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ABSTRACT: Evaluating the presence of a slight amount of water
plays a crucial role in practical applications such as the advanced
detection of dew condensation and the microdetermination of
perspiration and transpiration. For this purpose, we have developed a
configuration for the moisture sensor that consists of a microgalvanic
cell composed of narrow metal arrays. It is inferred that the output
response current arising from this sensor should depend on the
geometric parameters (e.g., number, area, volume, etc.) of water
droplets attaching on the sensor surface. In this study, the output
current was recorded, while the microscopic images of the sensor
surface were captured. The droplets on the sensor surface were analyzed manually and by computational image processing with deep
learning and ImageJ. The deep learning technique shortened the processing time to 1/1000 of the manual one and was able to match
90−100% of the manual count. The results revealed that the response current increased with the total projected area of droplets
bridging the galvanic-coupled arrays on the sensor surface. In addition, a straight line with relatively strong positive correlation was
obtained between the response current and the total volume of the bridging droplets. These findings suggested that our sensor can
be practically used to estimate the presence of a slight amount of water.

■ INTRODUCTION

Evaluating the presence of a slight amount of water is highly
required in application fields such as for the advanced
detection of dew condensation and microdetermination of
perspiration. In particular, real-time monitoring of natural
perspiration involves a detailed assessment of body’s entire
humidity addressing the chemistry and physiology of the body.
However, recently proposed techniques could not provide a
direct contact detection method, and their reusability and
repeatability are still not clear.1−4 In addition, the early
detection of dew condensation is expected to provide precise
protection from environmental humidity, avoiding its adverse
economic effects.5,6 Therefore, a system for precise predictive
control of humidity/water droplets should be established to
control the health conditions and to avoid dew condensation
and its worrying consequences in industrial processes such as
in pharmaceutical, agricultural, and automobile industries;
meteorological monitoring; and other fields.7−12,14 However,
achieving practical systems for the rapid detection of a formed
droplet at an early stage with high accuracy remains a
challenging task using the ordinary existing technologies. To
date, a polymer-based condensation sensor13 (which cannot
distinguish between water droplets and the condensed water
vapor) is used despite its low sensitivity. In addition, chilled
mirror dew point hygrometers14 and dew detectors15 are also
used widely despite their limitations such as detection of visible
droplets at a considerably large millimeter scale, delayed

response and recovery times, narrow humidity detection range
(i.e., inability to respond precisely at lower and higher RH),
less stability, and above all, inability to quantitatively estimate
the detected droplet amount/mass. Therefore, these limita-
tions make these systems inconvenient for practical applica-
tions.
In National Institute for Materials Science (NIMS), we

developed a microgalvanic cell system termed the moisture
sensor that can rapidly and accurately predict small droplets
(in a micrometer scale) which are generated during the early
dew condensation stage.16−20 The use of the semiconductor
micro-/nanofabrication technology to develop our sensor has
enabled us to achieve its facile mass production. Our
developed sensor has a Si substrate coated on the SiO2 surface
with a repeated comb-like structure of two dissimilar metal
electrodes. The intercalated gap between each electrode pair
worked as a microgalvanic cell,16 as shown in Figure 1. In
principle, when the water droplet bridges the two electrodes, a
rapid response galvanic current is generated in contrast to

Received: September 17, 2021
Accepted: October 22, 2021
Published: November 4, 2021

Articlehttp://pubs.acs.org/journal/acsodf

© 2021 The Authors. Published by
American Chemical Society

30818
https://doi.org/10.1021/acsomega.1c05161

ACS Omega 2021, 6, 30818−30825

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Moataz+Mekawy"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eiji+Terada"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shinji+Inoue"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yukihiro+Sakamoto"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jin+Kawakita"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.1c05161&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05161?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05161?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05161?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05161?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/6/45?ref=pdf
https://pubs.acs.org/toc/acsodf/6/45?ref=pdf
https://pubs.acs.org/toc/acsodf/6/45?ref=pdf
https://pubs.acs.org/toc/acsodf/6/45?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.1c05161?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


normal modern hygrometers. This response sheds light on the
application feasibility of our developed sensor in, for instance,
(1) detection of a slight amount of water and determination of
the droplet size spontaneously and accurately.17 (2) Detection
of dew condensation by analyzing the surface nature of the
actual target via proper modification of the sensor surface (i.e.,
changing the wettability of the sensor surface), improving its
sensitivity and accuracy.18 (3) Facile surface modification
according to the heat capacity of the actual target object,
making it more suitable for various scientific and practical
applications.19 (4) Its output response current showed a linear
behavior with the variation in the cooling rate of the sensor
surface and the vapor pressure in its vicinity, demonstrating the
sensor’s ability for advanced detection applications.20

