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Abstract: Colony forming unit-Hill’s (CFU-Hill’s) colonies are hematopoietic-derived cells that partic-
ipate in neovasculogenesis and serve as a biomarker for vascular health. In animals, overexpression
of miR-18a-5p was shown to be pro-atherogenic. We had shown that well-controlled type 1 diabetes
mellitus (T1DM) is characterized by an inflammatory state, endothelial dysfunction, and reduced
number of CFU-Hill’s, a model of subclinical cardiovascular disease (CVD). MERIT study explored
the role of miR-18a-5p expression in CFU-Hill’s colonies in T1DM, and the cardioprotective effect
of metformin in subclinical CVD. In T1DM, miR-18a-5p was significantly upregulated whereas
metformin reduced it to HC levels. MiR-18a-5p was inversely correlated with CFU-Hill’s colonies,
CD34+, CD34+CD133+ cells, and positively with IL-10, C-reactive protein, vascular endothelial
growth factor-D (VEGF-D), and thrombomodulin. The receiver operating characteristic curve demon-
strated, miR-18a-5p as a biomarker of T1DM, and upregulated miR-18a-5p defining subclinical CVD
at HbA1c of 44.5 mmol/mol (pre-diabetes). Ingenuity pathway analysis documented miR-18a-5p
inhibiting mRNA expression of insulin-like growth factor-1, estrogen receptor-1, hypoxia-inducible
factor-1α cellular communication network factor-2, and protein inhibitor of activated STAT 3, whilst
metformin upregulated these mRNAs via transforming growth factor beta-1 and VEGF. We confirmed
the pro-atherogenic effect of miR-18a-5p in subclinical CVD and identified several target genes for
future CVD therapies.
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1. Introduction

Cardiovascular disease (CVD) encompasses a group of diseases affecting the heart
and blood vessels; these include coronary heart disease (CHD), cerebrovascular disease,
peripheral arterial disease, rheumatic heart disease, congenital heart disease, deep vein
thrombosis, and pulmonary embolism [1]. CVD remains the major cause of death globally,
with an estimated 17.9 million CVD-related deaths each year [1]. As over 80% of premature
CVD is preventable, identifying people at risk of CVD plays an important role in preventing
and managing CVD [2]. Type 1 diabetes mellitus (T1DM) has been associated with elevated
risks of CVD and premature mortality [3]. CVD appears as the major cause of morbidity
and mortality among patients with longstanding T1DM, contributing to approximately
11–13-year shorter life expectancy in comparison to healthy adults [4]; moreover, even
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T1DM patients with controlled glycated hemoglobin (HbA1c) of 52 mmol/mol or lower
were nearly three times as likely to die as a result of CVD, and the risks were substantially
higher among individuals with higher levels of HbA1c [5].

We and others have demonstrated that T1DM can be considered as subclinical CVD,
due to the presence of endothelial dysfunction, elevated levels of inflammatory markers,
higher levels of circulating endothelial cells (ECs), and reduced levels of circulating en-
dothelial progenitor cells (cEPCs), colony forming units (Hill’s) and pro-angiogenic cells
(PACs) [6–11].

Several approaches have been utilized to identify and isolate early outgrowth EPCs,
one of which involves the colony-forming ability of the plated mononuclear cells. The
original method was introduced by Asahara et al. [12] and was expanded by Ito et al. [13].
In 2003, Hill et al. further modified this cluster assay method, measuring a mixture of
hematopoietic cells, including lymphocytes, monocytes, and hematopoietic progenitor
cells [8,14]; this assay has become known as the colony-forming unit-Hill (CFU-Hill’s)
colony assay [8]. CFU-Hill’s colonies are hematopoietic-derived cells that are unable to
form vascular structures in vivo; however, it was suggested that these cell populations
may participate in neovasculogenesis in a paracrine manner, which is likely by secreting
angiogenic cytokines that activate mature ECs and enhance vasculogenesis [15,16]; more-
over, Yoder et al. reported that majority of CFU-Hill’s colonies expressed CD115, a known
receptor for colony-stimulating factor 1 which plays a crucial role in vascular endothelial
growth factor (VEGF) production, EPC mobilization, and angiogenesis in vivo [16].

Hill et al. demonstrated a significant inverse correlation between circulating CFU-
Hill’s colonies concentration and the Framingham risk score for the assessment of the
total burden of risk factors of CHD at 10 years [8]; moreover, subjects with elevated serum
cholesterol levels, hypertension or diabetes mellitus demonstrated significantly lower levels
of CFU-Hill’s colonies compared to healthy subjects [8]. Salazar-Martinez et al. studied
49 children and teenagers aged between 10 and 17, and found inverse associations between
the formation of CFU-Hill’s colonies and obesity, dyslipidemia, and high blood glucose
levels [17]. Furthermore, independent of cardiovascular risk factors, CFU-Hill’s colonies
have been demonstrated to be about 40% lower in obese and overweight compared to
normal weight individuals [18].

Additionally, it was also observed that subjects with diabetes, hypertension and
elevated cholesterol concentrations demonstrated significantly lower numbers of CFU-
Hill’s colonies [8]; these findings support the role of CFU-Hill’s colonies as a potential
biomarker for early detection and management of CVD. The lack of research into CFU-Hill’s
colonies is likely to be related to the paucity of material amenable to previously available
laboratory techniques. Nevertheless, it offers new avenues for CVD research.

Metformin, a widely-used anti-diabetic drug, has been demonstrated to not only
effectively lower blood glucose but also reduce cardiovascular-related mortality and the
incidence of cardiovascular events [19]. Metformin may exert its anti-atherogenic effect
by correcting some atherosclerotic risk factors (blood pressure, body weight, triglycerides
and LDL cholesterol, glycemic control, insulin resistance) and protecting the arteries from
fibrosis and remodeling [20]. Metformin has been demonstrated to preserve endothelial
function, therefore exerting its protective effect on diabetic microangiopathies; this is sup-
ported by the direct role of metformin in mitigating the deleterious effects of diabetes on
endothelial, including increased production of ROS, mitochondrial dysfunction, genera-
tion of advanced glycation end-products (AGEs), endothelial apoptosis and senescence,
activation of the polyol pathway, and dysregulation of microRNAs (miRNAs) [21]. In ani-
mal models of myocardial infarction, it was demonstrated that metformin administration,
given at reperfusion, reduced myocardial infarct size in nondiabetic rats [22]; moreover,
we have shown the cardioprotective effect of metformin in patients with T1DM through
improvement in CFU-Hill colonies, circulating EPCs, circulating ECs, and PACs whilst
glycemic control was unchanged [6]. Emerging studies have suggested the utilization of
miRNAs, a class of small noncoding RNA molecules, in the evaluation of health status and
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disease progression [23]. Currently, miRNAs have been acknowledged to play a part in
the regulation of aging, apoptosis, proliferation, metabolism, cellular differentiation, and
pathogenesis of diseases including CVD [24].

