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Abstract

A number of studies revealed that our visual system can extract different types of summary

statistics, such as the mean and variance, from sets of items. Although the extraction of such

summary statistics has been studied well in isolation, the relationship between these statistics

remains unclear. In this study, we explored this issue using an individual differences approach.

Observers viewed illustrations of strawberries and lollypops varying in size or orientation and

performed four tasks in a within-subject design, namely mean and variance discrimination tasks

with size and orientation domains. We found that the performances in the mean and variance

discrimination tasks were not correlated with each other and demonstrated that extractions of

the mean and variance are mediated by different representation mechanisms. In addition,

we tested the relationship between performances in size and orientation domains for each

summary statistic (i.e. mean and variance) and examined whether each summary statistic has

distinct processes across perceptual domains. The results illustrated that statistical summary

representations of size and orientation may share a common mechanism for representing the

mean and possibly for representing variance. Introspections for each observer performing the

tasks were also examined and discussed.
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Introduction

Variation is a major feature of the natural world. For example, grapes in a cluster appear
similar, but upon closer examination, differences in colour, size and shape are apparent;
similarly, children in the same age-group may resemble each other, but they exhibit large
differences in size, character and mental states. Under these circumstances, people can
categorise objects, events and living states in our environment, estimate the average value
or extent of variation and prepare for adaptive decision-making. Many studies have
described this visual ability as a statistical summary representation or ensemble
representation, and researchers in several fields have explored behavioural characteristics
(e.g. Alvarez, 2011; Ariely, 2001; Barlow & Tripathy, 1997; Brady, Shafer-Skelton, &
Alvarez, 2017; Chong & Treisman, 2003; Haberman, Brady, & Alvarez, 2015; Morgan,
Mareschal, Chubb, & Solomon, 2012) as well as the neurophysiological basis for such
representation systems (Cant & Xu, 2012; Leib et al., 2012).

It is important to note that studies of summary statistical representation can be roughly
categorised into two approaches: the psychophysical approach (e.g. Barlow & Tripathy,
1997; Dakin & Watt, 1997; Watamaniuk, 1993) and the cognitive approach (e.g. Alvarez,
2011; Ariely, 2001; Brady et al., 2017; Chong & Treisman, 2003; Haberman et al., 2015).
These two approaches differ in the property of stimuli, the number of stimuli in a set, and the
experience of an observer of the mean extraction task.

The psychophysical approach has mainly used textures or random dots as stimuli; stimuli
sets are composed of considerably large number of simple items including dots and Gabor
patches; a few experienced observers participated in the experiment with a large number of
trials; the efficiency with which observers could extract summary statistics is tested using the
ideal observer analysis. Some psychophysical studies share stimuli with cognitive approach
(Solomon, Morgan, & Chubb, 2011; Tokita, Ueda, & Ishiguchi, 2016). For example,
Solomon et al. used eight circular discs as stimuli set.

However, the cognitive approach, with which the present study concerns, has used items
more complicated than the dots or Gabor patches, including circles with different sizes,
different facial expressions, sequence of different tones and others; the number of stimuli
in a set ranged from 2 to 16, which is considerably smaller than those in the psychophysical
approach; a large number of inexperienced observers participated in the experiment and the
efficiency of extraction of summary statistics is tested using the precision of the extraction of
mean values across the set size and presentation time. Noticeably, it has been suggested that
there are three pieces of behavioural evidence for the efficient extractions of summary
statistics. First, the precision of extraction of mean values remains constant regardless of
the number of stimuli in a set (Chong & Treisman, 2003, 2005; Haberman & Whitney, 2009),
suggesting that the mean value is not calculated one at a time. Second, the precision of mean
values is not affected by the presentation time (Chong & Treisman, 2003; Leib, Kosovicheva,
& Whitney, 2016). Besides, Chong & Treisman (2003) demonstrated that observers could
extract the mean value of the stimuli in a set at a presentation time as low as 50ms. Third, the
mean value is extracted even when information of an individual item is not recognised by the
observer, suggesting that summary statistics of stimuli in a set may be computed without
representing individual items (Ariely, 2001; Chong & Treisman, 2003; Tokita et al., 2016).

