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C�reactive protein levels, a risk factor of cardiovascular disease,

have not been fully elucidated. This study investigated the associa�

tions between dietary calcium intake and serum high�sensitivity

C�reactive protein levels in the general Japanese population. We

analyzed the data of 2,019 subjects (1,194 men and 825 women)

aged 35 to 69 years in a cross�sectional study of the Japan Multi�

Institutional Collaborative Cohort Study. Nutrients intake including

calcium were estimated using a validated food�frequency ques�

tionnaire. Analysis using a general linear model revealed that

dietary calcium intake was inversely associated with serum high�

sensitivity C�reactive protein levels (p for trend <0.001) after

adjustment for age, sex, research group, leisure�time physical

activity, smoking habit, drinking habit, dietary intakes (energy,

dietary fiber, saturated fatty acids and vitamin D) and meno�

pausal status. The association was slightly attenuated after addi�

tional adjustment for body mass index; however, remained

significant (p for trend = 0.008). There were no significant inter�

actions between dietary calcium intakes and sex, body mass

index, or vitamin D intake for high�sensitivity C�reactive protein

levels. This study have demonstrated that dietary calcium intake

was inversely associated with serum high�sensitivity C�reactive

protein levels in the general population.
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IntroductionLow-grade systemic inflammation is considered a risk factor
for the development and progression of inflammation-related

disorders, such as cardiovascular disease (CVD)(1,2) and metabolic
syndrome.(3) High-sensitivity C-reactive protein (hs-CRP) is a
useful marker of inflammation that is able to predict the risk of
CVD.(4) Higher CRP levels are related to older age,(5) obesity,(6)

smoking,(7) none or high alcohol intake(8) and low physical
activity.(9) Nutrient factors, such as dietary fiber(10) and n-3 poly-
unsaturated fatty acids (n-3 PUFAs), are inversely associated
with hs-CRP levels.(11) In contrast, saturated fatty acids is posi-
tively associated with hs-CRP level.(12) Dietary factors including
dietary patterns are also associated with hs-CRP levels.(13,14)

In previous reports, dietary calcium intake was associated with
reduced risk of CVD.(15–17) However, few reports have investigated
the association between calcium intake and hs-CRP levels. A
randomized-controlled trial (RCT) reported no association between
calcium supplementation and hs-CRP levels.(18) Calcium supple-
mentation in vitamin D-insufficient type 2 diabetics also showed
no significant change in serum hs-CRP levels compared with

placebo.(19) In a cross-sectional study, hs-CRP levels were not
significantly different between groups with low and high intake
of dietary calcium;(20) however, the results were derived from a
relatively small number of subjects (low: n = 32 vs high: n = 44).
Dietary calcium reduces body weight by preventing lipid accumu-
lation in adipocytes,(21) and obesity is associated with inflam-
matory status.(22) Thus, it is necessary to consider the effect of
obesity as an intermediate variable when evaluating the associa-
tion between calcium intake and hs-CRP levels.

The present study investigated the association between dietary
calcium intake and hs-CRP levels in the Japanese population.
We also examined the effect of BMI on the association between
dietary calcium intake and hs-CRP levels.

Materials and Methods

Study subjects. A total of 2,440 participants aged 35 to 69
years, were enrolled in the cross-sectional survey of the Japan
Multi-Institutional Collaborative Cohort (J-MICC) Study in
Tokushima prefecture. In brief, the J-MICC Study is designed
to detect and confirm gene-environment interactions for lifestyle-
related diseases.(23) We applied three methods for recruitment of
subjects. First, we recruited 570 participants undergoing medical
check-ups at the Tokushima Prefectural General Health Check-up
Center from January 23, 2008 to November 24, 2011. Second, we
mailed companies in Tokushima, inviting them to take part in this
research. From November 2009 to June 2012, we recruited 1,174
employees of these companies. They were mostly office workers
rather than shift workers. Third, we disseminated approximately
98,700 leaflets explaining the objective and method of the J-MICC
Study at each mailbox in Tokushima city (total population =
264,500). After reading the leaflets, 696 subjects voluntarily
participated in this study from July 2012 to February 2013. This
study was conducted according to the guidelines laid down in the
Declaration of Helsinki and all procedures involving human
subjects were reviewed and approved by the Ethics Committees of
Nagoya University School of Medicine (affiliated with the former
principal investigator, Nobuyuki Hamajima), Aichi Cancer Center
(affiliated with the current principal investigator, Hideo Tanaka)
and Tokushima University Hospital. Written informed consent
was obtained from each subject.

