]. Briefly, for each set of

two compared images, a difference image was calculated and divided by the average pixel inten-

sity between the two images to generate normalized maps of pixel value intensity change. Incor-

poration of noise was reduced by consecutively applying (i) a Gaussian smoothing filter

(standard deviation of one pixel) and (ii) a binary threshold of 0.25 to the difference image [7].

The total number of pixel locations changed on the resulting image was then used as a measure-

ment for activity. We always worked with post-stimulation pixel difference data (collected min-

utes 10–20), since it has been shown that spontaneous activity is a confounded readout [7].

Moreover, we observed that stimulated activity leads to a more reliable assessment of lifespan in

aged animals, as they tend to show less spontaneous movement (Fig 1).

To convert the imaging data to a single value per condition per day, we considered several

options that represent different ways of looking at the animal’s ability to move (Fig 2). For this,

for all daily pixel difference data series the median, 99th percentile (or ‘maximal activity’), aver-

age of all values within the range defined by [95th to 99th] percentiles (further referred to as

‘peak activity’) and integral (corresponding to area under the curve of Fig 2A) were calculated

(Fig 2A).

Overall variation

Overall variation was calculated as:

overall variation ¼

PN
i¼1
ð
jaiþ1 � ai j
<a1!N>

Þ

N

with N the total number of days the worm was monitored as alive, ai the activity value on day i
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for that worm, and<a1!N> the average activity of the animal over its lifetime. As such, an

individual’s overall variation reflects its average change in activity per day. In short, for each

worm, all differences in activity between each two consecutive days are summed. This value is

normalized by dividing it by the average activity of the worm over its lifetime, a necessary step

for comparison of metrics with different magnitudes (e.g. median vs integral). For ease of com-

parison, a daily value is obtained by dividing by the number of observations (note that this is

not essential for interpretation). For each worm, overall activity values were calculated based

on median, maximal activity, peak activity and integral (Fig 2) input values.

Variance of movement Z-score

Each individual’s movement Z-score as a function of time is defined as:

Z � score ¼
ai � mai

sai

where ai is the activity value of the worm on day i, mai
is average activity of the population on

day i and sai
is the standard deviation of the population on that day. A Z-score therefore

reflects how different an individual worm is from the population, and this for each day of its

life. When calculating the variance of this Z-score for each individual worm, a value is obtained

that reflects the magnitude to which the longitudinal activity profile of an individual worm

deviates from that of the (simultaneously alive part of the) population.

Lifespan and health determination

The lifespan of each worm was always determined as the last day when the worm showed a

daily peak activity above 5 pixels changed, as described in [7].

Fig 1. Data collected after blue light stimulation are most suitable for quantification of lifespan. Data are from one representative

animal. Blue light stimulation (at “time 0” of the imaging interval) is crucial to ensure accurate lifespan determination, especially in older

animals, which typically display little or no spontaneous movement within the 20 min imaging interval.

https://doi.org/10.1371/journal.pone.0229583.g001
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To determine whether an animal was healthy or not, we correlated blinded manual assess-

ments of health with calculated pixel differences for a representative set of animals. Locomo-

tive health was empirically evaluated by three independent scientists for blinded activity

movies of 24 randomly chosen worms, aimed to represent two worms per genotype per plate

(randomly selected from each population). These 24 animals to be evaluated for each monitor-

ing time lead to a total of 715 manual assessments, all executed in triplicate. Each scientist

could assign quality of movement upon blue light stimulation to one of five categories: (1) very

fast: the animal moved multiple (>2) body lengths, (2) fast: the animal moved 1 to 2 body

lengths, (3) medium fast: the animal continuously moved, but within body length, (4) slow: the

animal did move within body length, but was then inactive, and (5) inactive: the animal did

not move. One worm had to be excluded from the analysis because it did not belong to a geno-

type discussed in this study, leading to a total of 23 studied worms.

Fig 2. Overview of data analysis. The activity of a single worm during one monitoring time (one day) can be summarized in different ways, relying on (A) the

median, 99th percentile (also: ‘maximal activity’), average of all values between the 95th to 99th percentiles (also: ‘peak activity’, red box) or integral (purple shading)

values of the pixel difference data. (B) This process can be repeated for different days for the same worm, unveiling how activity (here: peak activity) changes over

a lifetime. (C) This analysis is performed for all the worms of the population, based on which (D) the average survivor activity of worms belonging to the same

population can be calculated. Worms showing an activity above the green threshold (panel C) are considered healthy—see main text for details.

https://doi.org/10.1371/journal.pone.0229583.g002
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For our analyses, we distinguish ‘total days of health’ from healthspan. Total days of health

(TDH) refer to the total number of days—not necessarily consecutive—for which an individ-

ual displays an activity greater than the 160 pixel difference threshold (see Results). Healthspan

(HS) is defined as the very last day when an individual’s activity is above said threshold. Obvi-

ously, the value for ‘total days of health’ is always lower than that of healthspan. We further

define the health ratio (HR) of individual worms as the ‘total days of health’ divided by the

total days of lifespan. Alternatively, healthspan ratio (HSR) can be calculated as the ratio of

healthspan vs lifespan.

As a final metric for health interpretation, we calculated the definite integral of the average

activity of the population by approximation through the trapezoid rule. This value approxi-

mates the area under the curve of the average activity of the studied population, whose shape

depends on the genotype [7,13].