Previous researches in the cognitive approach illustrated that observers can extract
statistical values over a range of visual properties, including size (Alvarez, 2011; Ariely,
2001; Chong & Treisman, 2003; Oriet & Brand, 2013), position (Alvarez & Oliva, 2008)
and emotional expression (Haberman & Whitney, 2009, 2011). This ability is not limited
to static and simultaneous events, as it is observed in sequentially presented events (Albrecht,
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Scholl, & Chun, 2012; Corbett & Oriet, 2011; Hubert-Wallander & Boynton, 2015) and
dynamic objects, such as expanding and contracting circles (Albrecht & Scholl, 2010).
Moreover, the ability to represent statistical properties is not only limited to visual
properties but also observed for auditory properties such as extracting frequency
information from sequences of sounds (Piazza, Sweeny, Wessel, Silver, & Whitney, 2013)
and temporal variation of sounds (McDermatt, Schemisch, & Simoncelli, 2013). These
representations of statistical properties have been suggested to assist our judgement and
behaviour more efficiently than assessing each object or event individually (e.g. Alvarez,
2011; Ariely, 2001, 2008; Chong & Treisman, 2003; Robitaille & Harris, 2011). This ability
may preserve cognitive resources, such as memory and selective attention load, and provide
rich information about the environment rapidly and parsimoniously.

Although there is an understanding of the possible existence of general summary
representation systems (e.g. Alvarez, 2011; Ariely, 2001, 2008; Chong & Treisman, 2003),
it has not been tested whether different types of summary statistics share a common system or
whether dedicated systems exist for different summary statistics. Summary statistics include
the mean, variance, skewness, kurtosis and correlation (when more than one variable is
observed). Nevertheless, most studies investigated the mean, and some studies examine the
variance of items in a set; however, the relationship between these statistics has not been
tested. This, therefore, poses the question of whether different types of summary statistics
share a common system or have distinct processes. For instance, is there a common
mechanism supporting all summary statistic types, or are multiple mechanisms for a
specific summary statistic at work? When we calculate the variance of a data set formally,
we must first determine the mean value of the set. Does the statistical summary system work
in the same manner or, unlike formal calculation, do distinct processes exist?

To clarify whether the summary statistical process is supported by a common or separate
mechanism(s), we employed an individual difference approach. The approach has been
employed by many studies that explored the functional organisation of cognitive
mechanisms (Haberman et al., 2015; Huang, Mo, & Li, 2012; Underwood, 1975; Wilmer,
2008). Individual difference approaches are particularly useful for addressing questions of
cognitive processes because they take advantage of the intrinsic variability present in a
population sample (Bosten et al., 2015; Bosten & Mollon, 2010; Huang et al., 2012). By
examining how performance on different tasks is correlated, we can infer whether such
processes are likely supported by a common underlying mechanism or independent
operating mechanisms. For example, Haberman et al. (2015) used an individual difference
approach to define the functional organisation of ensemble perception, testing whether the
cognitive processes between high- and low-level ensemble representations are correlated.

In line with the approach, if the results from the mean and variance representation tasks
are strongly correlated, then it is predicted that the mean and variance are supported by a
common mechanism. However, the lack of a correlation indicates that different processes are
involved in representing the mean and variance. Specifically, if different summary statistics
share a common system, then an individual who can precisely represent the mean value of a
set of items should also be able to precisely represent the variance of the set. That is, there
should be a relationship regarding performance in mean and variance representation tasks. If
a positive relationship is observed, then it is predicted that a common summary statistics
mechanisms exists for representing the mean and variance of a set of items. Alternative,
distinct mechanisms for the mean and variance suggest that multiple summary statistical
processors specific to each type of statistical value exist. In other words, there are separate
‘cognitive mechanisms’ for representing the mean and variance.
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Concerning the introspections of observers, we asked them to describe how they
performed each task at the end of the experimental session. Although the explicit
statements may not necessarily predict the exact behavioural processes, it would be useful
to know the strategy observers employed at the conscious level.