Of 2,440 participants, 421 were excluded owing to the
following reasons: (i) lack of hs-CRP data (n = 29), body mass

L



doi: 10.3164/jcbn.17�48
©2018 JCBN

90

index (BMI) data (n = 12), data regarding physical activity (n = 27),
and menopausal status (n = 1); (ii) hs-CRP levels ≥10 mg/L
(n = 28); (iii) history of cancer (n = 109), ischemic heart diseases
(n = 51), cerebrovascular disease (n = 31), and other inflammatory
or chronic diseases (n = 23, chronic intestinal diseases and
connective tissue diseases); (iv) taking anti-inflammatory drugs
(n = 77), calcium supplement (n = 56), and vitamin D supplements
(n = 43); (v) implausible estimated total energy intake values
(<1,000 kcal/day, n = 1 or >4,000 kcal/day, n = 17). A total of
2,019 subjects (1,194 men and 825 women) were eligible for the
analyses.

Dietary assessments. A validated food-frequency question-
naire (FFQ), which was developed by Nagoya City University
Graduate School of Medical Sciences, asked about the intake
frequency of 47 foods and beverages over the past one year.(24,25)

The daily intake of total energy, calcium, total dietary fiber,
saturated fatty acids, and vitamin D were calculated using an
original program(24) based on the Standard Tables of Food
Consumption(26) in Japan. The validity of nutrient intake in Aichi
prefecture including calcium (energy-adjusted Pearson correlation
coefficient was 0.42) was previously reported.(25) In addition, the
energy-adjusted Pearson correlation coefficient compared with
four season, three-day dietary records in 28 subjects in Tokushima
prefecture was 0.43. Dietary calcium, total dietary fiber, saturated
fatty acids, vitamin D, and n-3 PUFAs were log-transformed
because of following right-skewed distributions, and adjusted for
energy intake (log-transformed) by using the residual method.(27)

They were divided into quartiles before analyses to be similar
number of subjects in each category.

Questionnaires and measurements of hs�CRP levels.
Lifestyle factors including smoking and drinking habits, physical
activity, current medication, and past history of diseases were
investigated by a self-administered questionnaire, and data were
checked by trained staff. Smoking and drinking habits were
classified into three (never, former, and current smokers) and
two (never and former, and current drinkers [≥one time/month])
categories, respectively. Leisure-time physical activity was esti-
mated by multiplying the frequency and average duration of
light (walking, hiking, etc., 3.4 metabolic equivalents [METs]),
moderate (jogging, swimming, etc., 7.0 METs), and vigorous
intensity (marathon running, combative sports, etc., 10.0 METs)
exercise, and MET-hours/week of leisure time activity were
calculated by summing exercise performed at each level. Subjects
were divided into four groups by quartiles of MET-hours/week.

Height (cm) and weight (kg) were obtained, and BMI was
calculated as weight (kg)/[height (m)]2. Venous blood samples
were collected from each subject, and serum hs-CRP levels were
measured using a latex agglutination immunoassay (BML Inc.,
Tokyo, Japan).

Statistical analysis. For continuous variables of characteris-
tics, a general linear model or Kruskal-Wallis test were applied to
assess differences among quartiles of calcium intake, and χ2 test
was used for categorical variables. Since serum hs-CRP levels
followed right-skewed distributions, they were log-transformed
before analyses. To analyze associations between dietary calcium
intake and serum hs-CRP levels, a general linear model was used
adjusting for age (categories: 35–49, 50–59 and 60–69 years), sex,
research group (three), leisure-time physical activity (MET-hours/
week; quartiles), smoking habit, drinking habit, and dietary
intakes (total energy, total dietary fiber, saturated fatty acids and
vitamin D; quartiles). Menopausal status (no status [men],
premenopausal women and postmenopausal women) was also
adjusted instead of sex. Furthermore, we additionally adjusted
for BMI (quartiles). Linear trends were assessed using ordinal
categorical variables (1 to 4) in each statistical model. Calcium-
sex, or -BMI, or -vitamin D interactions on hs-CRP levels
were evaluated by including interaction terms of dietary calcium
intake (≤median, >median) × sex, or × BMI (≤median, >median), or

× vitamin D (≤median, >median) in the model, using partial F-tests.
All analyses were performed using the SAS software package
(ver. 9.3 for Windows; SAS Institute, Cary, NC). P values <0.05
were considered statistically significant.