Accumulating evidence has suggested that the dysregulation of multiple miRNAs
is responsible for the pathogenesis of CVD. The overexpression of miRNA-18a-5p has
been identified as pro-atherogenic miRNA as it promotes proliferation and migration
of vascular smooth muscle cells [25,26]; moreover, an animal model of oxygen-induced
proliferative retinopathy revealed that the overexpression of miR-18a-5p in human retinal
microvascular endothelial cell, was anti-angiogenic as inhibited angiogenesis via significant
downregulation of fibroblast growth factor-1 and hypoxia-inducible factor-1 alpha (HIF-1α),
which are both closely associated with angiogenesis [27]. The anti-angiogenic property
of miR-18a-5p renders it an ideal candidate for studying the paracrine function of CFU-
Hill’s colonies.

We hypothesized that miRNA-18a-5p expression in CFU-Hill’s colonies is upregulated
in T1DM and is downregulated by metformin therapy. By validating the anti-angiogenic
role of miRNA-18a-5p in CFU-Hill’s colonies in patients, we could therefore explore thera-
peutic pathways or targets to manage CVD.

2. Materials and Methods
2.1. Subjects

Twenty-nine patients with T1DM of 22.4 ± 13.9 years duration and no overt CVD
and 20 matched healthy controls (HCs) were recruited in the present study to explore the
role of miR-18a-5p in subclinical CVD in T1DM. The inclusion criteria of our study were
T1DM patients with HbA1c < 8.5% (69 mmol/mmol), absence of macrovascular disease or
renal impairment. Metformin was administered to T1DM patients for 8 weeks with a dose
titrated up to a maximum of 1 g twice a day or to the highest tolerated dose.

The study was conducted in accordance with the Helsinki Declaration and all subjects
gave written informed consent prior to their inclusion in the study. The study was approved
by the NHS Health Research Authority, NRES Committee Northeast Sunderland, UK
(Research Ethics Committee Reference Number 12/NE/0044).

2.2. Meso Scale Discovery (MSD) Assay

To measure cytokine levels, plasma samples were diluted according to the manufac-
turer’s instruction from the study groups and were assayed using K15050D V-PLEX Cy-
tokine Panel 1 human kit, K15049D V-PLEX Proinflammatory Panel 1 human kit, K15135C
Human Vascular Injury 1 kit, K15198D V-PLEX Vascular Injury Panel 2 human kit and
K15190D V-PLEX Angiogenesis Panel 1 human kit (Meso Scale Discovery, Rockville, MD,
USA) in accordance with the manufacturer’s protocol.

2.3. Flow Cytometric Evaluation of Circulating Endothelial Progenitor Cells

As previously described, the cEPCs, also defined as CD45dimCD34+CD133+ cells, were
analyzed using flow cytometry on a BD FACS CantoTM II system (BD Bioscience, San Jose,
CA, USA) [6]. The cEPC and circulating progenitor cells were labeled with a collection of
antibodies (BD Bioscience, Table 1).

Table 1. Antibodies used for enumeration of cEPCs and progenitor cells.

Antibody Fluorochrome Volume

CD34 PerCP-Cy5.5 20 µL
CD133 APC 5 µL

VEGFR2 (KDR) PE 5 µL
CD144 FITC 10 µL
CD45 V500 5 µL
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2.4. Culture and Quantification of CFU-Hill’s Colonies

CFU-Hill’s colonies were cultured according to the method described by Hill et al., 2003 [8].
Others also used this method of culturing CFU-Hills [16–18,28]. Briefly, 5 × 106 peripheral
blood mononuclear cells (PBMNC) were plated on a fibronectin-coated 6-well culture plate.
The cultured plate was washed twice with PBS to obtain all non-adherent cells. The cell
suspension from the supernatant was centrifuged at 500× g for 5 min at room temperature
(deceleration = 3). The supernatant was discarded, and the cell pellet was re-suspended
in 1 mL of medium and counted. 1 × 106 cells were re-plated in fresh fibronectin-coated
in 3 wells of 24-well plates in the complete endothelial basal medium. The plates were
incubated at 37 ◦C in 5% CO2/air, and the medium was changed every three days. On day
seven, colonies showing features of multiple spindle-shaped cells originating from a central
cluster of round cells were identified as CFU-Hills colonies. Three wells were washed
twice with PBS to remove non-CFU-Hills cells. An important feature of these colonies is
the fact that CFU-Hills disappear within 10–14 days [29]. The CFU-Hills cells were lysed
in wells with lysis buffer for further analysis. The mean number of CFU-Hills per well
was in control subjects 20.5 and 8.5 in patients before metformin therapy and 13.8 after
metformin therapy.

2.5. Plasma Sample Preparation

Platelet-free plasma was obtained through consecutive centrifugations of blood sam-
ples at 500× g for 15 min and 13,000× g for another 5 min. The plasma was tested for
haemolysis to ensure the samples were not contaminated with cellular miRNA. An aliquot
of 200µL per sample was transferred to a FluidX tube and 60µL of Lysis solution BF con-
taining 1µg carrier-RNA per 60µL Lysis Solution BF and RNA spike-in template mixture
was added to the sample and mixed for 1 min and incubated for 7 min at room temperature,
followed by addition of 20µL Protein Precipitation solution BF. Total RNA was extracted
from the samples using miRCURY RNA isolation Kit—Biofluids, high-throughput bead-
based protocol v.1 (Exiqon, Vedbaek, Denmark) in an automated 96-well format. The
purified total RNA was eluted in a final volume of 50µL. Plasma miRNAs were isolated
from plasma samples using an RNA isolation protocol optimized for plasma by QIAGEN
(Exiqon Services, Vedbeaek, Denmark). The integrity of extracted RNAs were measured
using 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA) with the value of 9.1–10 considered
as high in integrity.