Concerning the perceptual domains of items, we used size and orientation in this study, as
both domains have been well examined in mean and variance tasks (Chong & Treisman,
2003; Morgan et al., 2012; Parkes, Lund, Angelucci, Solomon, & Morgan, 2001; Solomon
et al., 2011; Tanaka & Ishiguchi, 2006; Tokita et al., 2016). In the size and orientation
domains, most studies used discs and Gabor patches, respectively; however, we introduced
more familiar and realistic items such as illustrations of strawberries as the size stimuli and
those of lollypops as the orientation stimuli. The reason was to test whether an ability of the
statistical summary representation extends to a wide range of objects, as objects in the natural
world are multidimensional. It is important to know whether observers could extract
summary statistical values of illustrations with the same precision as observed for more
primitive objects. Thus, in addition to the primary objective, we explored whether
representing the mean and variance of sets of complicated items (i.e. illustrations of
strawberries and lollypops) could be represented in equivalent precision to simple items
such as discs and Gabor patches. When we compared the results of complicated items
with the simple items, we used the results of the simple items in previous research because
we did not use the simple items in this study.

Along with exploring the relationship between the mean and variance in size and
orientation domains, we tested the relationship between performances in size and
orientation domains for each summary statistic (i.e. mean and variance) and examined
whether each summary statistic has distinct processes across perceptual domains.
Regarding this issue, Haberman et al. (2015) revealed no correlation between the mean
representation of high- (i.e. emotional expression) and low-level items (i.e. orientation),
thus arguing against a single domain-general ensemble mechanism. We tested this
possibility using size and orientation domains. If performances in the size and orientation
domains in the mean or variance tasks are correlated, then the mean or variance may be
represented via a common process.

Thus, this research had one primary and two secondary objectives, and it was conducted
using an individual differences approach. The primary objective was to test whether different
types of summary statistics (i.e. mean and variance) share a common system or whether
dedicated systems exist for each statistical value. In addition, we explored whether
representing the mean and variance of sets of complex items could be represented with
equivalent precision to that for simple items such as discs and Gabor patches. Moreover, we
tested whether a single domain-general mechanism supports multiple statistical
representations or whether domain-specific mechanisms are at work for the mean and
variance.

Experiment

Observers performed four tasks, namely mean and variance representation tasks combined
with size and orientation domain conditions. All tasks were performed with a within-subject
design. Four measures were gathered. First, the correct rate for each comparison level was
calculated, and the discriminability threshold of each task in each perceptual domain was
obtained. Second, the correlations between performances in the mean and variance
representation tasks in each domain were calculated. Third, the correlation between
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performances in the size and orientation mean tasks and that between performances in the
size and orientation variance tasks were calculated. In addition, introspections were obtained
from each observer at the end of experimental sessions.

Method

Participants

A total of 32 observers (19 females and 13 males), all with normal or corrected-to-normal
visual acuity, participated in all tasks. Fourteen observers were undergraduate students from
Mejiro University, the others were undergraduate and postgraduate students from
Ochanomizu University.

All observers provided informed consent prior to participation, and they were not
informed of the purpose of this study. This research was approved by the Mejiro
University’s institutional review board.

Apparatus

The experiment was conducted in a normally lit room. Stimuli were displayed on an iMac
desktop computer monitor controlled by a Macintosh computer (Mac OS X). Stimuli were
generated using Psychophysics Toolbox Version 3 (Brainard, 1997; Kleiner et al., 2007; Pelli,
1997) for MATLAB (Version 8.4, Mathworks, MA). Observers viewed the screen with both
eyes, and they were seated approximately 60 cm from the screen.

Design

We considered two perceptual domains (size and orientation) and two types of summary
statistics (mean and variance). Concerning each domain, the participants were required to
perform the mean representation task (i.e. mean task) and variance representation task (i.e.
variance task). Thus, there were four tasks in total. Each participant performed all four tasks,
yielding within-subjects designs across two perceptual domains for two summary statistics.

Each task comprised standard and comparison stimuli. We introduced four comparison
levels in each task. At the end of experimental sessions, each participant answered
questionnaires about how he or she performed the tasks.

Stimuli

Figure 1 shows examples of item sets. Regarding the item for the size domain, we used an
illustration of a strawberry created using PowerPoint. The item for the orientation domain
was an illustration of a lollypop, also created using PowerPoint. All items were presented
against a light grey background.