Herein, we established a configuration for the moisture
sensor that consists of a microgalvanic cell composed of
narrow metal arrays associated with an optical microscope.
Such a configuration enabled us to simultaneously monitor the
adsorbed water droplets on the sensor surface with an optical
microscope and measure the stable output response current of
the sensor.16−21 It is worth mentioning that the contact angle
between the water droplet and the sensor surface was 33°.18

Moreover, we did not experience any change in surface
roughness or texture during our measurements since we used
the same sensor surface throughout this study. From these
previous results, it is inferred that the output response current
may depend on the geometric parameters (number, area,
volume, etc.) of the water droplets adsorbed on the sensor
surface, which is still not clear yet. Therefore, in order to
correlate the sensor’s output response with the geometric
parameters of the water droplet quantitatively, it is necessary to
measure the output response at different water droplet
adsorption states. However, arbitrary control on the adsorption
state of water droplets is not possible with the current
experimental conditions. Therefore, the number and the total
area of water droplets could be effectively evaluated from the
corresponding optical images of the sensor surface, and the
output response current of the sensor is limited to the water
droplets bridging the electrodes. However, analyzing manually
and counting the bridging water droplets to extract the relevant
water droplets from several images and evaluating their
number and projected area require a considerable amount of

time and labor. Therefore, computational image processing is
highly favorable to reduce the analysis time from hours to
seconds.
The purpose of this study is to establish a quantitative

correlation between the geometric parameters of water
droplets on the sensor surface and the output response current
through simultaneous monitoring of water droplets adsorbed
on the sensor surface and the measurement of the response
current. For such a purpose, the optical images of the sensor
surface with adsorbed water droplets were manually analyzed
prior to further analysis using computation-based image
processing with ImageJ and deep learning.

■ EXPERIMENTAL SECTION

Measurement of Response Current by Droplets with
a Moisture Sensor. The fabrication of our moisture sensor
was carried out by Oita Device Technology Co., Ltd, Japan, as
described previously.16−21 In brief, a silicon wafer whose
surface was insulated with a silica layer was used as a substrate
on which thin arrays made of dissimilar metals were alternately
arranged as opposed to comb-like electrodes. The two
dissimilar metal electrodes Al and Au were set with 10 μm
gap spacing. Each electrode has a width of 1 μm and a
thickness of 0.15 μm, as shown in Figure 1a. The repeated
number of electrode pairs was 50. Such a combination allows
the natural growth of water droplets under controlled humidity
on the sensor surface in its effective area (the area needed to
generate the galvanic current), which closely matches with the
gap spacing. It is expected that the surface nature of the sensor,
such as hydrophilicity and hydrophobicity, can remarkably
affect the shape and size of water droplets and consequently
the galvanic current response.18,21 The response current from
the electrode pairs was collected as an analog signal and
converted to digital data by using a module with an electrical
circuit, as shown in Figure 1b. The details of the measurement
module are also described elsewhere. In this study, the
response current was measured at an interval of 200 ms.18

Introduction of Water Droplets on the Sensor’s
Surface. The measurement module of the moisture sensor
and a thermo-hygrometer (E + E Elektronik/EE23) were
installed in a double-walled chamber (Figure 1c). The chamber
was cooled by continuously circulating cold water (10 °C)

Figure 1. Structure and placements of galvanic-coupled arrays on the sensor (a), sensor chip measurement module and schematic illustration of the
galvanic arrays and the working principle with water droplets (b), and schematic diagram of simultaneous water droplet generation and sensor
surface observation (c).
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between the inner and outer walls using a microcirculator. A
precision humidity control generator (Micro Equipment Inc.,
me-40DPRT-2FM-MFC) was used to generate and supply
humidity-controlled air in a fixed humidity range of 90% or
more to the chamber (near the sensor) at 200 NCCM. Next,
the circulating cold water temperature was increased up to 20
°C for 120 s to increase the temperature inside the chamber.
Hence, condensation was induced on the sensor surface by
keeping its temperature relatively lower than that inside the
chamber. After 120 s, the cooling water temperature was
returned again to 10 °C and then the water droplets on the
sensor surface were evaporated. We used a combination of Al
(anode) and Au (cathode) dissimilar electrodes due to the
ease of their nanofabrication deposition in addition to the wide
potential difference between them. Thus, the oxidation of the
Al electrode and the electrochemical oxygen reduction that
occurs on the surface of the Au electrode allow the facile
detection of the galvanic electric current once the water
droplet bridges these two electrodes. Accordingly, the choice
of electrode combination is expected to influence the
experimental results.
Observation of the Sensor’s Surface. The sensor surface