2.6. MiRNA Expression Using Real-Time Quantitative PCR

Purification of total RNA was performed using miRNeasy Micro Kit (QIAGEN, Hilden,
Germany). The cell pellet was lysed in 700 µL QIAzol and 1.25 µL of each: UniSpike 2, 4, 5
and MS2 carrier RNA (Roche, Basel, Switzerland) was directly added to the QIAzol lysate.
The sample was then vortexed and kept in the dark for 5 min to ensure the samples were
completely lysed. An additional DNase on-column treatment (QIAGEN, Hilden, Germany)
was performed according to the manufacturer’s instructions.

Approximately 10 µL RNA was reverse transcribed in 50 µL reactions using the
miRCURY LNA RT Kit (QIAGEN, Hilden, Germany). cDNA was diluted 100× and
assayed in 10 µL PCR reactions according to the protocol for miRCURY LNA miRNA PCR;
miRNA was assayed once by qPCR on the miRNA Ready-to-Use PCR, Human panel I + II
(Catalog number: 339322, QIAGEN) using miRCURY LNA SYBR Green master mix. The
amplification was performed in a LightCyclerR 480 Real-Time PCR System (Roche, Basel,
Switzerland) in 384 well plates. The amplification curves were analyzed using the Roche
LC software 4, Basel, Switzerland, both for the determination of Cq (by the 2nd derivative
method) and for melting curve analysis. All Cq data was normalized using the global mean
method based on the average of the assays detected in all samples, yielding ∆Cq values.
Fold-change analysis was performed using 2 × |∆∆Cq| calculation, with ∆∆Cq obtained
from (∆Cq × T1DM) − (∆Cq × HCs).
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2.7. Pathway Analysis: Ingenuity Pathway Analysis of miR-18a-5p

Target genes, cellular functions, and pathological pathways regulated by miR-18a-
5p were predicted by using ingenuity pathway analysis (IPA) software 9.0 (Ingenuity,
Redwood City, CA, USA). In comparison, the interaction sites between the transcripts and
miR-18a-5p was detected by TargetScan Human release 7.1 (www.targetscan.org, accessed
on 4 April 2022) and Diana-TarBase v8 (http://carolina.imis.athena-innovation.gr/diana_
tools/web/index.php?r=tarbasev8%2Findex, accessed on 4 April 2022) databases.

2.8. Statistical Analysis

Data were presented as mean ± standard deviation, unless stated otherwise. To assess
the normality of the data, Shapiro–Wilk test was performed. The unpaired t-test or Mann-
Whitney test was used to measure the difference between the groups. The correlation
between miR-18a-5p expression and other markers was assessed using linear regression
tests. Receiver Operating Characteristic (ROC) curve analysis was performed to assess
the sensitivity of miR-18a-5p as a biomarker for T1DM (subclinical CVD) and to establish
the cut-off value for miR-18a-5p upregulation. Statistical analyses were performed using
IBMTM SPSSTM software Version 24.0 (SPSSTM Inc., Armonk, NY, USA) and the graphs
were constructed using GraphPad Prism 9.0 (GraphPad software, San Diego, CA, USA). A
p-value less than 0.05 was considered statistically significant.

3. Results
3.1. Characteristics of Studied Subjects

The present study enrolled 29 T1DM patients and 20 age- and gender-matched
HCs. The demographic and clinical characteristics of the participants were published
previously [30]. The mean age of the T1DM group and HCs were 47.2 and 46.5, respec-
tively. The T1DM group had relatively good glycemic control with a mean HbA1c of
57.3 mmol/mol (7.4%).

3.2. Comparison of the Levels of Cytokines, C-Reactive Protein (CRP), and Vascular Health Indices
between HC and T1DM

In T1DM patients, the levels of VEGF-D (p = 0.002, Figure 1a) and IL-10 (p = 0.008,
Figure 1b) were significantly higher in comparison to HCs. The levels of CRP in plasma
were detected to be significantly upregulated in patients with T1DM compared to HCs
(p < 0.001, Figure 1c).

T1DM patients presented significantly higher level of thrombomodulin (p = 0.046,
Figure 1d), and significantly lower level of CFU-Hill’s colonies (p = 0.04, Figure 1e) in com-
parison to HCs; moreover, the levels of circulating progenitor cells, CD34+/100 lymphocytes
(Figure 1f) and CD34+CD133+/100 lymphocytes (Figure 1g), were both significantly lower
among T1DM patients (p = <0.001, p = 0.013).

We have previously published that metformin therapy resulted in significantly in-
creased CFU-Hill’s colonies count, which was closer to the levels seen in HC [6].

All comparisons were independent experiments thus correction for multiple com-
parisons has not been applied. The effects of metformin on vascular indices have been
published before [6].

3.3. The Expression of miR-18a-5p in Study Participants

In the T1DM patient group, the expression of miR-18a-5p in the CFU-Hill’s colonies
was demonstrated to be significantly upregulated versus HC (p = 0.008), whilst in plasma
no difference in the expression of miR-18a-5p in T1DM versus HC was detected.

Following metformin therapy, we observed a significant decrease in miR-18a-5p
expression in T1DM (p = 0.044), normalizing its expression in comparison to HC (p-value
non-significant, Figure 2).

www.targetscan.org
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex
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Figure 1. The comparison of data between HC and T1DM patients in terms of the levels of (a) VEGF-D
in plasma, (b) IL-10 in plasma, (c) CRP in plasma, (d) thrombomodulin in plasma, (e) CFU-Hill’s
colonies, (f) CD34+/100 lymphocytes, and (g) CD34+CD133+/100 lymphocytes. Data are presented
as means ± SD and analyzed by unpaired t-test or Mann-Whitney U test. VEGF: vascular endothelial
growth factor; IL: interleukin; CRP: C-reactive protein; CFU: colony-forming unit; CD: a cluster of
differentiation. * p < 0.05; ** p < 0.01; *** p < 0.001.