All parameters used in both tasks were decided on the basis of pilot studies. To control the
variance of item sets, we used a fixed variance generation method in which the mean and SD
of the samples randomly drawn from normal distribution were fixed to the expected value
(Tokita & Ishiguchi, 2015).

The items of each domain were placed in a square cell with specific side lengths. The array
was divided into a 4� 3 matrix. Each cell subtended a visual angle of 1.16� � 1.16�. The entire
array subtended 5.56� � 6.25�. The items were arranged within the array. Each item was
displayed at the centre of each cell.
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Size domain. Figure 1(a) and (c) presents examples of items for the size domain. The size
of an item was defined by a square of the side length of the item. Henceforth, side
‘length’ denotes ‘size’ in this domain for simplicity. The mean size of items in a set was
represented as 1, and the size of each item in a set was expressed relative to the mean size.
Variance was expressed as previously described (Tokita et al., 2016).

In the mean task, two stimuli were presented sequentially, namely standard and
comparison stimuli, in each trial (Figure 2(a)). The standard set consisted of 12 items (i.e.
an illustration of strawberries) and the comparison stimulus consisted of a single item. In the
standard stimuli, a set of 12 items was presented in the array area. Lognormal Gaussian noise
lnN (lnLength, ssize

2 ), in which length and ssize represent the base length and SD of the
distribution, respectively, was added to the length of each item of a set independently. It
has been established that a lognormal distribution of circle diameters will produce a Gaussian
distribution of discriminable sizes after logarithmic transduction (Solomon et al., 2011).
Although the items in this study were not discs, we introduced the same methods because
both tasks dealt with area.

(a) (b)

(c) (d)

Base size

Relative size = Item size/Base size

Item size

Figure 1. Two types of items: a strawberry for the size domain and a lollypop for the orientation domain.

(a) and (b) Illustration of how size and orientation were controlled for each domain. (c) and (d) Examples of

stimulus sets.
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The size variance of the standard stimuli was fixed to a square of 0.14 in the relative size
scale. There were four comparison levels, namely squares of 0.87, 0.93, 1.07 and 1.05, relative
to the mean size of the standard set.

In each trial, all of the presented items were randomly scaled by a small multiplicative
factor to discourage the observers from basing their judgements on previously viewed items.
Four multiplicative factors (1, 1.05, 1.1 and 1.15) were used, and the same factor scaled all
items in any one trial.

Regarding the variance task, schematic views of stimulus presentation are shown in
Figure 2(b). Stimulus presentation followed that described for the mean task except that
both arrays (i.e. standard and comparison sets) comprised 12 items. The array positions of
the standard and comparison sets were changed randomly; in half of the trials, the standard set
appeared on the left side while the comparison set appeared on the right side, or vice versa.

The size variance of the standard set was fixed to a square of 0.14, as described for the
mean task. The size variances of the comparison sets were squares of 0.17, 0.20, 0.23 and
0.26; thus, there were four comparison levels.

In each trial, the sizes of the item in a set were randomly scaled by a same multiplicative
factor as described for the mean task. The added scale factor could differ between the
standard and comparison sets; thus, the absolute mean size of items in a comparison set
could differ from that in the standard set. Specifically, the variance was controlled on the
basis of the relative sizes of items. This operation was necessary to ensure that observers
would perform the task by truly extracting the size variance of items and not by referring to
the size of outliers.

Orientation domain. Stimulus presentation followed that for the size domain. The orientation
of the sticks of lollypops varied (Figure 1(b)). Schematic diagrams of the trial sequence in
each task are shown in Figure 3(a) and (b), respectively.

In the mean task, the base orientation of the items in the standard set was randomly
chosen from orientations ranging from �30� to þ30� relative to vertical (�:
counterclockwise; þ: clockwise). Gaussian noise N(0, sorien

2 ) was added to the orientation
of each item of a set independently. The orientation variance of the standard stimuli was fixed
to a square of 13�. There were four comparison levels: �14�, �8�, 8� and 14� relative to the
mean orientation.