was simultaneously monitored from the top using a digital
camera of an optical microscope (VHX-7000 Series; KEY-
ENCE, Osaka, Japan), as shown in Figure 1c.
Image Analysis. Image analysis was performed on the

recorded optical images of the sensor’s surface, and the total
area within the contour of water droplets bridging the
electrodes was estimated using three different methods.
Manual Estimation. Manual estimation was carried out

using the original microscopic images recorded with time as a
function of relative humidity and time. The number of water
droplets and their area were manually estimated using ImageJ
software without any image processing steps.
Computational Estimation with ImageJ Processing.

Figure 2 shows a typical model of the ImageJ processing

pathway. ImageJ is an open source image analysis software that
has been widely used with a proven track record among
scientific researchers.22,23 Its processing in our study started
with the selection of microscopic images assuming that the
electrodes located on the sensor surface are parallel to the y-
axis. Thus, the selected image was transformed into its
analogous grayscale, followed by the 2-D fast Fourier transform
(FFT) operation. Remarkable white spots were recorded at
equal distances along the x-axis. These spots were mainly due
to the electrodes and thus the electrodes’ positions were
determined. Further processing was carried out using the
inverse FFT to eliminate the interference of the electrodes’
white spots. Hence, the water droplet spots could be clearly
recognized without interference. Using ImageJ automation for
pixel adjustment followed by image binarization24,25 enabled us
to determine the position of each droplet by classifying its role

in bridging the two electrodes and making a clear distinction of
the pure bridging droplets which are responsible for response
galvanic current. Thus, the number of droplets along with their
correlated areas could be estimated.

Computational Estimation Using Deep Learning.
Prior to real computational estimation, a training deep learning
model was established wherein annotation of bridging water
droplets was carried out using selected microscopic images.
Accordingly, the number of identified chosen bridging water
droplets was adjusted to around 1000. Figure 3 shows a typical
model of the deep learning processing pathway.

To execute real-time analysis, a microscopic image was
selected followed by inclusion of the identified water droplets
(with respect to the training model) within the selected frame
of a rectangular boundary box with all probable electrode
straddling ways. Based on that, droplets with an area that
represents 65% of the outer boundary box area were chosen
assuming that the droplet’s oval height and width are less than
those of the rectangular boundary box (i.e., HRWH = 1.2
WOHO). Therefore, the total area of the oval droplet is about
65% compared to that of the rectangular boundary box.
Afterward, further classification of water droplets was carried
out to distinguish the bridging droplets which are responsible
for the galvanic current response. Position determination was
carried out for each distinguished droplet correlating its x and y
coordinates. Finally, the statistical estimation of the number of
water droplets and their area was carried out.

■ RESULTS AND DISCUSSION
Relation between the Sensor Output and the Droplet

Status. Figure 4I shows the output current response from the
moisture sensor recorded with time during adsorption and
desorption of droplets on the sensor surface.
Figure 4II shows the corresponding microscopic images of

the sensor surface at different recording times. Before starting
the experimental work, the clear surface of the sensor surface is
shown in image a. After introducing humid air feed to the
chamber that contains the sensor, water droplets are adsorbed
onto the sensor surface and bridging between the electrodes
took place, leading to the rapid generation of a remarkable
output response current (0.15 ks, microscopy image b).
The response current increased when the number of

droplets increased on the surface at 0.23 ks, reaching almost
a maximum value at 0.39 ks and remained nearly at the same
current level up to 0.55 ks. Simultaneously, the corresponding
microscopic images (0.39 and 0.55 ks, microscopy images d
and e) showed that a large number of water droplets covered a

Figure 2. ImageJ processing pathway of a microscopic image that
includes water droplets straddling the moisture sensor electrodes.