Statistical analysis and graphical representations

Graphical representations and statistical tests–regarding normality (Shapiro-Wilk), signifi-

cance of population differences (Kruskal-Wallis or ANOVA) and correction for multiple test-

ing (Tukey-Kramer)–were run using MATLAB1. Linear correlation between different metrics

for the same worm, at the same time point, was assessed based on least-squares fit and calcu-

lated using MATLAB1.

Results

In recent years, diverse research teams worked towards alleviating the labor-intensive aspects

of C. elegans-based studies of longevity and aging. Amongst the developed semi-automated

platforms [17,18,20], the WorMotel [7] stands out for its capacity to collect data on thousands

of individuals on a daily basis, adding to its appeal as a medium- to high-throughput screening

solution for studies of aging. To facilitate the adoption of this system for fast evaluation of high

numbers of interventions, we here evaluate the data analysis workflow and discuss analytical

decisions made during the process of life- and healthspan analysis.

We collected data of wild-type animals reared under control conditions (marked ‘empty

vector’ (EV)) or treated with daf-2 or daf-16 RNAi. The exact effects of genetic interventions

on the lifespan of C. elegans vary somewhat in high-throughput [17] screens and between dif-

ferent labs [25], but daf-2 consistently leads to longevity, while daf-16 consistently shortens

lifespan. To reflect the expected variation when different labs use the WorMotel platform, we

used data of four completely independent experiments that represent a large plate-to-plate var-

iability, run over a period of 4 months. For one of the four independently executed experi-

ments (Fig 3), the study period was terminated before it could capture all deaths of daf-2
RNAi-treated animals, as can happen for long-lived interventions when evaluated in high-

throughput screens.

Data were obtained and processed as described in ‘Materials and Methods’. During this

procedure, the analyst faces several choices that may influence the final results. We evaluated

these potential choices at each step, to propose a workflow minimizing variation while remain-

ing applicable to and control, and short-, and long-lived phenotypes.

Daily peak activity is the more robust activity parameter

For calculations of life- and healthspan, any worm’s daily activity trace needs to be converted

to a single value per worm per day (Fig 2). There are different ways to do this, representing

slightly different biological perspectives.
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One way to define the worm’s activity, is by taking the median of the worm’s response activ-

ity values (Figs 2A and 4A). This value is less sensitive to fluctuations due to noise than the

more commonly used mathematical average, therefore it is an expectedly more robust way to

define the worm’s “average” response over the studied time interval. Alternatively, one can

look at the peak response, representative of the animal’s maximal response to the stimulus. To

Fig 3. Independent experiments comparing control, daf-2 and daf-16 RNAi-treated populations show inter-experiment

differences yet adhere to expected relative survival changes. To capture expected variation between possible end-users, four

entirely independent experiments were performed, where many factors—including the robotic setup—could have contributed

to differences in absolute effect size. Experiments I-IV shown in panels A-D.

https://doi.org/10.1371/journal.pone.0229583.g003

Fig 4. All metrics used to produce an activity trace reflect the inherent day-to-day variation. Traces of a representative daf-
2 RNAi-treated worm, constructed based on (A) the median, (B) maximal activity, (C) peak activity or (D) integral—see main

text.

https://doi.org/10.1371/journal.pone.0229583.g004
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extract this information, we relied on 99th percentile (maximal activity) (Figs 2A and 4B), but

also on the average of all values within the range defined by the [95th to 99th] percentiles (peak

activity) (Figs 2A and 4C), as this latter value again should be slightly less prone to outliers or

noise than the 99th percentile. Finally, the integral, i.e. the area under the curve, is indicative of

the worm’s overall capability to move and maintain that activity (Figs 2A and 4D). For exam-

ple, one could expect an older worm to still quickly respond to the stimulus, but also return

fast to very low activity levels, whereas a younger worm might, upon stimulation, keep up the

elevated movement for a longer time. Both median and integral values would capture such a

difference better than maximal or peak values would.

Possible interdependency of these parameters can easily be assessed by a simple correlation

analysis. Linear regression analysis suggests that peak and maximal values correlate strongly

on one hand, and median values clearly correlate with the integral values on the other hand

(S1 and S2 Figs, and S1 Table). All other correlations are much weaker, suggesting that these

four parameters reflect two interpretations of the daily activity profiles: peak/maximal vs
median/integral (S1 and S2 Figs, and S1 Table).

The worm’s activity trace over its lifetime is ultimately used to determine life- and health-

span of the animal. Due to sparse sampling in high-throughput settings (such as monitoring

once or twice per day for a short period of time), however, activity traces are discontinuous

and their fluctuation results from a combination of biological and technical influences [7]. For

each worm, building longitudinal activity curves based on each of the studied parameters–i.e.
median, peak, maximal or integral activity (example shown in Fig 4)–will therefore unveil

small differences in day-to-day variation that reflect differences between parameters in captur-

ing biological and/or technical sources of variation. The ideal parameter minimizes technical

viariation while correctly reflecting biological variation.

We tested the effect of parameter choice based on two assumptions: (i) aging is accompa-

nied by a gradual activity decline on the slow timescale [14], and (ii) variation of the popula-

tion average may reflect true biological variation. For this, we sought to minimize (i) ‘overall

variation’ and (ii) variance of movement Z-score, as defined in Methods. Briefly, for each

worm, the overall variation measures its average day-to-day variation over its lifetime, while

the variance of its Z-score represents how different this individual’s activity was from that of

the entire population. Using the peak or maximal activity to define the worm’s daily activity

showed significantly lower overall variation (Fig 5 and S2 Table). We found this to be consis-

tent over genotypes and time intervals, except for the 540 s interval, where results are similar

for all tests (S3 Fig). The variance of the Z-score never differed for any of the tested parameters

at any time interval (Fig 6 and S3 Table). Together, this indicates that although the choice of

parameter does not significantly affect population spread (i.e. worms do not differently deviate

from populations depending on the chosen parameter), the peak or maximal values do create

smoother activity traces (lower overall variation) compared to those generated from median or

integral values.