Results

Table 1 shows the characteristics of the study subjects according
to calcium intake. Compared with subjects in the lowest quartile
of dietary calcium, those in the upper quartile were older, had
lower BMI, were less likely to be men, current smoker and
current drinker, and were physically more active. For nutrition
intake, total energy intake was not significantly different among
quartiles; however, as calcium intake increased, carbohydrate
intake decreased, while protein, fat, saturated fatty acids, total
dietary fiber, and vitamin D intakes increased. Higher intakes of
calcium were associated with lower serum hs-CRP levels.

Table 2 presents the association between dietary calcium and
hs-CRP levels taking into account potential confounding factors.
In a general linear model adjusted for age and sex, dietary calcium
intake was significantly inversely associated with serum hs-CRP
levels (Model 1: p for trend <0.001). The significance remained
unchanged after adjusting for additional potential confounding
factors such as total energy intake, research group, physical
activity, smoking habit, drinking habit, menopausal status and
intakes of total dietary fiber, saturated fatty acids and vitamin D
(Model 2: p for trend <0.001). When saturated fatty acid intake
and n-3 PUFAs intake were included in the same model, multi-
collinearity was present. Therefore, we adjusted n-3 PUFAs
intake instead of saturated fatty acid intake in model 2, so that the
association was slightly attenuated but remained significant (p for
trend = 0.02; Table 2 did not show). Because it has been reported
that calcium intake is associated with reduced obesity and obesity
is positively associated with hs-CRP levels, we further adjusted
for BMI, with similar results (Model 3: p for trend = 0.008).

Finally, interactions between dietary calcium intake and sex,
BMI, or dietary vitamin D on hs-CRP levels were investigated.
We did not find significant interaction of calcium × sex (p = 0.220),
calcium × BMI (p = 0.784), or calcium × vitamin D (p = 0.150)
with hs-CRP levels (Table 3).

Discussion

To the best of our knowledge, no other reports have observed
this inverse association between dietary calcium and hs-CRP levels
in the general population. There were only two RCTs(18,19) and a
cross-sectional study(20) that evaluated their association, and none
of them reported significant association. However, the cross-
sectional study included a relatively small number of subjects
(low intake of calcium: n = 32 vs high intake of calcium: n = 44).(20)

In addition, the study included only women; there was a relatively
high prevalence of obesity, and the subjects had different basal
hs-CRP levels and dietary habits (such as different nutritional
intake, which affected calcium absorption) compared to those of
our subjects. These factors may be responsible for the differences
in study results. In mouse models, calcium has been reported to
inhibit gene expression of inflammatory cytokine in adipocytes by
inhibiting endogenous calcitriol (1,25-dihydroxyvitamin D3).

(28)

Inhibition of calcitriol could have anti-obesity and anti-inflammatory
effects by increasing intracellular calcium levels.(28,29) However,
this phenomenon has only been reported in mouse adipocytes,
and has not been demonstrated in human studies. In a study with
human subjects, the group with high calcium intake had lower
prevalence of overweight and obesity, but plasma hs-CRP levels
and intracellular calcium levels in erythrocyte were not associated
with calcium intake.(20) Additional studies are required to further
clarify the biological mechanism.

A meta-analysis of prospective cohort studies showed that the
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association curve between dietary calcium intake and deaths from
CVD was U-shaped, and both inadequate and excessive calcium
intake were associated with higher risk.(16) The authors further
reported that calcium intakes of about 800 mg/day conferred the

lowest risk of cardiovascular mortality. The average levels of
dietary calcium intakes measured in the present study were
455 mg (energy-adjusted; 448 mg) in men and 509 mg (energy-
adjusted; 518 mg) in women. We excluded subjects who consumed

Table 1. Baseline characteristics of the subjects according to dietary calcium intake†

Q, quartiles; BMI, body mass index; MET, metabolic equivalent; hs�CRP, high�sensitivity C�reactive protein. †Adjusted for total energy intake after
log�transformation using the residual method. Data were presented as number (%)‡, mean ± SD§, or median (25%, 75%)¶. Differences were ana�
lyzed by chi�square test‡, general linear model§, or Kruskal�Wallis test¶.