Figure 3. Deep learning image processing pathway of water droplets
straddling moisture sensor electrodes including the choice of droplets
with the area that represents 65% of the rectangular boundary box
area followed by bridging classification and final distribution and area
estimation. Rectangular height and width: HR and WR. Oval height
and width: HO and WO.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c05161
ACS Omega 2021, 6, 30818−30825

30820

https://pubs.acs.org/doi/10.1021/acsomega.1c05161?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05161?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05161?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05161?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05161?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05161?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05161?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05161?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c05161?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


wider area on the sensor surface than that previously recorded
and appeared somehow similar to each other. This indicated
that there was no significant change in the apparent water
droplet area, with no significant increase or decrease in the
observed response current value. Afterward, it was noticed that
the current decreased rapidly (0.65 ks, microscopy image f),
while fewer water droplets were observed on the sensor
surface, indicating that the partial evaporation was taking place.
Finally, no response current was recorded, indicating the
complete evaporation of the previously adsorbed water
droplets (0.80 ks, microscopy image h).
These results indicated that the sensor instantaneously

generated a current response due to the adsorption of water
droplets that were effectively bridging the electrodes. Hence,
the response current depended mainly on the droplets bridging
the projected areas and/or the coverage status between
electrodes. The projected area is thus defined as the area of
the droplet covering the electrodes located on the sensor
surface, hereafter denoted generally as area in this paper. Since
the output response current decreased to its background value
due to the evaporation of bridging water droplets, our analysis
in this paper will focus on the bridging process that starts with
the generation of response current until reaching its saturation
maximum before evaporation. For more clear evidence for the
experimental results gained above, we manually estimated the
number of water droplets at each time point, as shown in
Figure 4II.
It is well known that performing manual image analysis such

as a cut-out of some interfering hundred droplets requires a
few hours. However, the choice of faster processing image
analysis methods is recommended for analyzing within tens of
seconds, especially while there are numerous data available.
Therefore, computational image processing estimation was

carried out using ImageJ and deep learning. Table 1 lists the
number of water droplets obtained by manual counting,
ImageJ, and deep learning analysis methods at different
experimental times.

As listed in Table 1, the matching rate of the estimated
number of water droplets by deep learning image processing
and manual counting was 90−100%, whereas the matching rate
was only 0−57% while using ImageJ processing. This is
because ImageJ processing could not separate and detect
adjacent droplets accurately and regarded a lot of them as one
large droplet which consequently gave errors in the estimation
of the droplet number. Moreover, it could not recognize
droplets when the boundary was not clearly defined. In other
words, contrast between their periphery and the background
was ambiguous. On the other hand, deep learning processing
takes advantage of droplet recognition with such ambiguity and
therefore a high matching rate could be achieved.
Figure 5a shows the change in the number of bridging water

droplets with time. Experimental results revealed a close
matching between the number of water droplets estimated
manually and that estimated using deep learning processing,
whereas the number of droplets estimated using ImageJ
processing showed less matching. Figure 5b shows the
histogram distribution between the number of droplets and

Figure 4. Output response current in logarithmic (solid line) and
linear (dashed line) scales recorded with time during adsorption and
evaporation of droplets on the sensor surface (I). The optical images
of the sensor’s surface at different times of experiment: (a) 0.00, (b)
0.15, (c) 0.23, (d) 0.39, (e) 0.55, (f) 0.65, (g) 0.67, and (h) 0.80 ks
(II).

Table 1. Number of Water Droplets Bridging Arrays on the
Sensor’s Surface Counted by Different Methods: Manual
Process and Image Analysis by ImageJ and Deep Learning
at Certain Times

image analysis (matching rate % in
brackets)

time/ks manual process ImageJ deep learning

0.15 3 0 (0) 3 (100)
0.23 331 56 (17) 364 (90)
0.55 397 228 (57) 407 (97)
0.65 177 48 (27) 184 (96)

Figure 5. Change in the number of bridging water droplets with time
(a) and statistical distribution of the bridging water droplets’ total area
at equilibrium 0.49 ks (b) analyzed by manual count (black), deep
learning (orange), and ImageJ (blue).
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the total area of bridging water droplets on the sensor surface
at 0.49 ks, which was estimated using manual, ImageJ, and
deep learning processing methods. The total area is defined as
the summation of bridging droplets’ areas. These results
demonstrated that the estimated total area using deep learning
showed a relatively higher degree of distribution agreement
with the manual estimation than that estimated using ImageJ
which gave wider variances. This is because ImageJ cannot
separate and recognize adjacent water droplets as described
above and regard them as one large water droplet.
Further confirmation is shown in Figure 6 where the total

