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Consistent prediction of GO protein 
localization
Flavio E. Spetale1, Debora Arce3,4, Flavia Krsticevic1,3, Pilar Bulacio1,2,3 & Elizabeth Tapia1,2

The GO-Cellular Component (GO-CC) ontology provides a controlled vocabulary for the consistent 
description of the subcellular compartments or macromolecular complexes where proteins may act. 
Current machine learning-based methods used for the automated GO-CC annotation of proteins suffer 
from the inconsistency of individual GO-CC term predictions. Here, we present FGGA-CC+, a class of 
hierarchical graph-based classifiers for the consistent GO-CC annotation of protein coding genes at the 
subcellular compartment or macromolecular complex levels. Aiming to boost the accuracy of GO-CC 
predictions, we make use of the protein localization knowledge in the GO-Biological Process (GO-BP) 
annotations to boost the accuracy of GO-CC prediction. As a result, FGGA-CC+ classifiers are built from 
annotation data in both the GO-CC and GO-BP ontologies. Due to their graph-based design, FGGA-CC+ 
classifiers are fully interpretable and their predictions amenable to expert analysis. Promising results on 
protein annotation data from five model organisms were obtained. Additionally, successful validation 
results in the annotation of a challenging subset of tandem duplicated genes in the tomato non-model 
organism were accomplished. Overall, these results suggest that FGGA-CC+ classifiers can indeed be 
useful for satisfying the huge demand of GO-CC annotation arising from ubiquitous high throughout 
sequencing and proteomic projects.

Eukaryotic cells are organized into a complex structure of subcellular compartments called organelles. Proteins 
synthesized in ribosomes can be trafficked to different organelles for the accomplishment of specific physiological 
functions. Hence, it is not surprising that unexpected protein subcellular localization often underlies the patho-
genesis of many human diseases1–3. Proteins synthesized in ribosomes can also interact to form macromolecular 
complexes4 -naturally occurring machines inside cells- playing crucial roles in a variety of cellular processes5,6. 
The GO-CC ontology provides a controlled vocabulary for consistent description of both the subcellular structure 
or macromolecular complex location where proteins may act. Diverse experimental methods can be used to accu-
rately determine the subcellular localization of proteins7, ranging from the identification of specific signals on 
cargo proteins8,9 to the use of advanced imaging techniques for revealing protein composition of organelles10–12. 
Similarly, a combination of chemical crosslinking13, mass spectrometry, and cryo-electron microscopy14 meth-
ods can be used to accurately determine the structure and function of macromolecular complexes. Although 
all these advanced experimental methods are beginning to bear fruits15,16, their time-consuming nature and 
elevated costs17,18 make then incompatible with current GO-CC protein annotation demands from ubiquitous 
large-scale sequencing and proteomic projects. In this scenario, in-silico methods for the automated GO-CC 
annotation of proteins, i.e., for predicting their localization, at the subcellular structure or macromolecular com-
plex levels, become promising alternatives19–22. However, few studies have considered this problem as a whole, 
CELLO2GO23 and FFPred324 being two important exceptions. The CELLO2GO method entails a sequence-based 
approach for predicting the GO localization of proteins based on their homology to previously localized proteins, 
mostly belonging to model organisms. On the other hand, the FFPred3 method entails a machine learning-based 
approach for (separately) predicting all GO domains, including GO-CC, with main focus on divergent human 
protein chains for which homology-based methods can provide little aid. Since machine learning-based GO 
annotation methods can overcome the limitations of straightforward homology-based alternatives, they are par-
ticularly attractive for the annotation of proteins from non-model organisms.

Taking into account that the study of non-model organisms provides new opportunities for understanding 
the evolution of multicellular life and cell biological processes25, and that substantial reductions in the cost of 
DNA sequencing have recently burst their study, more efforts on the improvement of machine learning-based 
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methods for GO protein localization are required. In this regard, it is worthy of note that only simplified ver-
sions of this problem have been mostly considered in literature. In particular, the prediction of a reduced set of 
subcellular localization (SCL) categories, often extracted from the SCL section of UniProt entries26, has been a 
frequently revisited problem considering single27–29 or multi-category30–33 prediction outputs. From a biological 
point of view, multi-category prediction methods are preferable since relevant proteins often show a ubiquitous 
character. In either case, protein SCL categories are predicted using the knowledge available at previously local-
ized proteins by characterizing their sequences in terms of a fixed number of informative features. These features 
may range from the frequency of amino-acids to the existence of low-complexity regions, signal peptides, or 
trans-membrane helices34, among others. On the other hand, the unified prediction of highly-specific protein 
localization categories derived from ad-hoc ontologies like GO-CC has been occasionally considered.