Furthermore, ROC analysis of miR-18a-5p demonstrated area under the curve (AUC)
of 0.889 (p = 0.002) with cut-off value of −1.211 (specificity = 100% and sensitivity = 77.78%,
Figure 3a). Additional ROC analysis was performed to determine the level of HbA1c at
which miR-18a-5p was upregulated with AUC of 0.888 (p = 0.004) and HbA1c cut-off value
44.5 mmol/mol (6.2%), specificity = 87.5% and sensitivity = 100% (Figure 3b). There was
significant correlation between miR-18a-5p in CFU-Hill’s colonies and HbA1c before the
use of metformin (r2 = 0.142, p = 0.027) as shown in Figure 3c.
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Figure 3. (a) Receiver operating characteristic (ROC) curve analysis of miR-18a-5p in discriminating
T1DM patients from healthy controls; (b) ROC curve analysis of HbA1c to indicate upregulated
miR-18a-5p expression in CFU-Hill’s colonies; (c) Correlation between miR-18a-5p in CFU-Hill’s
colonies and HbA1c as a parameter to evaluate glycemic control (r2 = 0.142, p = 0.027). ROC curve
analysis was performed to determine optimal cut-off values, whilst linear regression analysis was
performed to assess the correlation between miR-18a-5p and HbA1c. HbA1c: glycated hemoglobin.

3.4. Correlations of miR-18a-5p with Cytokines, CRP, and Parameters of Vascular Function

Univariate linear regression analysis showed that miR-18a-5p was positively correlated
with VEGF-D (r2 = 0.083, p = 0.049, Figure 4a), IL-10 (r2 = 0.206, p = 0.011, Figure 4b), CRP
(r2 = 0.218, p = 0.004, Figure 4c) and thrombomodulin (r2 = 0.133, p = 0.041, Figure 4d), and
negatively with CFU-Hill’s colonies (r2 = 0.066, p = 0.02, Figure 4e), CD34+/100 lymphocytes
(r2 = 0.104, p = 0.008, Figure 4f) and CD34+CD133+/100 lymphocytes (r2 = 0.572, p < 0.001,
Figure 4g).
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Figure 4. Correlation between miR-18a-5p expression in CFU-Hill’s colonies with the levels of
(a) VEGF-D (r2 = 0.083, p = 0.049), (b) IL-10 (r2 = 0.206, p = 0.011), (c) CRP (r2 = 0.218, p = 0.004),
(d) thrombomodulin (r2 = 0.133, p = 0.041) in the plasma, (e) CFU-Hill’s colonies per well (r2 = 0.066,
p = 0.02), (f) CD34+/100 lymphocytes (r2 = 0.104, p = 0.008), and (g) CD34+CD133+/100 lymphocytes
(r2 = 0.572, p < 0.001). Linear regression analysis was performed to assess the correlation. VEGF:
vascular endothelial growth factor; IL: interleukin; CRP: C−reactive protein; CFU: colony-forming
unit; CD: a cluster of differentiation.

In addition, the present study observed no statistically significant association between
miR-18a-5p with VEGF-C, TNF-α, IFN-γ, PIGF, b-FGF, Tie-2, sFlt-1, sICAM-1, sICAM-3,
E-selectin, P-selectin, IL-6, IL-7, IL-8, IP-10, and IL-16.

3.5. miR-18a-5p Molecular Targets and Functional Pathways

The impact of ingenuity pathway analysis (IPA), a knowledge-based database, was
used to analyse and predict miR-18a-5p-mRNA targets to better understand the miRNA-
mRNA interaction in the implication of CVD. By inputting hsa-miR-18a-5p, IL-10, CRP,
VEGF-D, thrombomodulin, along with glucose to demonstrate a diabetic state into IPA soft-
ware, miR-18a-5p was predicted to enhance the progression of atherosclerosis, infarction,
and inflammatory response whilst inhibiting angiogenesis and blood coagulation.
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MiR-18a-5p was proven to inhibit the mRNA expression of insulin-like growth factor 1
(IGF1) [31]; it was also verified that the upregulation miR-18a-5p would inhibit mRNA
expression of estrogen receptor 1 (ESR1), hypoxia-inducible factor-1 subunit alpha (HIF-1α),
cellular communication network factor 2 (CCN2), and protein inhibitor of activated STAT 3
(PIAS3) [27,32–34].

The inhibition of CCN2 and PIAS3 was predicted to activate the expression of signal
transducer and activator of transcription 3 (STAT3), which then further augments the
activation of CRP and IL-10. CRP was predicted to activate IL-10, therefore, inhibiting
angiogenesis (Figure 5).
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factor-1 subunit alpha; IGF1: insulin-like growth factor 1; IL: interleukin; PIAS3: protein inhibitor of
activated STAT 3; IL: interleukin; THBD: thrombomodulin; VEGF: vascular endothelial growth factor.

3.6. miR-18a-5p Molecular Targets and Functional Pathways Following Metformin Intervention

The effect of metformin on vascular indicators has been previously published by us [6].
Metformin inhibited miR-18a-5p expression, which would in turn upregulate the mRNA
expression of ESR1, IGF1, HIF-1α, CCN2, and PIAS3 (previously downregulated). The effect
of metformin on miR-18a-5p was predicted to occur via TGFβ1 and VEGF nodes [35–38].
Functional pathway analysis predicted that metformin therapy would inhibit the devel-
opment of atherosclerosis, infarction, and attenuate inflammatory response; it was also
predicted that metformin would aid angiogenesis and blood coagulation (Figure 6).
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4. Discussion

This is the first study investigating miRNA expression in CFU-Hill’s colonies. Our
study validated animal research on the anti-angiogenic properties of miR-18a-5p as we
observed the upregulation of miR-18a-5p expression in CFU-Hill’s colonies, and its negative
association with vascular health indices in patients with subclinical CVD.

We confirmed that well-controlled T1DM had characteristics of subclinical CVD, as
indicated by significantly increased of CRP and cytokines; moreover, we observed reduced
CFU-Hill’s colony count, a lower number of cEPCs, and elevated thrombomodulin.

4.1. miR-18a-5p Expression in T1DM Patients

We have shown for the first time that miR-18a-5p in CFU-Hill’s colonies is upregulated
in T1DM. MiRNA-18a-5p has been suggested to serve an important role in various biologi-
cal activities leading to the pathogenesis of vascular diseases, as significantly upregulated
miRNA-18a-5p was previously reported in the serum of patients with stent stenosis and in
animal models with carotid artery injury [26].

The lack of differential expression of miR-18a-5p in our T1DM patients in plasma
samples compared to healthy controls is in concordance with previous groups that showed
no change in the expression of miR-18a-5p in plasma from patients with long-duration of
T1DM and T2DM [39–41].

However, in another study miR-18a-5p was raised in sera from children with recent-
onset T1DM and patients with early-onset diabetes suggesting that the onset of type 1
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diabetes may coincide with raised serum miR 18a-5p expression [42,43]; this finding is
in line with the prediction demonstrated in IPA analysis in our study showing indirect
activation of hyperglycemia due to increased miR-18a-5p level. No comparison on miR-
18a-5p expression in T1DM in other tissues is possible due to the lack of studies.