(a) (b)

Fixation 500ms

Standard Stimuli
240ms

Blank until response

Comparison Stimulus
240ms

Blank 400ms

Blank 600ms

Fixation 500ms

Standard stimuli
240ms

Blank until response

Comparison Stimulus
240ms

Blank 400ms

Blank 600ms

Figure 2. Schematic diagrams of trial sequences in the mean (a) and variance tasks (b) for the size domain.
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In the variance task, stimulus presentation followed that in the mean task except that both
arrays (i.e. standard and comparison sets) comprised item sets. The original orientation of the
items in the standard and comparison sets was randomly and independently chosen from
orientations ranging from�30� to 30� relative to vertical. Thus, the original orientation could
differ between the standard and comparison sets. Gaussian noise N(0, sorien

2 ) was added to
the orientation of each item of a set independently. The variance of the standard stimuli was a
square of 13�. The variances of the comparison stimuli were squares of 16�, 19�, 22� and 25�;
thus, there were four comparison levels. Note that although the proper way of generating the
orientation variance may be with von Miles circular statistics, we used a conventional way of
variance computation, as the same way in the orientation variance discrimination task in
previous studies (Morgan, Chubb, & Solomon, 2008; Solomon et al., 2011). To test the
validity of using the normal distribution in calculating the variance, we compared the
probability density function of von Mises circular statistics to that of normal distribution
with the variance values used in the present study and demonstrated that the von Mises
distribution with this variance value approximate to the normal distribution.

Procedure

A schematic view of stimulus presentation is shown in Figures 2 and 3. Observers completed
one 50-min session that consisted of a practice block of eight trials, followed by four
experimental blocks of 80 trials each (4 comparison levels� 20 repetitions), thus resulting
in a total of 320 trials. The comparison levels and the order of trials were randomly mixed.
The order of blocks was counterbalanced across observers using a balanced Latin square,
which controls for order effects. Observers were required to obtain correct rate of 100% in
the practice trials to ensure they fully understood the task instructions. A two-alternative
forced choice procedure was used in all tasks.

Each trial started with the display of a fixation cross for 500ms followed by a blank
screen for 400ms. The items in a set were first presented for 240ms. The comparison item
was presented for 240ms after a blank screen for 600ms, and then a blank screen was
shown until a response was recorded. The next trial automatically began 500ms after the
response. In the mean task for the size domain, observers were asked to decide whether

(a) (b)(a) (b)

Fixation 500ms

Standard Stimuli
240ms

Blank until response

Comparison Stimulus
240ms

Blank 400ms

Blank 600ms

Fixation 500ms

Standard Stimuli
240ms

Blank until response

Comparison Stimulus
240ms

Blank 400ms

Blank 600ms

Figure 3. Schematic diagrams of trial sequences in the mean (a) and variance tasks (b) for the orientation

domain.
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the comparison item was larger or smaller than the mean size of items in a standard set.
When they thought that the comparison item was smaller than the mean size of the item
set, they pressed the right arrow key; otherwise, they pressed the left arrow key. In the
mean task for the orientation domain, observers were asked to decide whether the
orientation of the comparison item (i.e. sticks of lollypops) was clockwise or
counterclockwise to the mean orientation of the standard set. When they thought that
the comparison item was clockwise to the mean orientation, they pressed the right arrow
key; otherwise, they pressed the left arrow key.

In the variance task, observers were asked to decide which item set in a sequence had a
larger variance in size or orientation. When they thought that the variance on the right array
was larger than that on the left array, they pressed the ‘z’ key; or otherwise, they pressed
the ‘c’ key.

No feedback about the correctness of the response was provided for any of the trials. The
correct rate on each block was presented at the end of the block to motivate each observer to
fully engage in the experiment.

Analysis

We calculated the mean correct rates. We used these measures and performed the following
four analyses. First, we examined how precisely the observers represented the mean and
variance. In the size condition, the Weber fraction (Wf) and point of subjective equality
(PSE) were measured. In the orientation condition, just noticeable difference (JND) and
PSE were measured using the method of constant stimuli. The sizes or orientations for the
comparison item were plotted on the x-axis, and the proportion of larger or clockwise
responses for each comparison stimulus was plotted on the y-axis. Fits of psychometric
function were done for means across observers. The plotted data points constructed the
psychometric function approximated using a cumulative Gaussian function. Wf and JND
were defined as the smallest stimulus number change for which a correct response rate of 75%
was achieved. The PSEs were obtained as the values of the locations on the psychometric
function at which the standard and comparative choice probabilities were equal to 50%.
Second, the correlations between the total correct rates in the mean and variance tasks for
each domain were tested. Third, the correlations between the total correct rates in the size
and orientation domains for each summary statistic were tested.