Calcium intake (mg/day)

p valueQ1 
(≤371.5)

Q2 
(>371.5 and ≤451.6)

Q3 
(>451.6 and ≤548.1)

Q4 
(>548.1)

n 505 505 505 504

Men (%)‡ 375 (74.3) 335 (66.3) 269 (53.3) 215 (42.7) <0.001

Age (years)§ 48.3 ± 9.0 49.1 ± 9.4 49.8 ± 9.2 52.9 ± 9.5 <0.001

BMI (kg/m2)¶ 23.4 (21.6, 25.9) 23.2 (21.2, 25.7) 22.7 (20.9, 25.1) 22.3 (20.7, 24.4) <0.001

Smoking habit‡

Current 168 (33.3) 113 (22.4) 80 (15.8) 55 (10.9) <0.001

Past 139 (27.5) 148 (29.3) 124 (24.6) 113 (22.4)

Never 198 (39.2) 244 (48.3) 301 (59.6) 336 (66.7)

Drinking habit‡

Current 319 (63.2) 322 (63.8) 288 (57.0) 265 (52.6) <0.001

Past or Never 186 (36.8) 183 (36.2) 217 (43.0) 239 (47.4)

Physical activity level (MET�hs/week)¶ 3.0 (0, 11.6) 3.9 (0.4, 15.4) 4.3 (1.3, 15.3) 7.5 (1.3, 20.4) <0.001

Nutrients

Total energy intake (kcal/day)§ 1,671 (1,467, 1,955) 1,673 (1,487, 1,889) 1,673 (1,491, 1,884) 1,681 (1,499, 1,884) 0.999

Carbohydrate (energy %)§ 68.5 ± 6.6 65.8 ± 6.8 63.5 ± 7.0 59.7 ± 7.4 <0.001

Protein (energy %)§ 11.0 ± 1.4 11.9 ± 1.5 12.4 ± 1.6 13.3 ± 1.7 <0.001

Fat (energy %)§ 20.5 ± 5.6 22.3 ± 5.8 24.1 ± 6.0 27.0 ± 6.2 <0.001

Saturated fatty acids (g/day)†,§ 9.0 ± 1.3 9.8 ± 1.4 11.3 ± 2.0 13.4 ± 2.8 <0.001

Dietary fiber (g/day)†,§ 8.0 ± 1.9 9.2 ± 2.0 9.8 ± 2.5 11.4 ± 3.1 <0.001

Vitamin D (μg/day)†,§ 5.1 ± 1.8 6.1 ± 2.3 6.3 ± 2.5 7.1 ± 3.1 <0.001

hs�CRP (mg/L)¶ 0.36 (0.18, 0.77) 0.33 (0.15, 0.73) 0.31 (0.16, 0.61) 0.25 (0.13, 0.55) <0.001

Table 2. Multivariate�adjusted mean values of serum hs�CRP by quartiles (Q1–Q4) of calcium intake

hs�CRP, high�sensitivity C�reactive protein; Q, quartiles; CI, confidence interval; BMI, body mass index. †Adjusted for sex and age. ‡Adjusted for age,
total energy intake, research group, physical activity, smoking habit, drinking habit, total fiber intake, saturated fatty acids intake, vitamin D intake
and menopausal status. §Adjusted for variables in model 2 plus BMI.

Q1 Q2 Q3 Q4

p for trend(≤371.5 mg/day) (>371.5 and ≤451.6 mg/day) (>451.6 and ≤548.1 mg/day) (>548.1 mg/day)

Adjusted Means (95% CI) Adjusted Means (95% CI) Adjusted Means (95% CI) Adjusted Means (95% CI)

Model 1† 0.37 (0.33–0.41) 0.35 (0.31–0.38) 0.33 (0.30–0.36) 0.29 (0.27–0.32) <0.001

Model 2‡ 0.37 (0.33–0.42) 0.34 (0.30–0.38) 0.32 (0.28–0.35) 0.27 (0.24–0.31) <0.001

Model 3§ 0.37 (0.33–0.41) 0.35 (0.31–0.39) 0.33 (0.30–0.36) 0.30 (0.26–0.33) 0.008

Table 3. Combined effects of calcium intake and sex, BMI or vitamin D intake on serum hs�CRP levels (mg/L)

BMI, body mass index; hs�CRP, high�sensitivity C�reactive protein; CI, confidence interval. †Adjusted for age, total energy intake, research
groups, physical activity, smoking habit, drinking habit, total fiber intake, saturated fatty acids intake, vitamin D intake and BMI. ‡Adjusted
for age, total energy intake, research groups, physical activity, smoking habit, drinking habit, total fiber intake, saturated fatty acids
intake, vitamin D intake and menopausal status. §Adjusted for age, total energy intake, research groups, physical activity, smoking habit,
drinking habit, total fiber intake, saturated fatty acids intake, menopausal status and BMI.