area of water droplets that was obtained by the three image

analyses methods is plotted, and the difference up to the value
in the third quartile is shown as a variance with respect to time.
Since ImageJ may recognize multiple water droplets as one

with a bigger area, it shows slightly larger values at examined
time zones, which is more remarkable in the early stage. This is
because ImageJ processing analyzes a captured image based on
a threshold value of brightness where the Fourier trans-
formation of the output image makes the substrate white and
the water droplets black, raising a high possibility of including
errors in case any part of the image becomes out of focus.
Thus, the output of the excluded water droplet part may not
appear as black, and finally the number of water droplets’
output becomes lower than the actual though with the
estimated larger projected areas.
In contrary, in the case of the image processing with deep

learning, it is possible to determine the output number of water
droplets with higher accuracy since the water droplets that are
out of focus in the case of the ImageJ method are not excluded.
Figure 7a,b confirms that the droplets’ total area which was

estimated using a deep learning processing has a higher
matching tendency than those estimated using ImageJ
processing once correlated with the total area estimated
manually.
Moreover, linear calibration curves confirmed the same

results. However, the calibration curve (Figure 8a) showed a
large mismatch between the droplets’ total area estimated
manually and that estimated by ImageJ processing though the
expected response galvanic current was higher than that
measured experimentally. On the other hand, the calibration
curves (Figure 8b) showed better matching with less linearity
between the droplets’ total area estimated manually and by
deep learning processing along with the measured and
expected response galvanic current. This could be clearly
noticed in the early stages of dew condensation.
These results can be explained by the current-flow model

shown in Figure 9. Assuming that the adsorbed water droplet
has a hemisphere geometry at an arbitrary time, the effective
area which is defined as the area of the water droplet that is
effectively intact between electrodes to generate a galvanic
current is calculated from the area of the water droplet in the
recorded image. Based on the droplet size, we predicted several
models with water droplets intact within the electrodes, as
shown in Figure 9a. In the first case, when the droplet covers
one pair of the electrode zone, the effective area can be
expressed simply as one rectangular area (A1), which is smaller
than the area of the water droplet. In the second case, when the
droplet covers three pairs of electrode zones, the effective area
can be expressed by the rectangular area intact in each zone
depending on the intact length (l). Thus, three areas (A1−A3)
can be estimated. In the third case, when the droplet covers
five pairs of electrode zones, the effective area in each zone is
similarly based on the intact droplet’s length (l) and thus five
areas (A1−A5) can be estimated. Therefore, the effective area
estimated in each case is dependent on its corresponding intact
length (l). Accordingly, the galvanic current which depends on
the droplet size will also be varied according to its intact length
(with the electrode pair) as well as its effective area.
Taking into account that the galvanic current flows favorably

in direction 1, as indicated in Figure 9b, rather than in
direction 2, which requires a higher electron energy to
overcome the barriers and cross a longer pathway, the effective
area (An) of the droplet that is required to generate the
galvanic current can be expressed as follows

A l g( )( )n n= (1)

where g is the gap size between two electrodes (10 μm) and ln
is the intact length from the electrode to the water droplet.

Figure 6. Change over time in the total area of water droplet bridging
arrays obtained by manual count compared with image processing
analyses using ImageJ (blue) and deep learning (orange). Plots and
bars represent the mode and the difference between the mode and the
value at the third quartile, respectively.

Figure 7. Change in the total area of water droplet bridging arrays with time obtained manually and by using image processing ImageJ (a) and deep
learning (b).
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Since g is fixed, ln is the only variable in this equation.
Accordingly, the effective area can be precisely estimated.
Rearranging eq 1 to get ln can lead to

l A g/n n= (2)

Since the resistance can be expressed as

R
g

h l
( )( )
( )( )n

n

ρ
=

(3)

where ρ is the resistivity of the electrode material and R is the
resistance which can also be expressed using Ohm’s law Rn =
E/In, where E is the potential (which is constant in our case)
and In is the galvanic response current generated by droplet
bridging between two electrodes. Therefore

I
E h A

g
( )( )( )

( )( )n
n

2ρ
=

(4)

and n = 1, 2, 3, ...
Since E, h, g, and ρ are fixed values, the total response

current generated from one droplet can be expressed as

I
E h

g
A

( )( )
( )( )n n2∑ ∑
ρ

=
(5)

where ΣAn is the total effective area of the droplet that is intact
with the electrode surface and contributes to the generation of
the response galvanic current. Therefore, the total effective
area is expected to be less than the total droplets’ area.