Based on these considerations, we opted for the peak activity as the activity value of choice,

preferring it over the maximal activity based on its ability to better buffer possible outliers and

therefore, it being an expectedly more accurate representation of true biology when compared

to the maximal value. The peak activity is used for the remainder of this study.

Longer time intervals are better suited to determine lifespan

It could be possible that the time interval used for daily pixel difference calculations (i.e. image

subtractions) affects ultimate decisions on lifespan. To test this, we first averaged daily activi-

ties of surviving worms of the same genotype for each day of the population’s lifespan (Fig 7
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for experiment I, S7 Fig for experiments II-IV). Higher intervals lead to higher activity values,

which may be especially important for animals with daf-2-like longevity, showing lowered but

consistent movement during the later phases of life [13]. As can be expected, longer time inter-

vals are able to saturate pixel difference values such as those recorded in the early phases of life,

with the highest average activities for most populations peaking around 400 activity units. It is

Fig 5. Data based on peak or maximal values lead to lower overall variation than those based on median or

integral values. Data for activity values based on daily pixel differences of 100 second intervals (other intervals: S3 Fig)

for control (EV, black), daf-2 RNAi (pink) and daf-16 RNAi (yellow) show similar trends. Box plots based on

individual worm data from all worms of the same genotype across all experiments. Analysis on an individual

experiment basis leads to the same conclusion (S4 Fig).

https://doi.org/10.1371/journal.pone.0229583.g005

Fig 6. Choice of activity parameters does not affect variance of Z-score. Data for activity values based on daily pixel

differences of 100 second intervals (other intervals: S5 Fig) for control (EV, black), daf 2 RNAi (pink) and daf-16 RNAi

(yellow) show similar trends. Box plots based on individual worm data from all worms of the same genotype across all

experiments. Analysis on an individual experiment basis leads to the same conclusion (S6 Fig).

https://doi.org/10.1371/journal.pone.0229583.g006
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important to keep in mind that fewer worms are alive at later time points, therefore the

recorded survivor activity relies on fewer data points as time progresses (Fig 7).

The choice of time interval does not influence the determination of lifespan for control or

short-lived (daf-16 RNAi-treated) populations (Fig 8 and S4 Table). However, in the case of

Fig 7. Average survivor activity is always higher for longer time intervals. (A) Control populations display an activity

decline in line with [7]. (B) The typical ‘twilight tail’ [13] or ‘gerospan’ [26] is observed in daf-2 RNAi-treated populations,

where animals maintain low-level activity for the majority of their extended life. (C) In contrast, the activity of daf-16 RNAi-

treated populations decreases slightly faster than that of controls.

https://doi.org/10.1371/journal.pone.0229583.g007

Fig 8. Lifespan of the long-lived condition is most sensitive to the choice of time interval. Population averages as

calculated for control (black), daf-2 (pink) and daf-16 (yellow) RNAi-treated populations (error bars: standard error of

the mean), when different time intervals are used for determination of lifespan. Time intervals of� 60 seconds are

advisable.

https://doi.org/10.1371/journal.pone.0229583.g008
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daf-2 RNAi-treated animals, time intervals do affect the lifespan decision (S4 Table). Here, the

calculated average lifespan reaches a plateau for intervals as of 60 seconds (Fig 8). Similar

trends are true for individual experiments (S8 Fig). Overall, time intervals� 60 seconds are

acceptable for robust lifespan determination.

Defining individual health

The ultimate goal of this analysis is to facilitate the search for conditions that affect life- and

healthspan via medium- to high-throughput screens. Whereas lifespan is based on a binary

measurement (the worm is either alive or not), healthspan is a nebulous concept. To identify

interventions that affect health in large screens, however, a simple ‘health threshold’ that allows

a similar binary decision, would nevertheless be helpful.

To test whether such a threshold can be found, we determined which observed pixel differ-

ence values correspond to which qualitative assessments of health. For this, we defined five cat-

egories describing an animal’s movement (very fast—fast—medium fast—slow—inactive, see

Methods). Blinded evaluations of 694 activity movies collected from 23 animals over their

entire lifespans then allowed to assign each movie to one of these categories. We decided that

animals in the slow or inactive categories—i.e. barely moving, or not at all (see Methods)—are

unhealthy. When linking the WorMotel-calculated pixel difference to the categorical value of

each data point (Fig 9A), this analysis showed that despite some overlap between qualitative

categories, decreasing pixel differences correspond to decreasing locomotive health. Therefore,

the most suitable threshold value should maximize the number of truly healthy worms in

healthy (very fast—fast—medium fast) categories, while maximizing the number of truly

unhealthy worms in the unhealthy categories (slow–inactive, excluding data for dead animals).

