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Abstract: (1) Recently, metabolic profiling of the tissue in the native state or extracts of its metabolites
has become increasingly important in the field of metabolomics. An important factor, in this case,
is the presence of blood in a tissue sample, which can potentially lead to a change in the concentra-
tion of tissue metabolites and, as a result, distortion of experimental data and their interpretation.
(2) In this paper, the metabolomic profiling based on NMR spectroscopy was performed to determine
the effect of blood contained in the studied samples of brain tissue on their metabolomic profile.
We used 13 male laboratory CD-1® IGS mice for this study. The animals were divided into two
groups. The first group of animals (n = 7) was subjected to the perfusion procedure, and the second
group of animals (n = 6) was not perfused. The brain tissues of the animals were homogenized, and
the metabolite fraction was extracted with a water/methanol/chloroform solution. Samples were
studied by high-frequency 1H-NMR spectroscopy with subsequent statistical data analysis. The
group comparison was performed with the use of the Student’s test. We identified 36 metabolites in
the brain tissue with the use of NMR spectroscopy. (3) For the major set of studied metabolites, no
significant differences were found in the brain tissue metabolite concentrations in the native state
and after the blood removal procedure. (4) Thus, it was shown that the presence of blood does not
have a significant effect on the metabolomic profile of the brain in animals without pathologies.

Keywords: brain tissue; metabolomic profile; metabolomics; nuclear magnetic resonance

1. Introduction

In recent years, the number of applications of metabolomic tissue profiling for earlier
diagnostics, monitoring the effectiveness of pathology therapy and assessments of the
phenotype of living organisms has been rapidly increasing. One of the most powerful and
versatile methods used in quantitative metabolomics studies is NMR spectroscopy [1,2].
The method of NMR spectroscopy is fast, non-invasive and provides highly reproducible
results. Moreover, a conventional NMR experiment does not require a complex procedure
for sample preparation. The analysis of chemical shifts and multiplicities of NMR peaks
allows us to reference them to specific metabolites [3]. Thus, it is possible to identify and
determine the concentrations of many metabolites in a single run [4–8]. NMR data provide
great interest in the development of approaches to the metabolic phenotyping of living
organisms [9,10]. Moreover, this method is suitable for identifying metabolites that can
serve as markers of diseases such as cancer [11–13], diabetes [14–17], inborn metabolic
disorders [18], and cardiovascular diseases [19,20].

Molecules 2021, 26, 3096. https://doi.org/10.3390/molecules26113096 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-6124-9710
https://orcid.org/0000-0002-1380-3000
https://www.mdpi.com/article/10.3390/molecules26113096?type=check_update&version=1
https://doi.org/10.3390/molecules26113096
https://doi.org/10.3390/molecules26113096
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26113096
https://www.mdpi.com/journal/molecules


Molecules 2021, 26, 3096 2 of 8

An important step in metabolomic studies is the choice of suitable biological samples.
Urine and serum/plasma are widely used biofluids for studies. [6,8,20–29] Their main
advantages are the high range of detectable metabolites and their non-invasiveness or
minimal invasiveness of sampling. However, metabolomic profiling of other tissues is
becoming increasingly important in the field of metabolomics [5,7,30].

Despite a variety of significant advances in the field of NMR technology, there are
still several issues related to factors that can influence the results. One of the features
of metabolomic profiling of tissues is the presence of blood in the tissue samples. In the
case of in vitro NMR studies, the presence of blood can distort the metabolomic profile of
the tissue. In the tissue studies of laboratory animals such as rats and mice, a perfusion
procedure allows us to remove blood from the sample. However, when the study requires
many samples, this procedure is laborious and time-consuming.

Despite a large number of studies of tissues in the native state [31,32], there is no
literature that considers how the presence of blood in the tissues affects their metabolomic
profile. Thus, the purpose of this work was to evaluate the possible effect of blood contained
in brain tissue samples on their metabolomic profile using the NMR spectroscopy method.

2. Results

The method of preparation of biological samples using a three-component mixture of
water/methanol/chloroform allowed for the extract purifying from proteins and lipids
and minimizing the baseline distortion in NMR spectra [4,33–37].