Calcium ≤451.6 mg/day (median) Calcium >451.6 mg/day
p for interaction

Adjusted Means (95% CI) Adjusted Means (95% CI)

Men 0.42 (0.39–0.47) 0.36 (0.33–0.40)
0.220†

Women 0.31 (0.28–0.36) 0.30 (0.27–0.34)

BMI ≤22.9 kg/m2 (median) 0.26 (0.23–0.29) 0.23 (0.21–0.26)
0.784‡

BMI >22.9 0.48 (0.43–0.53) 0.42 (0.38–0.47)

Vitamin D ≤5.12 μg/day (median) 0.35 (0.32–0.39) 0.30 (0.27–0.33)
0.150§

Vitamin D >5.12 0.35 (0.31–0.39) 0.33 (0.30–0.37)
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calcium supplements to avoid the possibility of excessive intake.
The results of our study suggest that the relatively moderate
amount of calcium intake from foods in Japanese population
might explain the inverse association between dietary calcium and
hs-CRP levels. Moreover, Western populations obtain more than
75% of their dietary calcium from dairy products.(30) Likewise,
Japanese populations consume 45.3% of the total calcium intake
from dairy products, 17.9% from vegetables, 11.4% from beans,
9.7% from fish and shellfish, and 15.7% from other sources.(31)

In other words, Japanese populations obtain approximately half
of their calcium from non-dairy products. This also may have
contributed to the difference in results of Western studies and
those of our Japanese study. In the case of an association between
dairy products and inflammation, an inverse association was
suggested in a meta-analysis of RCTs with overweight and obese
subjects.(32,33) However, functional components other than calcium
which are present in dairy products, such as milk-derived proteins
(e.g., lactoferrin) and bioactive peptides may also exert anti-
inflammatory effects.(33) Therefore, it is difficult to assess the
effects of calcium on inflammation based on dairy products alone.

There are several reports on the association between calcium
and weight loss.(20,34) In the current study, the significant associa-
tion between dietary calcium and hs-CRP levels remained
significant after adjusting for BMI, suggesting that the association
was independent of, or not totally mediated by, obesity. Further-
more, the interaction between dietary calcium and BMI on hs-CRP
levels was not significant. Thus, the results suggest that the
association between dietary calcium intake and hs-CRP did not
differ with high or low BMI. Recent studies reported associations
between inflammation and type 2 diabetes.(35) To assess this, we
further adjusted for history or medication for type 2 diabetes;
however, the results did not change (data not shown). The use of
statins (for hyperlipidemia), which could have decreased hs-CRP
levels,(36) may have confounded the association, although addi-
tional adjustment for hyperlipidemia medication status did not
change the results (data not shown). It has been reported that
activated vitamin D enhances intestinal absorption of calcium;(37)

however, the association between calcium and hs-CRP was not
affected by vitamin D intake in this study. The biological mecha-
nisms underlying the association between dietary calcium intake
and hs-CRP levels remain unclear; thus, future research might
help to interpret these observations.

The present study has several limitations. First, since this study
used a cross-sectional design, the causal relationships should be
discussed with caution. However, we excluded participants with
inflammation-related diseases or high hs-CRP levels (≥10 mg/L).
Furthermore, participants did not know their hs-CRP status,
because it is not usually measured in medical check-ups. Subjects
were mostly within the normal range of hs-CRP levels, which
suggests that hs-CRP levels might not affect their dietary habits.
Second, lifestyle information including dietary habits was self-
reported; thus, non-differential misclassification or random mea-
surement errors might have been inevitable. Moreover, because
the number of FFQ items (47) was relatively small, the FFQ
may have underestimated the absolute level of nutrient intakes.
However, FFQs are designed to rank individuals rather than to

assess their absolute level of intakes. We also obtained a relatively
high correlation coefficient of calcium intake in the validation
study (energy-adjusted Pearson r = 0.42).(25) Therefore, the study
subjects could be exactly ranked according to calcium intake
with reasonable validity. Third, we did not measure other inflam-
matory biomarkers. Fourth, we did not measure circulating 25-
hydroxyvitamin D concentrations, which reflect the actual sys-
temic vitamin D status. Moreover, magnesium intake is also
recognized to affect calcium absorption(38) and has been shown to
be inversely associated with systemic inflammation.(39) However,
our FFQ can only estimate a limited number of nutrients, which
does not include magnesium intake. Fifth, because of the observa-
tional design of this study, residual confounding remains possible.
Finally, further studies in different ethnic groups are necessary
because this study included only Japanese populations.

In conclusion, the present study showed a significant inverse
relationship between dietary calcium intake and serum hs-CRP
concentrations in the general population, an association that was
not confounded or totally mediated by BMI. Further studies are
needed to confirm the relationship between dietary calcium and
inflammation.
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