A first analysis including all data, showed that such a threshold can be found around 177 pixels

changed (S9 Fig). Further refining to best differentiate the ‘medium fast’ and ‘slow’ animals,

reveals a threshold to be set at approximately 160 pixels different (Fig 9B), an observation that

Fig 9. Decreasing pixel differences caused by worm movement correspond to decreasing locomotive health. (A) Each

dot in the figure represents the pixel difference (calculated by WorMotel analysis) for a single observation that was assigned

to one of five qualitative categories (x-axis). (B) Above a pixel difference of 160, most animals are scored as healthy

(~medium fast movement) by operators, whereas the majority of animals below this threshold are considered less healthy

(~slow movement). Black line: fraction of animals in the ’slow’ category with a pixel difference value< x-axis value; red line:

fraction of animals in the ’medium fast’ category with a pixel difference value>x-axis value.

https://doi.org/10.1371/journal.pone.0229583.g009
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holds true when analyzing individual plates (S10 and S11 Figs). We defined a worm as healthy

when it showed an activity value above 160 pixels of difference, which is on the lenient side of

the pixel difference options for threshold-based, binary (yes-no) assessment of health.

Building on this threshold, we define ‘total days of health’ (TDH) as the total number of days

on which the animal showed an activity higher than 160 pixels, and the healthspan as the last

day of its life for which this was true. One can then calculate health(span) ratios as TDH/lifespan

or healthspan/lifespan, to reflect the proportion of its life an animal can be considered healthy.

Longer time intervals also suit the assessment of health status

As is true for lifespan, the choice of time interval between analyzed images (Fig 8, S4 Table and

Methods) affects the ability to quantify an animal’s activity, hence, health. We tested the effect

of time-interval on the quantification of TDH and HS, based on the threshold for health being

160 pixels changed. As time intervals below 80 seconds are unadvisable for lifespan calculations,

we opted to look at the time intervals ranging from 80 to 540 seconds included in this study.

Within this range, the choice of time interval does not affect the quantification of TDH and HS

for any of the genotypes (Fig 10 and S4 Table). For health(span) ratios, the effects of time inter-

val are also less outspoken as these will influence TDH&HS vs LS values in similar ways.

Taken together (Figs 8 and 10), our data show that time intervals of>60 seconds are suit-

able to analyze WorMotel data of diverse conditions. We propose 100 seconds as the ideal

compromise between improved activity detection and number of data points collected during

one monitoring period, as the latter decreases for increasing time intervals.

TDH, HS and integrated activity of the population together aid in

interpreting health

Whereas the concept of healthspan (HS) fits the hypothesis of gradual activity decline over

aging very well, it is susceptible to severe misinterpretation of longitudinal health in a number

Fig 10. Total days of health and healthspan quantifications are not sensitive to the choice of time interval within the

80–540 seconds range. Population averages for control (black), daf-2 (pink) and daf 16 (yellow) RNAi-treated populations

with accompanying standard error bars (reflecting standard error of the mean) when different time intervals are used for

determination of (A) total days of health (TDH) and (B) healthspan (HS) are shown. Time intervals of>60 seconds are

advisable.

https://doi.org/10.1371/journal.pone.0229583.g010
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of instances, e.g. in case of a single bout of activity right before death, after a long period of

sickness. In such situations, total days of health (TDH) is a better representation of longitudi-

nal health, but it is also more susceptible to day-to-day variation, e.g. classifying a single day of

low activity in between several days of obvious health, as unhealthy. Our data show that most

HSR values strongly near 1, hence, calculated HS often nearly equals LS (S5 Table). Visual

inspection of activity traces from individual worms reveals that in general, HR values better

approximate the observed fraction of life spent in a healthy state (S12 Fig). In addition, when

comparing the long- and short-lived conditions with controls, HR is capable of distinguishing

daf-2 RNAi-treated populations from internal controls for each experiment, whereas HSR

failed to do so in one experiment plate (S6 Table). As expected, neither could distinguish daf-
16 RNAi-treated animals from controls (S6 Table). Based on all these observations, we suggest

HR as the primary choice for health readout in experiments where throughput demands fast

and simple indicators of potentially interesting conditions.

While TDH and HS are valuable readouts at the level of individual worms, there is comple-

mentary value in comparing health at the population level. Additional health information is

contained in the shape of the population-level activity curve (Fig 2D), and a metric reflecting

this holds added value to the threshold-based TDH and HS. To incorporate this, we also use

the area under the population-based survivor activity curve (Fig 11) as a health metric, for ease

called integrated activity (IA). For our data, this value is consistently larger for daf-2 and lower

for daf-16 RNAi-treated populations, as would be expected. Long-lived populations will have

larger IA values, despite potentially adding more unhealthy time. Between populations of simi-

lar longevity, however, higher IA values reflect interventions that lead to more responsive ani-

mals. As opposed to the binary TDH or HS call, IA is assessed along a continuous scale,

adding information on the extent of the effect at the population level. In combination with

TDH or HS, this more integrative population metric helps distinguish interventions with dis-

proportionate effects on health vs longevity.

Fig 11. Normalized IA helps distinguish treated populations from controls. (A) The mean normalized lifespan (x-axis)

vs total days of health (y-axis) and (B) normalized IA (x-axis) vs normalized HR (y-axis), are shown in relation to EV

control populations (black, coordinates 1:1:1, all normalizations to internal controls). Average normalized values for

populations treated with daf-2 (pink) or daf-16 (yellow) RNAi from Experiment I (‘^’), Experiment II (‘Δ’), Experiment III

(‘x’) or Experiment IV (‘o’) are used as coordinates.