From eq 5, it is evident that the response galvanic current is
directly proportional to the total effective area of the water
droplet (In ∝ An). Moreover, a further increase in the dew
condensation leads to an increase in the droplets’ area and the
effective area as well. Thus, both the measured and expected
galvanic current values showed the best matching in linearity
due to the total droplets’ area contribution. An additional
increase in dew condensation results in a saturation region
beyond which there is no increase in area. Surprisingly, the
galvanic current response showed a remarkable increase even
at the saturated area region. This could be ascribed to the
existence of continuous charge transfer between the active
electrodes’ surface and the existing water droplets, which
allowed the redox reaction to continue with increasing
conductivity, generating higher galvanic current even at a
steady droplet’s area.
The possible reactions that may occur at the Al anode are

4Al 4Al 12e3→ ++ − (6)

4Al 3H O 2Al O 6H3
2 2 3+ → ++ +

(7)

Therefore, the net anode reaction is given by

4Al 6H O Al O 12H 12e2 2 3+ → + ++ −
(8)

The reaction that occurs at the Au cathode is written as

3O 6H O 12e 12OH2 2+ + →− −
(9)

Therefore, the total reaction can be expressed as follows

4Al 3O 12H O 2Al O 12H 12OH2 2 2 3+ + → + ++ −

(10)

Thus, the contact of Al and Au or any noble metal enables
the generation of total response current, expressed as eq 5, to
continue even with the formation of Al2O3. Therefore, our
results confirmed that the correlation of the human manual
count with the deep learning image processing count showed
better matching than that with ImageJ processing. This
clarified that deep learning processing shows a high correlation
coefficient similar to the human manual count and that the
response current correlates with the total effective area of
adsorbed water droplets on the electrodes. This indicates that
the current value flowing between electrodes is inversely
proportional to the resistance, assuming that the potential
difference between the electrodes is constant.
Furthermore, assuming that the volume resistivity of water

droplets existing between the electrodes is constant, the
resistance between the electrodes is inversely proportional to
the effective area of the water droplet because the distance
between the adjacent electrodes (g) is constant. These findings
confirmed that deep learning could be more favorable due to

Figure 8. Relationship between the recorded response current from the moisture sensor and the total area of water droplet bridging arrays at
arbitrary time obtained by image processing analyses of ImageJ (a) and deep learning (b).

Figure 9. Schematic illustration of various total and projected
droplets’ area based on the size and the intact length of the electrode
pair (a). A current-flow estimation model for the intact droplet’s
effective area assuming that the area has a hemispherical shape and
the total effective area has a rectangular shape (b).
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the clear estimation of well-resolved boundaries of water
droplets, which is not the case in ImageJ as it cannot
differentiate between overlapped droplets and estimates their
volume as larger than normal, leading to an unpredicted
increase in the expected response current. In addition, this
research opens the door for the feasible future applications on
the precise estimation of the total volume and/or total mass of
the existing droplets as a function of the gained response
galvanic current. Figure 10 shows a linear correlation
calibration curve of the estimated water droplet volume as a
function of the response current.

It is evident from Figure 10 that the volume and
consequently the mass of the related dew condensation
expressed with water droplets can be estimated once the
response current is monitored experimentally. Such an aim was
previously studied using different supporting techniques such
as quartz crystal microbalance and spray vapor deposition.
Our preliminary findings listed in this study are believed to

be the cornerstone for more future comprehensive exper-
imental works studying several other affecting parameters (e.g.,
surface wettability, texture, stability, etc.) for elucidation of
other atmospheric conditions that relate with environmental
practical applications.

■ CONCLUSIONS

This study demonstrated that the output response current
arising from the microgalvanic cell moisture sensor should
depend on the geometric parameters of the surface-adsorbed
water droplets such as the number, area, and volume estimated
by the microscopic observation of the sensor surface and its
image analysis. Response current showed a remarkable increase
based on the summation of the effective areas, as explained
with the current flow model of the droplet. The linear
relationship between the sensor’s response current and the
volume of the surface-adsorbed droplets could be correlated
successfully with the quantitative estimation of droplets’ mass.
Image processing techniques enabled us to decrease the
analysis time to around 1/1000. The current study can
contribute effectively to practical applications such as micro-
determination of dew condensation and perspiration.
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