In this study, our ROC curve analysis demonstrated the potential utility of miR-18a-
5p as a strong diagnostic biomarker for T1DM/subclinical CVD with an AUC of 0.889
(p = 0.002), 77.78% sensitivity and 100% specificity. We hypothesized that the difference of
miR-18a-5p expression could be associated with the presence or absence of hyperglycemia;
thus, we assessed the cut-off value of HbA1c to discriminate at which value the upregulation
of miR-18a-5p occurred. The HbA1c value of 44.5 mmol/mol (6.2%) achieved from ROC
analysis indicated an increased CVD risk within the pre-diabetes range (HbA1c 6.0–6.49%).
Our findings emphasize the utilization of miR-18a-5p as a reliable non-invasive biomarker
of increased CVD risk even in the absence of clinical CVD.

In contrast to our finding, another study reported downregulated serum miR-18a in
T2DM, suggesting that miR-18a might improve insulin sensitivity via inhibition of PTEN, a
known negative regulator of insulin sensitivity [44]. The discrepancies between studies may
be partially explained by the difference in the population studied and the tissues/samples
used to assess miR-18a-5p expression.

4.2. The Association between miR-18a-5p and CFU-Hill’s Colonies

In the present study, anti-angiogenic miR-18a-5p expression negatively correlated with
CFU-Hill’s colonies, which have been demonstrated by experimental and clinical studies as
an indicator of vascular health [8]. A reduced level of CFU-Hill’s colonies was significantly
associated with an increased risk of developing the first major cardiovascular event and
independently predicted coronary artery disease progression [28,45].

Given that we measured miR-18a-5p in CFU-Hill’s colonies one should expect a
direct correlation between the two measurements; however, we found a negative correla-
tion. Therefore, it could be postulated that the number of CFU-Hill’s colonies is reduced
in an auto- and paracrine manner. Furthermore, this may suggest that miR-18a-5p is
anti-angiogenic in T1DM since CFU-Hill’s (CD115) involved in EPC mobilization and
angiogenesis in vivo [16].

4.3. The Association between miR-18a-5p and Vascular Health

T1DM has been demonstrated to be closely related to abnormal vascular findings,
suggesting that preclinical CVD can be observed to a greater extent among T1DM pa-
tients [6,9,46,47]. Our study demonstrated an elevated level of thrombomodulin and a
lower number of circulating CD34+ and CD34+CD133+ stem cells in T1DM patients.

Our group is the first to report a positive linear relation between miR-18a-5p and
thrombomodulin. The role of thrombomodulin in CVD is complex. Studies have demon-
strated the anti-inflammatory effect of thrombomodulin, particularly the lectin-like domain
of thrombomodulin [48]; however, elevated thrombomodulin may also suggest elevated
soluble fragments of thrombomodulin from damaged endothelial cells [49]. In patients with
existing atherosclerotic disease or children without soluble thrombomodulin was positively
associated with future CHD events and arteriosclerosis progression, which may reflect the
degree of associated inflammation and endothelial damage [50,51]. Furthermore, IPA pre-
diction revealed upregulated miR-18a-5p activating thrombomodulin via VEGF activation;
this finding is in line with a study demonstrating that VEGF upregulated thrombomodulin
expression, thus enhancing endothelial cell adhesion and tube formation [52]; this suggests
that elevated thrombomodulin in our patients serves as a compensatory mechanism.

We are the first to demonstrate a direct inverse relationship between miR-18a-5p and
circulating CD34+ and CD34+CD133+ cells; these cells have been demonstrated to have the
proliferative and angiogenic capacity, which may contribute to neo-angiogenesis [12,53].
As CFU-Hill’s colonies are involved in EPC mobilization, reduced CFU-Hill’s colonies
in our patients might disrupt EPC mobilization, resulting in lower levels of CD34+ and
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CD34+CD133+ cells [16]. A study on CD34+ cell differentiation reported that miR-18a
was significantly upregulated during erythropoiesis but not in granulopoiesis; this might
indicate the role of miR-18a in bone marrow regulation [54].

Our findings are consistent with lower levels of circulating CD34+ and CD34+CD133+

cells reported in T1DM patients with history of microalbuminuria compared to T1DM
patients without. Microalbuminuria was discerned as a marker of vascular injury and a risk
factor for CVD; hence, circulating progenitor cells were observed to be lower in individuals
with higher risk of CVD [55]. Similarly, in a cohort of 187 T2DM patients monitored over
a 6-year period, baseline CD34+ and CD34+CD133+ cells were lower among those with
incident cardiovascular events compared to those without [56]. In addition, a previous
study reported that the duration of diabetes, and not the magnitude of hyperglycemia
(HbA1c), contributed to CD34+ cell number [57].

4.4. The Association between miR-18a-5p and Inflammatory Markers

Our findings showed positive linear relation between miR-18a-5p and VEGF-D, IL-10,
and CRP levels; this is consistent with IPA analysis predicting upregulated miR-18a-5p
leading to VEGF-D activation via STAT3 and subsequent FOS activation. VEGF-D was
predicted to further aggravate inflammatory response. VEGF-D is a member of the VEGF
family, which plays an important role in lymphangiogenesis, endothelial cell growth, and
angiogenesis [58]. Increased plasma VEGF-D has been associated with a higher incidence of
atrial fibrillation, CVD and heart failure [59,60]; however, the positive association with heart
failure was suggested to be a compensatory mechanism by expanding lymphatic capacity
to eliminate excess fluid [60]. In diabetes, it has been suggested that downregulated VEGF
receptor (VEGFR) and impaired downstream signal transduction are the contributing
factors leading to reduced neoangiogenesis and compensatory elevated VEGF levels [61].

CRP has been well established to serve as a sensitive marker of acute inflammation,
and recent studies have demonstrated its significance in chronic inflammatory diseases
including CVD and diabetes mellitus [62]. Several lines of evidence suggest that CRP may
directly contribute to the inflammatory process of atherosclerosis [63,64]. CRP has been
demonstrated to participate in thrombus formation and significant expression of adhesion
molecules in ECs, therefore contributing to the development of atherosclerosis [64,65].