https://doi.org/10.1371/journal.pone.0229583.g011
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The analysis described here aimed to select parameters that can easily distinguish control

from long- and short-lived interventions. For this, we relied on the well-described daf-16 and

daf-2 extremes, but also aim to account for long-lived populations that escape the ‘extended

twilight’ phenotype [13]. It can be concluded that for screening purposes, WorMotel data can

be collected at 5s intervals and analyzed at 100s intervals. For fast selection of interesting inter-

ventions in settings of considerable throughput, we propose to describe each by a combination

of three parameters: lifespan, health ratio (~total days of health) and population-based inte-

grated activity. The WorMotel’s ease of use and immense throughput potential balance its

larger chip-to-chip variation (in comparison with variation over manual assays), as has been

observed for other solutions aiming at increasing throughput [17]. This is why relative assess-

ment, by normalization of individual data to the values of respective control populations, facil-

itates direct comparison over experiments (Fig 11). As expected, daf-16 RNAi-treated

populations are fairly similar to EV populations but can be distinguished based on integrated

activity (Fig 11). daf-2 RNAi-treated populations show lower normalized health ratios, with ~

20% decrease of HR mean (Fig 11) and are easily distinguished by a significantly increased LS,

decreased HR and increased integrated activity. Conclusions drawn from the here proposed

analysis workflow are supported by each individual experiment, hence, are insensitive to inter-

experiment variations.

Discussion

This study aimed to develop a straightforward and user-friendly protocol for rapid identifica-

tion of interventions affecting aging in C. elegans. Our proof of concept study relies on data

obtained with the WorMotel [7] and concludes that a variety of interventions can be tested

when collecting data at 5s intervals, from which daily peak activity can be calculated using a

time interval of 100s. These are the basis for candidate evaluation using three parameters: (1)

lifespan, (2) total days of health, and (3) integrated activity, which allow straightforward dis-

crimination of differently aging populations, and keep performing under inter-experimental

variation as is typical for these longitudinal experiments [17,25]. Relevant scripts can be found

in S2 File.

Collective efforts in the field have revealed pathways capable of determining lifespan of C.

elegans. However, no perfect consensus can be reached on the concept of being ‘healthy’, as it

is an umbrella term covering many facets of quality of life. Several groups have used different

physiological parameters to describe health in C. elegans, such as oxidative and heat stress

resistance, pharyngeal pumping and autofluorescence [6], vulval integrity [27], intestinal atro-

phy [28], muscle integrity and yolk production [10]. We here selected daily, stimulated peak

activity over daily, stimulated average/median activity as a readout for overall health, as peak

values were most robust and less prone to day-to-day activity variations (Fig 5 and S2 Table).

The WorMotel setup uses blue light to stimulate the animals [22,29], therefore peak activity

reflects the intrinsic maximal ability of the animal to react to blue light and is evaluated over its

lifetime. This organismal response integrates health status of the animal’s perceptive abilities

with its neuromuscular health. Whereas interventions affecting sensory perception, overall

neuronal or muscular health cannot be separated by our approach, previous studies showed

no significant difference between survival curves of animals grown in WorMotels (stimulated

by blue light) and animals grown in standard plates (stimulated by touch) [7], indicating that

the WorMotel provides a good readout of general health in aging populations.

Our analysis revealed that defining the daily activity of a worm by condensing its activity

trace of one monitoring period in different ways, delivers slightly different information (S1

and S2 Figs, and S1 Table). The strong correlation of peak with maximal values on one hand,
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vs of median with integral values on the other, indicates that these parameters together reflect

only two interpretations of the stimulated activity trace. Indeed, integral values (~median) take

the ability of sustained locomotion upon stimulation into account, whereas peak (~maximal)

values are more indicative of the initial ability to respond to the stimulus.

Our definition of health requires individuals to stay above a threshold chosen based on a

qualitative analysis of locomotive health in ageing worms. We found that, independent of phe-

notype, largely non-responding worms—i.e. slow or inactive—can be roughly discriminated

from healthy animals by applying a pixel difference threshold of 160 (Fig 9, S9 and S10 Figs).

While this proved the optimal choice, especially for cases where considerable throughput is

expected for data analysis, our data also clearly show overlap between categories, due to large

spread within categories (Fig 9 and S11 Fig). This indicates that also for the WorMotel, health

remains a noisy concept, and a binary decision (yes or no) is not to be taken as the sole pillar

of decision.

In the same line of reasoning, HR deals with limitations regarding the extent to which an

animal is healthy. This is why ‘integrated activity’ is a useful additional metric, even though it

can only be used at population level and disproportionally weighs the activities of the longer-

vs shorter-lived individuals. For populations with similar lifespans and similar HR, IA permits

to select the healthier ones. This is especially interesting when looking for interventions that

increase health more than they increase longevity, a combination of high biological and medi-

cal interest.

Several methods have been reported for automated life- and healthspan evaluation in C. ele-
gans [7,16–18,20,21]. While their relevance is evident, widespread use is hampered because

these are often the product of in-house optimization. Hence, there are no plug-and-play solu-

tions and the expertise to use such systems is typically contained within only a few individuals

globally. With this work, we offer the community an analysis pipeline to easily adopt the Wor-

Motel system as described by Churgin et al. [22]. It is our hope that this may facilitate the

implementation of automated life- and healthspan evaluation in other labs, as such contribut-

ing to progress in the field.

Supporting information

S1 Fig. Peak and maximal activity on one hand, vs median and integral activity on the

other hand, form two separate groups of correlative parameters. Activity calculated by

using the peak values correlates perfectly with maximal activity values (99th percentile) at any

time interval (A), whereas correlation with integral (B) and median (C) values is time interval

dependent. (D) Integral values, on the contrary, correlate well with median values, but neither

of these (E integral, F median) escape the weaker and interval-dependent correlation with

maximal activity. These data suggest that only two interpretations of the activity profile are

made by determination of peak/maximal and median/integral daily activities. Time interval

dependence of the correlations in B, C, E and F is easily explained by the higher sensitivity of

median/integral values to the time interval between analyzed images.