Results

Data for two observers were excluded as follows. One observer did not understand the
instructions, as his or her correct rate under the difficult condition was higher than those
under easier conditions, which were less than 50%, suggesting that the observer had
responded oppositely. The other observer appeared to have difficulty in performing the
mean orientation task, as she or he needed more than 3 s to respond in 8 of 20 trials.
Thus, data were collected for 30 observers.

Performance for the Mean and the Variance Tasks

Size domain. Figure 4(a) shows the correct rate for each comparison level and the mean rate for
the mean task. Figure 4(c) shows the psychometric function created by the mean of choice
frequency of ‘larger’ responses at the comparison level. The Wf of the mean task was estimated
to be 0.08 (an 8% side length difference), whereas the PSE was estimated to be 1.09. The Wf
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value was almost equivalent to the precision of averaging tasks in several studies that used
simple circular stimuli and found a diameter distance of 6% to 8% for a 75% correct rate
(Ariely, 2001; Chong & Treisman, 2003; Tokita et al., 2016). Thus, it is indicated that observers
could extract a mean value from a set of complicated objects such as strawberries with the same
accuracy observed for simpler circular items. The value of PSE was larger than 1, suggesting that
the average size of items in a set was overestimated compared with the comparison size. The
result was consistent with that of Tokita et al. (2016), who found that a naı̈ve observer tended to
overestimate the mean size of a set of circular items.

Figure 4(b) shows the correct rate for each comparison level and the mean rate for the
variance task. Figure 4(d) shows the psychometric functions created by the mean ‘larger’
response at each comparison level. The Wf was estimated to be 0.39 (in SD). The Wf value
was almost equivalent to the precision of the variance discrimination task in previous studies
that used discs as items in a set (Tokita et al., 2016; Ueda, Tokita, & Ishiguchi, 2014). In this
study, the Wf was ranged from 0.35 to 0.42 for a 75% correct rate. Thus, it is indicated that
observers could discriminate the variance between sets of items such as strawberries, with the
same accuracy observed for simpler circular items.

Orientation domain. Figure 5(a) shows the mean correct rates of observers along each
comparison level and the mean rate. Figure 5(c) shows the psychometric functions created
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Figure 4. Correct rate at each comparison level and the mean rate (total) in the mean and variance tasks in

the size domain (a, b). Psychometric functions in the mean and variance tasks (c, d).
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by the mean correct rate at each comparison level. The JND of the mean task was estimated
to be 10.9�, whereas the PSE was estimated to be �3.20�. The JND was almost equivalent to
the precision of averaging tasks in a previous study that used Gabor patches (Yang, Tokita,
& Ishiguchi, 2016). In their study, the JND was ranged from 8.6 to 11.5. Thus, it is indicated
that observers could extract the mean orientation of a set of items such as lollypops with the
same precision observed for Gabor patches. The PSE was smaller than 0, suggesting that the
average orientation of a set of objects was slightly biased toward the clockwise direction.
As bias was not systematically tested in any previous research, further investigation is
necessary to obtain the general picture.

Figure 5(b) shows the correct rate at each comparison level and the mean response rate for
the variance task. Figure 5(d) shows the psychometric functions created by the average correct
rate at each comparison level. The JND of the variance task was estimated to be 7.02�. The JND
was also similar to the precision of the variance discrimination tasks in previous studies that
used simple Gabor patches (Tokita & Ishiguchi, 2015; Ueda et al., 2014). Thus, it is indicated
that observers could discriminate the variance between sets of objects such as lollypops with
similar precision as observed for simpler stimuli such as Gabor patches.
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Correlation Between the Mean and Variance Tasks in Each Domain

Figure 6(a) and (b) shows the correlation between performances in the mean and variance
tasks in the size and orientation domains, respectively. As shown in the figure, correlations
between the mean and variance tasks were extremely weak in the size (r¼ .14, p¼ .37, 95%
confidence interval [CI]¼�0.24–0.47) and orientation domains (r¼ .19, p¼ .32, 95%
CI¼�0.18–0.51). Thus, precision in extracting the mean size of items in a set does not
predict an observer’s ability to represent size variance. This was also the case in the
orientation domain. The results imply that representations of mean and variance may
involve independent, distinct processes across perceptual domains.