Recalling that an ontology embodies a controlled vocabulary of terms and well-known relationships between 
them, in-silico methods for GO-CC protein localization can be further differentiated by the consistency of 
individual GO-CC term predictions. We note, however, that although admittedly important35, the consistency 
problem of ontology-based predictions has been rarely considered in literature. For example, GO-CC FFPred3 
predictions are built from a predefined flat -unware of ontology relationships- set of 89 binary GO-CC term 
predictions; a final propagation step from selected leaf GO-CC terms to the root is then used to accomplish con-
sistent GO-CC predictions. We note, however that consistent GO-CC predictions obtained this way may not be 
unique, and may not be optimal with respect to the minimization of the probability of erroneous GO-term pre-
dictions, since neither the prediction noise of flat GO-CC classifiers, nor the relationships between GO-CC terms 
are considered. In particular, false positive predictions will be always propagated to the root instead of attempting 
the prediction of less specific but easier terms, that could improve overall prediction accuracy.

In this paper, a graphical model-based machine learning approach for the automated and consistent GO-CC 
annotation of protein coding genes is presented. While the graphical component is used to specify the GO-CC 
ontology, the machine learning component is used to independently learn target GO-CC categories; both these 
components are then appropriately combined to infer consistent GO-CC annotations. Graphical models have 
been long used to provide intuitive visions and useful insights in a variety of biological problems at different levels 
of complexity, including the prediction of metabolic pathways36, the prediction of protein functions37, and the 
analysis of complicated drug metabolic systems38. Regarding our GO-CC annotation problem, we specifically 
rely on the power of factor graph models39 for obtaining a graphical and formal specification of the GO-CC 
ontology, for modeling the prediction noise of flat binary classifiers used to predict individual GO-CC categories, 
for graphically approximating A Posteriori Probabilities (APP) of individual GO-CC categories, for computing 
corresponding Maximum A Posteriori (MAP) estimates, and for downstream expert analysis of GO-CC predic-
tions. Building upon these concepts, we present FGGA-CC+ classifiers, hierarchical ensembles of binary classi-
fiers allowing the straightforward inference of consistent GO-CC annotations by means of the execution of the 
well-known Sum-Product algorithm39 in factor graphs.

Initial insights about FGGA-CC+ classifiers were obtained with the former introduction of FGGA classifi-
ers40, hierarchical ensembles of binary classifiers defined over GO Molecular Function (GO-MF) compliant factor 
graphs designed to tackle the automated and consistent GO-MF annotation of protein coding genes. Aiming 
to deal with GO-CC annotations, FGGA classifiers are now extended into FGGA-CC+ counterparts. For this 
purpose, the factor graph modeling of the transitive is_a and part_of relationships between GO-CC terms is first 
considered. In addition, the factor graph modeling of the non-transitive occurs_in relationship between GO-CC 
and GO-BP terms, useful for specifying the subcellular location where a biological process occurs, is complimen-
tary considered. As a result of the occurs_in modeling, relevant protein subcellular localization knowledge already 
available at the GO-BP subdomain can be formally exploited for the enrichment of GO-CC predictions.

Results
Characterization of protein sequences for their consistent GO-CC annotation with FGGA-CC+ 
classifiers.  Automated GO-CC annotation of protein sequences with FGGA-CC+ classifiers requires their 
characterization in terms of a fixed number of informative protein features. Table 1 shows the average hierar-
chical Precision (HP), Recall (HR) and F-score (HF) results accomplished by native FGGA-CC classifiers, i.e., 
FGGA-CC+ classifiers without the GO-BP enrichment stage, on A. thaliana protein sequences. Firstly, a signif-
icant effect of characterization methods on hierarchical F-score results is revealed (p < 0.01; Friedman’s test). 
Secondly, significant differences (see Supplementary Tables S1 and S2) in favor of the Physicochemical+ charac-
terization method are observed (p < 0.01; Wilcoxon test with Bonferroni correction).