(TIF)

S2 Fig. Correlation of individual worm data calculated at 100 seconds interval visually

shows the two separate groups of correlative parameters. Activity was calculated based on

the different parameters for each worm on each day, independent of genotype. (A) Activity

calculated by using the peak values correlates perfectly with maximal activity values (99th per-

centile), whereas correlation with (B) integral and (C) median values is less pronounced. (D)

Integral values, on the contrary, correlate well with median values, but both (E integral, F
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median) show a weaker correlation with the maximal value.

(TIF)

S3 Fig. Peak activity values result in activity curves with the lowest variation, as is clear

from the distributions of overall variation based on daily median, integrated, peak or max-

imal activity for control (black), daf-2 (pink) or daf-16 (yellow) RNAi-treated populations

across all experiments by increased time interval. For each individual, day-to-day variation

was calculated as stated in the main text. Box values: Q1-2-3, whiskers: +/–2.7σ.

(TIF)

S4 Fig. Also for individual experiments plates, peak and maximal activity values result in

activity curves with the lowest variation. Distributions of overall variation based on daily

median, integrated, peak or maximal activity for control (black), daf-2 (pink) or daf-16 (yel-

low) RNAi-treated populations across all experiments (A Exp I; B Exp II; C Exp III; D Exp IV)

follow the same trends as pooled data (Fig 5). For each individual, day-to-day variation was

calculated as stated in the main text. Box values: Q1-2-3, whiskers: +/–2.7σ.

(TIF)

S5 Fig. Variance in Z-score is similar for all activity parameters at all time intervals, as is

clear from the distributions based on daily median, peak, maximal or integrated activity

for pooled control (black), daf-2 (pink) or daf-16 (yellow) RNAi-treated populations across

all experiments. For each individual, day-to-day variation was calculated as stated in the main

text. Box values: Q1-2-3, whiskers: +/–2.7σ.

(TIF)

S6 Fig. Variance in Z-score based on individual plates is similar for all activity parameters

at all time intervals, as is clear from the distributions based on daily median, peak, maximal

or integrated activity for control (black), daf-2 (pink) or daf-16 (yellow) RNAi-treated popula-

tions across all experiments (A Exp I; B Exp II; C Exp III; D Exp IV). For each individual, day-

to-day variation was calculated as stated in the main text. Box values: Q1-2-3, whiskers: +/–

2.7σ.

(TIF)

S7 Fig. Average survivor activity is higher for longer time intervals across all experiments.

Average survivor activity for control, daf-2 and daf-16 RNAi-treated populations for (A-C)

Exp II, (D-F) Exp III and (G-I) Exp IV. Longer time intervals (�60s) provide more accurate

measurements, this is especially important in late phases of life.

(TIF)

S8 Fig. The choice of time interval for activity evaluation affects the determination of LS in

a genetype-dependent manner across all experiments. Mean lifespan (error bars: standard

error of mean) was calculated for different time intervals for (A) Exp I, (B) Exp II, (C) Exp III

and (D) Exp IV. The choice of time interval does not affect the calculation of lifespan of con-

trol (black) and daf-16 RNAi-treated (yellow) populations but does affect lifespan decisions

made for the long-lived daf-2 RNAi-treated (pink) populations.

(TIF)

S9 Fig. A majority of observed pixels changed for healthy worms lie above 177 pixels,

whereas the majority of observed pixels changed for unhealthy worm lie under this value.

Determination of a threshold that maximizes the number of truly healthy worms in healthy

(very fast—fast—medium fast) categories, while maximizing the number of truly unhealthy

worms in the unhealthy categories (slow—inactive) led to a threshold value of 177 pixels
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changed. Black line: fraction of animals in the ’slow’ category with a pixel difference value < x-

axis value; red line: fraction of animals in the ‘very fast’, ‘fast’ and ’medium fast’ category with a

pixel difference value >x-axis value.

(TIF)

S10 Fig. Threshold determination on individual plate level is very similar to pooled data,

with cumulative curves of from medium fast and slow worms intersecting at approximately

160 pixel differences for (A Exp I; B Exp II; C Exp III; D Exp IV).

(TIF)

S11 Fig. Decrease in pixel differences with locomotive health follows similar trend for indi-

vidual plates, with lower pixel differences being assigned to categories of lower locomotive

health. In general, pixel differences below 160 belong to categories 4 and 5 for A Exp I; B Exp

II; C Exp III; D Exp IV.

(TIF)

S12 Fig. Three examples illustrate visually that TDH is a better approximation of health

observed in our data when compared to HS. We plotted the activity profile of three individ-

ual wild-type worms whose HS was 1, but whose TDH (A) strongly, (B) moderately or (C)

slightly deviated from HS. Activity profile of (A) shows a flare of activity in the last day of life,

resulting in a misleadingly high HS. TDH of (B) nears HS more than in case of (A), however,

fluctuations in the activity profile of this worm indicate that TDH has a better representation

of the animal’s health. (C) TDH deviates only two days from the quantified HS, nevertheless,

leads to a better approximation of health. All three worms visually indicate that HR (~TDH) is

a more accurate quantification of observed health than HSR (~HS).

(TIF)

S1 Table. Correlation of tested activity parameters depends on the parameter and time

interval. Correlation of the activity values based on either median, peak, maximal (99th per-

centile) or integral values (see Methods) was tested with a linear regression model for each

strain (Column D) and time interval (column E). R2-values (column C) show that peak activity

correlates well with 99th percentile value, while median and integral values correlate well with

each other. Correlation becomes stronger with increasing time interval.