Correlation Between the Size and Orientation Domains for Each Summary Statistic

Figure 6(c) and (d) shows the correlations between performances for the mean task in the size
and orientation domains and those for the variance task in the size and orientation domains,
respectively. As shown in Figure 6(c), there was a moderate and significant correlation for
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Figure 6. The correlation between the mean and variance tasks in the size and orientation domains (a, b).

The correlation between the size and orientations domains across tasks (c, d).
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individual performances between the size and orientation domains in the mean task (r¼ .51,
p< .01, 95% CI¼ 0.18–0.73). Thus, precision in extracting the mean orientation of items in a
set moderately predicts an observer’s ability to extract the mean size of an item set. The
results suggest that representation of the mean may be a general process, at least for the size
and orientation domains.

As shown in Figure 6(d), although nonsignificant, there was also a moderate correlation
between the size and orientation conditions in the variance task (r¼ .31, p¼ .09, 95%
CI¼�0.06–0.60). Thus, it is uncertain whether precision in extracting the orientation
variance of items in a set may predict an observer’s ability to precisely extract the size variance.

Classification of Comments for Each Task

All observers were asked to complete a form consisting of four questions: (a) How did you
estimate the mean size of a strawberry? (b) How did you discriminate the variance of
strawberry sizes? (c) How did you estimate the mean orientation of lollypops? (d) How did
you discriminate the orientation variance? The classifications of answers in each task are
shown in Figure 7. We classified all answers using the keyword extraction method, which has
been used to classify free descriptive data obtained from questionnaires (Beliga, 2014;
Kimura, 1995). Briefly, we created a database of answers for each questionnaire and
summarised the answers, and we extracted keywords based on usage frequency and
relevance to the tasks. Then, we organised the keywords to classify each answer to the
group with similar keyword usage. Overall, the observers appeared to use various
strategies to perform each task. For both tasks in the size domain, observers commented
that they focused on the maximum and minimum sizes of strawberries and used the
information to perform the tasks. Some observers noted that they focused on the larger
items and found it difficult to ignore them. Conversely, in the mean orientation task, most
observers commented that they make decision ‘at a glance’ or ‘on intuition’, suggesting that
they did not have particular strategy for extracting the mean. In the orientation variance task,
observers stated that they focused items with extreme orientations, which was similar to the
strategy used for the variance task in the size domain.

Discussion

We explored whether different types of summary statistics shared a common representation
system or whether a dedicated system was employed for each statistic. In this experiment, we
focused on the mean and variance of items in a set as summary statistics in comparison and
introduced size and orientation as the perceptual domains of the items. To address the issue,
we employed an individual-differences approach that enabled us to infer whether a certain
process is supported by a common underlying mechanism or involved distinct mechanisms
(e.g. Haberman et al., 2015; Huang et al., 2012). We predicted that if different summary
statistics share a common system, then an individual who can precisely represent the mean
values of the set should also be able to precisely represent the variance of the set. Namely,
there would be considerable correlation between performances in the mean and variance
tasks. Our results revealed no significant correlation between performances in the mean
and variance tasks for both domains, implying that the derivation of the mean and
variance are mediated by the distinct representation mechanisms for human observers.

Thus, we could conclude that estimation of the mean and variance may involve distinct
underlying mechanisms, at least for size and orientation domains. This does not deny the
possibility of common underlying mechanisms for those summary statistics. It may be that
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the representation mechanism for the summary statistics comprises multiple cognitive
processes, and there could be some common underlying processes across perceptual domains.