We suggested that elevated IL-10 in T1DM could serve as a compensatory response to
the inflammatory nature to counterbalance elevated CRP, IL-8, and TNF-α, as previously
reported [11,47]. Due to its anti-inflammatory property, the administration of IL-10 might
be a potential approach for the management of T1DM and CVD. To date, clinical data
on therapies targeting IL-10 for CVD is currently unavailable but animal experiments
have supported the prospect of IL-10 therapy. In rats with heart failure following MI,
IL-10 therapy significantly improved post-MI left ventricular function [66]. The anti-
inflammatory role of IL-10 was suggested to contribute to reduced levels of IL-6 and TNF-α.
Furthermore, in ischemia-reperfusion injury animal models, IL-10 mitigated inflammation
and cardiomyocyte death by attenuating oxidized phospholipids-mediated lipid metabolic
responses [67]; these findings in corroboration with our study support the potential of IL-10
therapy for the treatment of inflammatory diseases and conditions including CVD.

The positive association with IL-10 is confirmed by IPA analysis as overexpressed
miR-18a-5p was predicted to upregulate IL-10 via IL-6, VEGF and STAT3 activation. A
study showed that overexpressed miR-18a enhanced IL-6 response, which then led to
increased miRNA cluster miR-17/92 in a positive feedback loop; this feedback loop leading
to an amplified inflammatory process was facilitated by the repression of PIAS3, a repressor
of STAT3 [68]; this finding is in concordant with our IPA pathway analysis. IL-6 has been
shown to induce IL-10 and cause a delayed increase in CRP [69]; this may explain how
upregulated miR-18a-5p led to elevated IL-10 and CRP in the present study. In another
study, serum IL-10 was significantly elevated in patients with acute coronary syndrome
compared to HCs [70]; however, since IL-10 is most widely known as an anti-inflammatory
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cytokine, this elevation may occur as a self-protective response to the pro-inflammatory
nature of atherosclerosis to prevent excessive inflammation [71].

Similarly, a positive association with CRP confirms that miR-18a-5p is directly cor-
related to an inflammatory state. Here, we showed for the first time a direct relationship
between miR-18a-5p and CRP, a protein synthesized by hepatocytes in response to inflam-
matory cytokines. CRP has been well established to serve as a sensitive marker of acute
inflammation, and recent studies have also demonstrated its significance in chronic inflam-
matory diseases like CVD and diabetes mellitus [62]. We hypothesize that upregulation of
miR-18a-5p would be pro-inflammatory, which was supported by IPA prediction demon-
strating its activation of inflammatory response; however, it is unclear if the inflammatory
state leads to increased miR-18a-5p expression.

Taken together, we postulate that the upregulation of miR-18a-5p is pro-inflammatory,
which is concordant with IPA prediction demonstrating the activation of inflammatory response.

4.5. The Association between miR-18a-5p and HbA1c

MiR-18a-5p was negatively correlated with HbA1c, and this could suggest that diabetic
control may play a role in the generation and regulation of miR-18a-5p. Our result concurs
with a study investigating the expression of stress-related miRNAs in individuals with
newly diagnosed T2DM demonstrating that circulating miR-18a correlated with impaired
fasting glucose and insulin resistance [72]; moreover, downregulated plasma miR-18a-5p
was reported in individuals with pre-diabetic glucose tolerance impairment compared to
either T2DM diagnosed patients or those with normal glucose tolerance; this underlines
that pre-diabetes, characterized by recurrent glucose variations, might present deleterious
effects to target tissues and affect regulation of miRNA more drastically compared to
chronic hyperglycemia in T2DM [39].

4.6. miR-18a-5p Expression Following Metformin Therapy

In this study we showed for the first the effect of metformin on miRNA expression in
CFU-Hill’s colonies. Metformin has been recommended as the first-line drug for patients
with type 2 diabetes mellitus (T2DM) due to its cardioprotective effect [73], and recently
National Institute for Health and Care Excellence (NICE) recommended prescribing met-
formin as adjunctive therapy to insulin in overweight or obese patients with T1DM [74]. In
the REMOVAL trial, T1DM patients receiving metformin displayed a significant reduction
in mean change/year in maximal carotid-intima media thickness (cIMT, a surrogate mea-
sure of cardiovascular risk) in comparison to the placebo group [75]. We have previously
published that metformin therapy has a potential cardio-protective effect in T1DM patients
through improving CFU-Hill’s colonies, cEPCs, cECs, PACs count and cell adhesion [6].

Our results indicate that metformin therapy led to the downregulation of miR-18a-
5p expression in CFU-Hill’s colonies, normalizing its expression to the level seen in HC.
Similarly, long-term metformin exposure to senescence-associated miRNA and miRNA
iso-form (iso-miR) in HUVECs was demonstrated to downregulate miR-18a-5p [76].

Our study strengthened the evidence to support metformin therapy as a cardioprotec-
tive drug. The inhibition of miR-18a-5p by metformin was proven to occur via TGFβ1 and
VEGF [30–33]. Furthermore, IPA analysis explicated the mechanism on how metformin
may reverse the cardio-detrimental effects of miR-18a-5p via activation of mRNA IGF1,
ESR1, HIF-1α, CCN2, and PIAS3 [27,31–34].

4.7. Prediction Model: Functional Pathway Analysis of miR-18a-5p in Relation to
Cardiovascular Function

IPA analysis summarized our findings, that the upregulation of miR-18a-5p would
directly inhibit IGF1, ESR1, HIF-1α, CCN2, and PIAS3. The inhibition of these mRNAs was
predicted to subsequently activate the expression of IL10, CRP, VEGF-D, and THBD; this
prediction is in accordance with our miRNA correlation analysis, which showed that the
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upregulation of miR-18a-5p was positively correlated with the levels of IL10, CRP, VEGF-D,
and THBD.

In addition, the upregulation of miR-18a-5p was predicted to be cardio-detrimental
via the activation of atherosclerosis, infarction, and inflammatory response, as well as the
inhibition of angiogenesis and blood coagulation. Metformin was predicted by IPA to be
cardio-protective by reversing the cardio-detrimental effects of miR-18a-5p upregulation.
Inhibition of TGFβ1 and VEGF was proven to result in the subsequent reduction of miR-
18a-5p level. The cardioprotective action of metformin via TGFβ1 inhibition is in line with
the previous molecular dynamic simulations showing that metformin directly interacts
with TGFβ1, therefore inhibiting its binding with receptors and attenuating its downstream
signalling [77]; moreover, the IPA predicted inhibition of VEGF is also in line with a prior
diabetic mice model study, which demonstrated that metformin attenuated VEGF signaling
activation in the development of diabetic retinopathy [78]. Here, we showed for the first
time that metformin was proven to result in indirect activation of IGF1, ESR1, HIF-1α,
CCN2, and PIAS3 via miR-18a-5p downregulation.