A typical NMR spectrum of the brain tissue of the CD-1 mouse line is shown in
Figure 1. 36 metabolites were identified in the NMR spectra of the brain tissue. The
concentrations of these compounds in the brain tissue were measured (Table 1). No
significant differences in the concentrations between groups A and B were found by
Student’s t-test for any of these metabolites. No multiple testing problem corrections,
e.g., the Bonferroni correction, were applied.
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Figure 1. Typical NMR spectrum of brain tissue of the CD-1 mouse line with metabolite annotation.
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Table 1. Metabolite concentrations (nmol/g) in the brain tissue of animals from groups A and B. The
comparison of groups was performed by Student’s t-test with the estimation of the test power.

Without Blood
M ± S.D.

With Blood
M ± S.D. p Power

2-hydroxy-butyrate 30 ± 25 30 ± 40 0.87 0.05
Alanine 650 ± 170 620 ± 160 0.75 0.06

AMP 510 ± 80 610 ± 140 0.15 0.32
Ascorbate 780 ± 140 790 ± 180 0.91 0.05
Aspartate 1590 ± 250 1810 ± 420 0.26 0.19
Choline 390 ± 120 340 ± 80 0.36 0.13
Creatine 4700 ± 1000 5100 ± 1000 0.57 0.10
Formate 80 ± 50 70 ± 30 0.75 0.07

Fumarate 70 ± 20 70 ± 20 0.92 0.05
GABA 1920 ± 540 1720 ± 530 0.52 0.09

Glutamate 5350 ± 840 6300 ± 1400 0.18 0.29
Glutamine 2190 ± 510 2370 ± 600 0.59 0.08

Glycine 690 ± 180 640 ± 150 0.65 0.08
GSH 530 ± 110 540 ± 130 0.89 0.05

Guanosine 30 ± 10 22.7 ± 9.7 0.46 0.23
Histidine 50 ± 10 50 ± 20 0.91 0.05

Hypoxanthine 160 ± 60 110 ± 30 0.10 0.44
Inosine 740 ± 280 560 ± 200 0.21 0.23

Isoleucine 30.4 ± 9.0 25.4 ± 7.2 0.30 0.18
Lactate 6300 ± 1300 6100 ± 1700 0.86 0.06
Leucine 50 ± 10 40 ± 10 0.09 0.38

myo-Inositol 3100 ± 650 3300 ± 740 0.63 0.08
N-Acetyl-Aspartate 3800 ± 640 4060 ± 810 0.56 0.09

NAD 22 ± 15 40 ± 20 0.09 0.39
Nicotinamide 90 ± 40 90 ± 40 0.97 0.05
Phenylalanine 40 ± 30 30 ± 10 0.38 0.13

Phosphocholine 300 ± 100 310 ± 80 0.91 0.05
Phosphoethanolamine 780 ± 190 820 ± 160 0.66 0.07

Pyruvate 21.2 ± 9.3 23 ± 10 0.80 0.06
scillo-Inositol 24.6 ± 6.6 27.1 ± 4.8 0.46 0.11

Serine 830 ± 240 750 ± 140 0.47 0.11
Succinate 200 ± 30 210 ± 90 0.68 0.06
Taurine 6100 ± 1300 6600 ± 1100 0.49 0.11
Uracyl 30 ± 15 19.8 ± 8.9 0.24 0.29
Uridine 90 ± 30 70 ± 25 0.15 0.22
Valine 60 ± 10 60 ± 10 0.87 0.05

List of abbreviations: AMP—Adenosine monophosphate; GABA—γ-Aminobutyrate; GSH—Glutathione reduced;
NAD—Nicotinamide adenine dinucleotide.

3. Discussion

We reliably identified 36 metabolites and quantified the NMR spectra of extracts from
the brain tissue of the CD-1 mice, which made it possible to make a comparison between
the groups for the most abundant metabolites, which are often used for monitoring the
pathological changes in biological and medical studies [21,23,33–39].