In addition to the primary purpose, we tested whether representing the mean and variance
of complex items could be performed with equivalent precision as observed for simple items
such as discs and Gabor patches. We introduced familiar and realistic items, namely
illustrations of strawberries for the size domain and those of lollypops for the orientation
domain. Our results demonstrated that observers could discriminate the mean and variance
between sets of illustrations with precision equivalent to that for simple items. Thus, the
findings provide evidence that the statistical summary representation could extend to more
realistic and natural objects than discs and Gabor patches. Objects in the natural world are
multidimensional, and they differ in colour, size, shape and other factors. When we consider
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that the statistical summary representation ability evolved and developed in such an
environment, it is to be expected that the statistical summary representation is effective
with more natural, complex items than discs and Gabor patches. Our findings are
noteworthy because few studies have attempted to prove this point. It should be noted
that the sizes of the components of the strawberry illustrations are correlated. When the
overall size of the strawberry was increased, the red, green and black component areas were
increased by the same ratio. This may help observers to derive the mean value.

Moreover, we tested the relationship between performances in the mean and variance tasks in
the size and orientation domains. We predicted that if different perceptual domains share a
common mean representation system, then an individual who could precisely represent the mean
size of an item set should also be able to precisely represent the mean orientation of the set. In
other words, there would be considerable correlation between performances in the mean size
and orientation tasks. Our result revealed a significant correlation between the individual
performances in the size and orientation mean tasks, suggesting that a common
representation system exists across perceptual domains. In relation to this issue, Haberman
et al. (2015) found no correlation between low- and high-level perceptual domains (e.g.
orientation and facial expression), whereas they found correlation within the respective low-
(e.g. orientation and colour) and high-level perceptual domains (e.g. person identity and facial
expression). Thus, they claimed that the statistical summary representation is not derived by a
single, domain-general process. The relationship between perceptual domains depends on how
proximal they are in the space. In line with their argument, our results suggest that orientation
and size domains are close to each other in perceptual space and that the statistical summary
mechanism for each domain are close or similar enough to result in similar output results, as
orientation and size are considered low- and middle-level perceptual domains, respectively. We
also tested whether estimation of the variance of items in a set shares a general representation
mechanism across perceptual variables. We found a mild correlation between performances in
the size and the orientation variance tasks, although nonsignificant. There may be a common
process for variance representation across perceptual domains. As only a few studies have tested
variance, further investigations are necessary to draw definitive conclusions on this matter.

Additionally, we obtained the observers’ introspections while they performed each task.
The results demonstrated that the observers used various strategies to extract the mean and
variance, even with a short observation time of 240ms, and that there were large individual
differences in strategies across tasks and perceptual domains. The findings imply that there
might be some conscious and focused attention process in the statistical summary
representation, although automatic and distributed attention processes in the statistical
summary representations were claimed in previous studies (Chong & Treisman, 2003,
2005). It should be noted that the introspections of observers might not necessarily reveal
the representation processes. Nevertheless, they revealed how observers performed each task,
at least at the level of consciousness.

It should be noted that we used the undergraduates and postgraduate students as the
observers, it may be that the variance in the sample may be too low to find correlations.
It is necessary to use a larger variety of observers in future studies.

Further investigations are necessary to support the findings of this study more explicitly.
The following three investigations should be considered. First, it will be effective to test
whether the practice effect in the mean task transfers to performance in the variance task.
If the representation of variance is independent of the representation of the mean, the
practice effect in the mean task would not transfer to the performance of the variance
task. Simultaneously, if the representation variance involves a common process across
feature domains, the practice effect in one task would be transferred to the second task.
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Second, a post-cue method in which observers are informed of the demands of the task after
viewing stimuli in each trial should be tested. In the post-cue procedure, the observers do not
prepare a particular strategy for the task (i.e. mean or variance task) prior to stimulus
presentation. If the mean and variance share a common representation mechanism, then
the performance in the post-cue procedure may not differ from that in the pre-cue
procedure. Third, to generalise the present results, it is necessary to use different types of
visual properties such as colour, position and speed. As we mentioned in the Introduction
section, the present study concerns types of stimuli used in the cognitive approach. It is,
however, necessary to use stimuli set such as larger number of random dots, of moving dots
and textures, which are used in the psychophysical approach.

In summary, our results revealed three important characteristics in representing summary
statistics. First, representations of the mean and variance may involve distinct processes, at
least for size and orientation domains. Second, size and orientation may share a common
mechanism for representing the mean and possibly for representing variance. Third, despite
individual differences, human observers can extract the mean and variance of complex items
featuring multiple dimensions. To provide a clear description of the statistical summary
representation(s), further work is required to determine the relationship between different
summary statistics across various perceptual domains.
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