As CFU-Hills derive from circulating peripheral blood mononuclear cells this strength-
ens the link between the effect of miRs expressed in CFU-Hills on circulating cytokines
or growth factors in our study. Furthermore, the evidence that IPA modeling is not only
generated by predictions but also is biologically relevant comes from animal models listed
in this discussion.

Finally, we can speculate that the mechanism of how miR can influence vascular
structures studied by us could also include regulation of FGF1, HIF-1α, syndecan4 or
AKT/ERK signaling pathway in concerned tissue [25–27]. Further research is necessary to
validate our findings and confirm the mechanisms.

4.8. Clinical Applications of Our Research for CVD

Our research is concordant with the depth and breadth of ongoing research into CVD
therapies. In addition to miRNA-based and cytokine-based therapies, we strengthened the
evidence to support targeting downstream target genes implicated in CVD.

4.8.1. miRNA-Based Therapy

The inhibition of miR-18a-5p may present a novel therapy in managing T1DM and its
cardiovascular complications. Despite emerging evidence on the role of miRNA in CVD,
limited studies have been conducted on the role of miR-18a-5p in CVD development and
progression. In an acute myocardial infarction (AMI) model, rat cardiomyocytes transfected
with miR-18a inhibitor were demonstrated to upregulate brain-derived neurotrophic factor
expression, thus ameliorating cardiac ischemic injury and offering protection against
AMI [79].

4.8.2. IL-10

The elevation of IL-10 in T1DM could serve as a compensatory response to the in-
flammatory nature to counterbalance elevated CRP, IL-8, and TNF-α [11,47]. Due to its
anti-inflammatory property, IL-10 administration could be a potential therapeutic approach
for the management of T1DM and CVD. To date, clinical data on IL-10 therapy for CVD is
currently unavailable but animal experiments have supported its prospect. In rats with
heart failure, IL-10 therapy significantly improved post-MI left ventricular function by
reducing IL-6 and TNF-α, whilst in ischemia-reperfusion injury, IL-10 therapy reduced
inflammation and cardiomyocyte death [66,67].

4.8.3. VEGF-D

VEGF-D is part of the VEGF family of growth factors, which play a key role in angio-
genesis by promoting new vessel formation during vascular development and following
an injury [80]. VEGF-D mRNA, protein levels, normally expressed in the heart were signifi-
cantly overexpressed in both early and late stages of MI, whilst VEGFR-3 was expressed in



Biomedicines 2022, 10, 2136 15 of 23

newly formed vessels in the infarcted myocardium, suggesting that VEGF-D is involved in
angiogenesis in the infarcted heart [81].

Our study reported higher VEGF-D levels in T1DM/subclinical CVD. Thus, this
elevation is speculated to serve as a compensatory mechanism to induce angiogenesis. In
patients with refractory angina, endocardial adenoviral injection of the VEGF-D gene has
been shown to be well-tolerated and increase myocardial perfusion in areas with impaired
perfusion reserve [82]. Overall, our data and others support the promise of VEGF-D therapy
in managing CVD.

4.8.4. Thrombomodulin

Elevated thrombomodulin among T1DM/subclinical CVD is postulated to reflect the
degree of damaged endothelial cells. Prior studies have explored the anti-inflammatory
nature of thrombomodulin, and in a mouse carotid ligation model, exogenous administra-
tion of thrombomodulin reduced atherosclerosis and the formation of neointima [83]. In
addition, a soluble form of thrombomodulin tested in a clinical trial was shown to improve
disseminated intravascular coagulation and sepsis [84].

4.8.5. IGF1

IGF-1 has anti-inflammatory and anti-atherogenic roles, and IGF-1 receptor knockout
mice have been shown to exhibit increased atherosclerotic burden, less stable plaque
composition, and enhanced pro-inflammatory responses in macrophages [85]. Furthermore,
IGF-1 has been demonstrated to stimulate the angiogenesis process and angiogenesis-
related growth factors expression via PI3-kinase/Akt signaling pathway [86].

4.8.6. ESR1

An animal model study demonstrated that ESR1 knockout mice exhibited insulin resis-
tance, glucose tolerance impairment and obesity [87]; moreover, Zhai et al. demonstrated
the cardioprotective role of estrogen receptor-α, an estrogen receptor encoded by ESR1, by
investigating ischemia-reperfusion injury in male estrogen receptor-α knockout mice; they
reported more severe myocardial damage and higher incidence of ventricular arrythmias in
knockout mice hearts compared to control hearts [88]. In addition, ESR1 has been reported
to enhance the expression of VEGF-A mRNA in a HIF-1α-dependent manner, which results
in enhanced angiogenesis and attenuated inflammation [89].

4.8.7. HIF-1α

The overexpression of HIF-1α in mesenchymal stem cell-derived exosomes on hypoxia-
pre-treated HUVECs demonstrated that the angiogenic function, migratory capacity, and
proliferation of the hypoxia-injured cells were reversed by HIF-1α-overexpressed exosomes;
moreover, they reported enhanced neovessel formation in the infarcted area of myocardial
infarction model, demonstrating the cardio-protective role mediated by HIF-1α [90]. Fur-
thermore, Li et al. demonstrated that the injection of mutant HIF-1α to the skeletal muscle
of ischemic rabbits resulted in improved tissue perfusion, mature angiogenesis, and more
histologically identifiable capillaries [91].

4.8.8. CCN2

Increased myocardial expression of CCN2 has been demonstrated to confer cardio-
protection by protecting the heart from ischemia-reperfusion injury via GSK-3ß pathway
inhibition, phospho-SMAD2 activation, and gene expression reprogramming [92]; more-
over, in a model of acute cardiomyopathy, transgenic mice with cardiomyocyte-specific
CTGF overexpression displayed preserved cardiac function compared to wild-type control
rats that exhibited significantly reduced systolic function [93].
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4.8.9. PIAS3

Overexpression of PIAS3 has been shown to attenuate oxidized low-density lipoprotein(ox-
LDL)-induced inflammation and lipid accumulation, making PIAS3 a vital repressor of
atherosclerosis [94]; moreover, in a rabbit atherosclerosis model, inhibition of STAT3 signal-
ing pathway led to less upregulation of pro-inflammatory cytokines and reduced formation
of atheromatous plaques [95].