Deriving information on the metabolism of certain tissues may carry risks of sample
contamination by other tissues and biological fluids of the organic body. Taking into
account the structural and spatial organization of tissues may help us to avoid errors
in the material intake, but separating all-penetrating biofluids from the tissues is often
complicated. In this regard, a reasonable question arises about the potential contribution
of biofluids to the errors in the analysis of the metabolism of tissue. In the metabolomic
analysis by in vitro NMR, the vessels are involved in the volume of the sample taken, and
can potentially lead to a significant error. In our work, we took the same sample volume
(cerebral cortex tissue) from both groups of animals, so in the group of animals after the
perfusion procedure, the entire volume of the sample contained only brain tissue, and in
the group of animals in the native state, the sample consisted of brain tissue mixed with
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blood. The volume of blood in the brain of a mouse averages 3.5–4.0% of the total brain
volume. However, the percentage of blood varies for different areas of the brain. For the
cerebral cortex, this parameter is equal to 7.9% [40]. The result of our analysis did not reveal
significant differences in the concentrations of the examined metabolites between groups
of animals on the available sample size. This indicates that the concentrations of major
metabolites in brain tissue and blood normally have a similar order of magnitude. One
should also take into account that the percentage of blood in the brain tissue does not exceed
8%, so a small difference in the metabolomic compositions of brain and blood becomes
negligible in the comparison of brain tissues with and without perfusion. However, it is
still possible that certain low-abundant metabolites are present in blood, but absent (or
almost absent) in the brain, and the levels of these compounds can vary under different
pathophysiological processes. If that is the case, the presence of blood in the brain tissue
may induce errors in the detailed metabolomic analysis. The question on the significant
changes in the concentration of blood metabolites, which can distort the results of tissue
metabolomic analysis, for example, in metabolic pathologies such as diabetes mellitus,
requires additional research.

4. Materials and Methods

The laboratory animals used in the experiment were born, reared, and throughout
the study were kept in the “Center for Genetic Resources of Laboratory Animals” SPF-
vivarium of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy
of Sciences (unique identifier RFMEFI62119X0023). We used 13 male laboratory CD-1®

IGS mice for this study. Initially, this line of mice was purchased from the Charles River
Laboratories (Wilmington, MA, USA) in 2014. At the beginning of the experiment, the age
of the animals was 8 weeks from the moment of birth. Mice were housed in open cages
(OptiMice, Animal Care Systems Inc., Centennial, CO, USA) in groups of 3 or 4 individuals
of the same sex throughout the study. The animals were provided with food and water
consumption ad libitum with a standard autoclaved food ssniff® R/MH autoclavable
V1534-3 for rodents (Sniff Spezialdiäten GmbH, Soest, Germany) and purified sterile water
with the addition of “Severyanka” mineral salts (Eco-Project LLC, St. Petersburg, Russia).
Conditions for keeping laboratory mice are also included: illumination—14 light: 10 dark,
temperature 22–24 ◦C, and relative humidity 40–50%.

We divided the animals into two groups to collect the biomaterial for spectroscopy.
The first group of animals (n = 7) was subjected to the perfusion procedure (6 stages are
described below). Group A: the second group of animals (n = 6), was not perfused. Group
B: the sampling was limited to steps 1 and 6, but with the time for intake of material equal
to group A.

The procedure for mouse perfusing and sampling consisted of the following steps:
(1) the animal was anesthetized intraperitoneally by injection of a domitor (75 µL/10 g
weight; Orion Pharma, Espoo, Finland) and subsequent injection of zoletil (60 µL/10 g
weight; Virbac Sante Animale, Carros, France); (2) the animal’s chest was opened, exposing
the heart; (3) a 5 mL syringe was filled with phosphate buffer pH 7.4 (KCl 2.7 mM, NaCl
140 mM, Phosphate 10 mM; AppliChem GmbH, Darmstadt, Germany) and attached to the
catheter; (4) the needle of the catheter was inserted into the left ventricle of the mouse heart,
the right atrium was cut with scissors; (5) 15 mL of PBS (approximately 10 times exceeding
the volume of mouse blood) was injected for washing the circulatory system of the mouse.
Perfusion was performed at the flow rate 5 mL/minute, so the procedure took 3 min.
As was previously published, a required volume of PBS for transcardial perfusion of the
mouse ranges from 10 mL up to 50 mL at a flow rate 5 mL/min or 7 mL/min respectively,
which means that the whole perfusion procedure lasted from 2 to 7 min; [41]; (6) the mouse
skull was opened, and the brain was removed. A fragment of the frontal cerebral cortex
was separated and stored at −70 ◦C.

All experimental procedures were carried out in accordance with Directive 2010/63/EU
of the European Parliament and the Council of the European Union of 22 September 2010
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on the protection of animals used for scientific purposes, and approved by the Commission
on Bioethics of the Institute of Cytology and Genetics SB RAS.

To obtain a protein-free extract of metabolites from the mouse brain, we used the
following sample preparation protocol. Brain tissue was weighed and homogenized
using a TissueRuptor II homogenizer (Qiagen, Venlo, The Netherlands) in a cold wa-
ter/methanol/chloroform mixture in a ratio 1:2:2 (v/v; 1600 µL of solvent mixture per
150 mg of wet tissue), vortexed for 30 s, kept on ice for 10 min, and incubated at
−20 ◦C for 20 min. The mixtures were centrifuged at 12,000 rpm, 4 ◦C for 30 min to pellet
proteins. The top hydrophilic fraction was collected into fresh vials and lyophilized using a
vacuum concentrator.