(XLSX)

S2 Table. Data based on peak or maximal activity show the lowest overall variation. Overall

variation was calculated for pooled (per genotype) activity data based on either median, peak,

maximal (99th p = 99th percentile) or integral values (see methods), as calculated for each time

interval (column D). Differences (columns A vs B) were compared via Kruskal-Wallis testing

(column C: multiple testing-corrected p-values). Bold red: p-values indicative of statistically

significant differences.

(XLSX)

S3 Table. Use of different activity parameters does not influence variance in Z-score. Vari-

ance in Z-score pooled (per genotype) activity data based on either median, peak, maximal

(99th p = 99th percentile) or integral values (see Methods), as calculated for each time interval

(column D). Differences (columns A vs B) were compared via Kruskal-Wallis testing (column

C: multiple testing-corrected p-values). Bold red: p-values indicative of statistically significant

differences.

(XLSX)
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S4 Table. Time intervals affect the determination of lifespan in a genotype-dependent

manner. Lifespan was calculated for pooled (per genotype) activity data for each time interval

under consideration. Differences (columns A vs B) were compared via Kruskal-Wallis testing

(column C: multiple testing-corrected p-values). Bold red: p-values indicative of statistically

significant differences.

(XLSX)

S5 Table. HSR values for individual worms often equal 1, independent of genotype or

experiment. LS, HR and HSR values for individual worms for each population and experiment

are shown. HSR values often equal 1 for different genotypes, meaning that healthspan and life-

span are the same. HR values on the contrary, reflect more what has been observed in literature

with values that often vary from 0.5 to 0.8.

(XLSX)

S6 Table. Health(span) ratio of daf-2 RNAi treated animals is significantly different from

internal controls. H(S)R of controls, daf-2 and daf-16 RNAi-treated animals were calculated.

H(S)R distributions of daf-2 and daf-16 RNAi treated animals were probed for significant dif-

ferences from controls at the same threshold (multiple testing-corrected p-valueKruskal-Wallis <

0,05). Significant p-values are marked in red.

(XLSX)

S1 File. Pixel difference datafiles for all experiments. Pixel differences per worm per day

were calculated (see Methods) and stored in daily pdata files. Number in pdata file name

increases with time. Each column in a pdata file represents an individual worm (from 1 to

240), with each row listing a value according to the time vector.

(ZIP)

S2 File. Tutorial for data analysis. This includes relevant scripts (See Tutorial).

(ZIP)

Acknowledgments

The authors are grateful to Dr. Wouter De Haes for advice regarding statistics, to Ing. Erind

Jushaj for assistance with VBA programming, to Bram Cockx for tutorial testing and to

Wahab Al-Aani, Elke Vandewyer and Amanda Kieswetter for quality assessment of move-

ment. Strains used in this study were provided by Caenorhabditis Genetics Center (CGC).

Author Contributions

Conceptualization: Areta Jushaj, Matthew Churgin, Christopher Fang-Yen, Liesbet

Temmerman.

Data curation: Areta Jushaj, Matthew Churgin.

Formal analysis: Areta Jushaj.

Funding acquisition: Areta Jushaj, Christopher Fang-Yen, Liesbet Temmerman.

Investigation: Areta Jushaj.

Methodology: Areta Jushaj, Matthew Churgin.

Project administration: Areta Jushaj, Liesbet Temmerman.

Resources: Areta Jushaj, Miguel De La Torre.

Software: Areta Jushaj, Matthew Churgin, Bowen Yao.

PLOS ONE Healthspan in C. elegans

PLOS ONE | https://doi.org/10.1371/journal.pone.0229583 March 3, 2020 18 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229583.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229583.s017
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229583.s018
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229583.s019
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229583.s020
https://doi.org/10.1371/journal.pone.0229583


Supervision: Matthew Churgin, Christopher Fang-Yen, Liesbet Temmerman.

Validation: Areta Jushaj.

Visualization: Areta Jushaj.

Writing – original draft: Areta Jushaj.

Writing – review & editing: Areta Jushaj, Matthew Churgin, Christopher Fang-Yen, Liesbet

Temmerman.

References
1. Kaeberlein M. How healthy is the healthspan concept? GeroScience 2018; 40:361–4. https://doi.org/

10.1007/s11357-018-0036-9 PMID: 30084059

2. Luyten W, Antal P, Braeckman BP, Bundy J, Cirulli F, Fang-Yen C, et al. Ageing with elegans: a

research proposal to map healthspan pathways. Biogerontology 2016; 17:771–82. https://doi.org/10.

1007/s10522-016-9644-x PMID: 27040825

3. Ross JL, Yudin J, Galluzzi K. The geriatric assessment team: A case report. Fam Syst Med 1992;

10:213–8. https://doi.org/10.1037/h0089169

4. Lemmink KAPM, Han K, De Greef MHG, Rispens P, Stevens M. Reliability of the Groningen Fitness

Test for the Elderly. J Aging Phys Act 2001; 9:194–212. https://doi.org/10.1123/japa.9.2.194

5. Ito T. Comprehensive Physical Function Assessment in Elderly People. Clin. Phys. Ther., InTech;

2017. https://doi.org/10.5772/67528

6. Bansal A, Zhu LJ, Yen K, Tissenbaum HA. Uncoupling lifespan and healthspan in Caenorhabditis ele-

gans longevity mutants. Proc Natl Acad Sci 2015; 112:E277–86. https://doi.org/10.1073/pnas.