4.8.10. TGFβ1

In animal studies, mice subjected to transverse aortic arch constriction exhibited
elevated level of TGFβ1 [96]; moreover, TGFβ1-deficient mice subjected to angiotensin
II were demonstrated to attenuate angiotensin II-induced cardiac hypertrophy compared
to wild-type mice that exhibited impaired cardiac function and over 20% increase in
left ventricular mass [97]. In an experimental model of chronic Chagas’ heart disease,
TGFβ-inhibitor therapy resulted in reduced fibrosis of cardiac tissue and improved cardiac
recovery [98].

4.9. Contribution/Causation

Based on our correlation analysis, we identified possible contribution or causality
generated from miR-18a-5p target genes binding site (Table 2). By utilizing TargetScan
Human, release 7.1 and Diana-TarBase v8 databases, we explored probable target genes of
interest for miR-18a-5p; moreover, the canonical pathway tool in IPA was used to establish
the most relevant canonical pathways associated with the target genes. In addition, the
top molecular targets and functional pathways for miR-18a-5p using miRDB and mirPath
database, respectively, were summarized in the supplemental material (Tables S1 and S2).

MiR-18a-5p has an effect on multiple pathways (IPA), of which many are interrelated.
MiR-18a-5p has binding sites in 5 target genes of interest. We observed that the highest
number of binding sites was present among the HIF-1α pathway; it became apparent that
miR-18a-5p has a causal role via the HIF-1α pathway, in which molecules including HIF-1α,
IGF1, IL-6, STAT3, VEGF, and VEGF-D were found to participate in this pathway; this
pathway was predicted to be involved in the development of angiogenesis and infarction.
The next causal effect was via IGF1, which is involved in inflammation and hyperglycemia.
We also observed the causal effect of miR-18a-5p via ESR1, which leads to atherosclerosis
and infarction. Another causal role observed was via CCN2, which is involved in angio-
genesis. Lastly, miR-18a-5p appears to have a causal effect on PIAS3, which was involved
in infarction and inflammation.

The summary of the present research is represented in Figure 7.
Given we have identified the potential therapeutic targets of metformin therapy,

further studies are essential to prove the causal role of miR-18a-5p on the genes predicted
by IPA.

4.10. Limitations

The limitation of our study is the technical constraints in attaining a sufficient amount
of RNA from CFU-Hill’s colonies to analyze in parallel miRNA and mRNA in individual
subjects and avoid pooling RNA samples for patients and HCs. Although the other
limitation is the relatively small number of subjects studied, this is the first miRNA study
ever carried out in CFU-Hill’s and should be treated as a pilot/feasibility study providing
fundamental blocks for future research.
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Figure 7. Summary of our study results in patients with subclinical CVD. The upregulated miR-
18a-5p and CRP contributed to increased cardiovascular risks in T1DM patients, whereas reduced
levels of CFU-Hill’s colony, CD34+ cells, and CD34+CD133+ cells were observed, indicating poor
vascular health and repair. Elevated level of thrombomodulin reflected the degree of inflammation
and endothelial damage leading to increased CVD risk. Elevated IL-10 and VEGF-D served as
compensatory mechanism to counteract inflammatory conditions.

Table 2. The predicted consequential pairing of the target region in the transcript and miR-18a-5p.

Target
Gene

Representative
Transcript Gene Name Transcript

Position

Predicted Consequential Pairing
of Target Region Transcript
(Top) and miRNA (Bottom)

Site Type

IGF1 ENST00000337514.6 Insulin-like growth
factor 1 181–187 3′ UTR

(transcript)
5′ CUUUAGGAGU-

GAUUUGCACCUUG
(miRNA)

3′ GAUAGACGUGAU-
CUACGUGGAAU

7mer-8

ESR1 ENST00000440973.1 Estrogen Receptor 1 1938–1945
3′ UTR

(transcript)
5′ UAGUUUGUUUAA-

GAAGCACCUUA
(miRNA)

3′ GAUAGACGUGAU-
CUACGUGGAAU

8mer

HIF-1α ENST00000323441.6 Hypoxia Inducible
Factor 1 Subunit Alpha 409–415 3′ UTR

(transcript)
5′ AUCAUUU-

UAAAAAAUGCACCUUU
(miRNA)

3′ GAUAGACGUGAU-
CUACGUGGAAU

7mer-m8



Biomedicines 2022, 10, 2136 18 of 23

Table 2. Cont.

Target
Gene

Representative
Transcript Gene Name Transcript

Position

Predicted Consequential Pairing
of Target Region Transcript
(Top) and miRNA (Bottom)

Site Type

CCN2
(CTGF) ENST00000367976.3

Cellular
Communication

Network Factor 2
(Connective Tissue

Growth Factor; CTGF)

1046–1052
3′ UTR

(transcript)
5′ AAAAGUUACAU-
GUUUGCACCUUU

(miRNA)
3′ GAUAGACGUGAU-

CUACGUGGAAU

7mer-m8

PIAS3 ENST00000393045.2 Protein Inhibitor of
Activated STAT 3 774–780 3′ UTR

(transcript)
5′ GGCCUGGCUCAU-

UCUGCACCUUG
(miRNA)

3′ GAUAGACGUGAU-
CUACGUGGAAU

7mer-m8

TargetScan Human, release 7.1 (www.targetscan.org, accessed on 4 April 2022), Diana-TarBase v8, (http://
carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex, accessed on 4 April 2022)
databases were used to predict the interaction sites between the transcripts and miR-18a-5p. Nucleotides in bold
are predicted consequential pairing of target region transcript and miRNA.

5. Conclusions

Our research-validated animal research on anti-angiogenic properties of miR-18a-5p as
we observed upregulated miR-18a-5p among T1DM patients, whilst miR-18a-5p positively
correlated with inflammatory markers and inversely with vascular health indices. Our
findings highlight the promise of exploiting miR-18a-5p as an early, sensitive, non-invasive
biomarker in diagnosing and monitoring CVD in clinical practice. As miR-18a-5p was
predicted to inhibit genes IGF1, ESR1, HIF-1α, CCN2, and PIAS3 and act on cytokines,
those targets could potentially be targeted for future CVD research in patients; moreover,
the predicted cardioprotective mode of action of metformin provides consistent results
with the activation of miR-18a-5p downstream target genes in animal CVD research; this,
however, requires validation in clinical studies.
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