Dried extracts were re-dissolved in 600 µL of D2O (99.9%; Cambridge Isotope Labora-
tories Inc., Wilmington, MA, USA) containing 6 × 10−6 M DSS (sodium 4,4-dimethyl-4-
silapentane-1-sulfonate; Cambridge Isotope Laboratories Inc., Tewksbury, MA, USA) as
an internal standard and 20 mM deuterated phosphate buffer to maintain pH 7.4. The
1H-NMR measurements were carried out with the use of an NMR spectrometer AVANCE
III HD 700 MHz (Bruker BioSpin, Germany) equipped with a 16.44 T Ascend cryomagnet.
The proton NMR spectra for each sample were obtained with 96 accumulations. The
temperature of the sample during the data acquisition was kept at 25 ◦C, the detection
pulse was 90 degrees. The repetition time Tr between scans was 25 s to allow for the
relaxation of all spins. The relaxation times T1 for some compounds are given in Table S1
and indicate that the condition Tr > 5T1 (for the majority of spins) or, at least Tr > 3T1 (for
spins with longest relation times such as histidine) is fulfilled. Low power radiation at the
water resonance frequency was applied prior to acquisition to presaturate the water signal.
The pulse sequence zgpr was applied. The baseline correction and integration were done
manually using the free demo version of the program MestReNova v12.0.

In a typical NMR spectrum of a blood serum extract, one can identify approximately
50–70 compounds (5, 6, 8, 33, 35); however, some of the signals are weak or partly over-
lapped by other signals; that can cause significant experimental errors in the integration
of these signals. For this reason, only 36 metabolites giving strong and distinct signals in
NMR spectra were chosen for the analysis. The attribution of signals which have been used
for the metabolite quantification in the NMR spectrum is shown in Figure 1.

The signal assignment was performed using the human metabolome database [27]
and our own experience in the metabolomic profiling of animal and human tissues and
biofluids [21,23,33,35–38,41]. For some compounds, the signal assignment was confirmed
by the addition of authentic compounds into samples (Table S1). The concentrations of
metabolites in the samples were determined by the peak area integration, with respect to
the internal standard. Since the intensities of the NMR signals give information on the
relative concentrations of molecules in the sample, for the determination of the absolute
concentrations, an internal standard DSS with a concentration of 6 × 10−6 M was added
to each sample. When identifying metabolites, the NMR signals were assigned to specific
functional groups of molecules, which made it possible to determine the number of protons
that contributed to each signal of the metabolite. The integral values were normalized
to the number of protons corresponding to the integrated functional group. Since many
metabolites have several NMR signals in different regions of the spectrum, the distinct
signals with minimal overlapping by other signals were taken for the concentration deter-
mination (see Table S1). The concentration of metabolites in tissue samples was calculated
using the following formula:

CMi

(
nmol

g

)
=

IMi × 9 × CDSS × VD2O

IDSS × n × mtissue
,

where CMi is the concentration of the metabolite, IMi is the integral of the signal of the
metabolite, 9 is the number of equivalent protons in DSS, CDSS = 6 × 10−6 M is the DSS
concentration, VD2O = 600 µL is the volume of the NMR sample, IDSS is the integral of
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the DSS signal, n is the number of protons that contributed to the integrated signal of the
metabolite, and mtissue is the sample mass (mg) of a tissue used for the sample preparation.

5. Conclusions

In the course of this work, we studied the brain tissue of CD-1 mice to assess the effect
of blood on the metabolomic profile of a tissue sample in its native state. The method of
high-field 1H NMR spectroscopy allowed us to reliably identify and quantify 36 different
metabolites. Analysis of brain tissue metabolite concentrations in the native state and after
the blood removal procedure showed that the presence of blood does not have a significant
effect on the metabolomic profile of the brain in animals without pathologies. Based on the
data obtained, it can be concluded that the metabolomic analysis of animal brain tissue
does not require a laborious procedure for removing blood from the studied samples. At
the same time, this is only valid for situations without significant changes in the blood
metabolome; in the presence of such changes, additional studies are required.

Supplementary Materials: The following are available online, Table S1: Chemical shifts of NMR
signals used for metabolite quantification, and indication of metabolites those assignments was
validated by spiking with standards.
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