1412192112 PMID: 25561524

7. Churgin MA, Jung SK, Yu CC, Chen X, Raizen DM, Fang-Yen C. Longitudinal imaging of caenorhabdi-

tis elegans in a microfabricated device reveals variation in behavioral decline during aging. Elife 2017;

6:e26652. https://doi.org/10.7554/eLife.26652 PMID: 28537553

8. Hahm JH, Kim S, Diloreto R, Shi C, Lee SJ V., Murphy CT, et al. C. elegans maximum velocity corre-

lates with healthspan and is maintained in worms with an insulin receptor mutation. Nat Commun 2015;

6:8919. https://doi.org/10.1038/ncomms9919 PMID: 26586186

9. Newell Stamper BL, Cypser JR, Kechris K, Kitzenberg DA, Tedesco PM, Johnson TE. Movement

decline across lifespan of Caenorhabditis elegans mutants in the insulin/insulin-like signaling pathway.

Aging Cell 2018; 17:1–14. https://doi.org/10.1111/acel.12704 PMID: 29214707

10. Herndon LA, Schmeissner PJ, Dudaronek JM, Brown PA, Listner KM, Sakano Y, et al. Stochastic and

genetic factors influence tissue-specific decline in ageing C. Elegans. Nature 2002; 419:808–14. https://

doi.org/10.1038/nature01135 PMID: 12397350

11. Huang C, Xiong C, Kornfeld K. Measurements of age-related changes of physiological processes that

predict lifespan of Caenorhabditis elegans. Proc Natl Acad Sci U S A 2004; 101:8084–9. https://doi.org/

10.1073/pnas.0400848101 PMID: 15141086

12. Pincus Z, Smith-Vikos T, Slack FJ. MicroRNA predictors of longevity in caenorhabditis elegans. PLoS

Genet 2011; 7. https://doi.org/10.1371/journal.pgen.1002306 PMID: 21980307

13. Zhang WB, Sinha DB, Pittman WE, Hvatum E, Stroustrup N, Pincus Z. Extended Twilight among Iso-

genic C. elegans Causes a Disproportionate Scaling between Lifespan and Health. Cell Syst 2016;

3:333–345.e4. https://doi.org/10.1016/j.cels.2016.09.003 PMID: 27720632

14. Marck A, Berthelot G, Foulonneau V, Marc A, Antero-Jacquemin J, Noirez P, et al. Age-related changes

in locomotor performance reveal a similar pattern for Caenorhabditis elegans, Mus domesticus, Canis

familiaris, Equus caballus, and Homo sapiens. Journals Gerontol—Ser A Biol Sci Med Sci 2017;

72:455–63. https://doi.org/10.1093/gerona/glw136 PMID: 27522057

15. Mathew MD, Mathew ND, Ebert PR. WormScan: A Technique for High-Throughput Phenotypic Analy-

sis of Caenorhabditis elegans n.d. https://doi.org/10.1371/journal.pone.0033483

16. Rahman M, Hewitt JE, Van-Bussel F, Edwards H, Blawzdziewicz J, Szewczyk NJ, et al. NemaFlex: A

microfluidics-based technology for standardized measurement of muscular strength of: C. elegans. Lab

Chip 2018; 18:2187–201. https://doi.org/10.1039/c8lc00103k PMID: 29892747

PLOS ONE Healthspan in C. elegans

PLOS ONE | https://doi.org/10.1371/journal.pone.0229583 March 3, 2020 19 / 20

https://doi.org/10.1007/s11357-018-0036-9
https://doi.org/10.1007/s11357-018-0036-9
http://www.ncbi.nlm.nih.gov/pubmed/30084059
https://doi.org/10.1007/s10522-016-9644-x
https://doi.org/10.1007/s10522-016-9644-x
http://www.ncbi.nlm.nih.gov/pubmed/27040825
https://doi.org/10.1037/h0089169
https://doi.org/10.1123/japa.9.2.194
https://doi.org/10.5772/67528
https://doi.org/10.1073/pnas.1412192112
https://doi.org/10.1073/pnas.1412192112
http://www.ncbi.nlm.nih.gov/pubmed/25561524
https://doi.org/10.7554/eLife.26652
http://www.ncbi.nlm.nih.gov/pubmed/28537553
https://doi.org/10.1038/ncomms9919
http://www.ncbi.nlm.nih.gov/pubmed/26586186
https://doi.org/10.1111/acel.12704
http://www.ncbi.nlm.nih.gov/pubmed/29214707
https://doi.org/10.1038/nature01135
https://doi.org/10.1038/nature01135
http://www.ncbi.nlm.nih.gov/pubmed/12397350
https://doi.org/10.1073/pnas.0400848101
https://doi.org/10.1073/pnas.0400848101
http://www.ncbi.nlm.nih.gov/pubmed/15141086
https://doi.org/10.1371/journal.pgen.1002306
http://www.ncbi.nlm.nih.gov/pubmed/21980307
https://doi.org/10.1016/j.cels.2016.09.003
http://www.ncbi.nlm.nih.gov/pubmed/27720632
https://doi.org/10.1093/gerona/glw136
http://www.ncbi.nlm.nih.gov/pubmed/27522057
https://doi.org/10.1371/journal.pone.0033483
https://doi.org/10.1039/c8lc00103k
http://www.ncbi.nlm.nih.gov/pubmed/29892747
https://doi.org/10.1371/journal.pone.0229583
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