Characterization HP HR HF

PrositeBin 0.78 0.69 0.70

Signal+ 0.73 0.74 0.71

Signal+ + 0.78 0.68 0.70

Physicochemical+ 0.73 0.79 0.73

Table 1.  Average hierarchical precision (HP), recall (HR) and F-score (HF) accomplished by native 
FGGA-CC classifiers when considering four characterization methods, Signal+, Signal+ +, PrositeBin, and 
Physicochemical+, on A. thaliana protein sequences. The best characterization method according to the HF 
measure (p < 0.01; Wilcoxon test with Bonferroni correction) is shown in bold.
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GO-CC annotation of protein sequences with FGGA-CC+ classifiers.  FGGA-CC+ classifiers were 
evaluated on protein sequences from five model organisms, D. rario, A. thaliana, S. cerevisiae, D. melanogaster 
and M. musculus, using a 5-fold cross-validation approach. In all cases, a Physicochemical+ characterization 
of protein sequences was used, and hierarchical Precision, Recall and F-score performance metrics were eval-
uated. A first insight into the benefits of requiring consistent GO-CC predictions can be appreciated in Fig. 1 
where FGGA-CC+ processing over flat GO-CC predictions promotes consistency and reduces the number of 
false-positives.

A first round of evaluations was performed to evaluate the baseline annotation performance of FGGA-CC+ 
classifiers. For this purpose, native FGGA-CC classifiers were evaluated against naive ensembles of binary SVM 
classifiers trained to predict just individual GO-CC categories. FGGA-CC classifiers not only yielded better Area 
Under Curve (AUC) scores but did a particular good job at predicting more specific/deeper GO-CC terms (see 
Fig. 2 and Figure Supplementary S1).

A second round of evaluations was performed to evaluate the actual benefits of introducing of SCL knowl-
edge available in boundary GO-BP terms. For this purpose, GO-BP enriched FGGA-CC+ classifiers were eval-
uated against their FGGA-CC alternatives. As expected, FGGA-CC+ classifiers yielded higher AUC scores 
and did a particular good job at predicting even more specific/deeper GO-CC terms (see Fig. 3 and Figure 
Supplementary S2). Noteworthy, FGGA-CC+ classifiers noticeable increased the number of true positive GO-CC 
annotations (see Figure Supplementary S3). Furthermore, a graphical comparison of predicted GO-CC categories 
by the two classifiers revealed that these improvements came from positive FGGA-CC+ annotations to rather 

Figure 1.  GO-CC subgraphs induced in the annotation of the Q7ZVT3 protein in the D. rario model organism. 
Positive annotations are shown in light blue, negative ones in white, and erroneous ones with a crossline. (a) 
GO-CC annotations accomplished by a naive ensemble of SVM classifiers; erroneous/inconsistent annotations 
can be observed. (b) GO-CC annotations after FGGA-CC+ processing; consistent annotations, including just 
one false positive, can be observed.

Figure 2.  Scatter plots of the average AUC scores attained by native FGGA-CC and baseline ensembles of SVM 
classifiers when performing the GO-CC annotation of protein sequences characterized by the Physicochemical+ 
method. As deeper GO-CC categories are considered, points in the scatter plot turn from yellow to red.
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specific GO-CC nodes directly connected, or in the vicinity of, contributing boundary GO-BP nodes. This result 
makes sense since GO-BP contributing nodes are generally connected to GO-CC nodes located at certain depth. 
In addition, aiming to quantify observed differences between FGGA-CC+ and FGGA-CC classifiers taking into 
account consistency requirements, the hierarchical precision, recall and F-score performance metrics were evalu-
ated. As expected, the advantages of FGGA-CC+ classifiers with respect to FGGA-CC alternatives were confirmed 
in all but the D. rario dataset (see Table 2), for which only one additional boundary GO-BP term was available.

For the sake of completeness, a third round of evaluations was performed to evaluate the performance of 
FGGA-CC+ classifiers against two established methods for the automated GO-CC annotation of protein 
sequences, CELLO2GO and FFPred3. For this purpose, precision, recall and F-score performance metrics and 
corresponding hierarchical extensions were computed. The CELLO2GO method searches GO-CC annotated 
homologous proteins in the UniProtKB/TrEMBL database using the Blast algorithm. On the other hand, the 
FFPred3 method performs an extensive characterization of protein sequences and complementary feature selec-
tion before training a naive ensemble of SVM classifiers set to predict an empirically predefined set of 89 GO-CC 
categories. As a result, comparisons between methods were limited to the 89 predefined FFPred3 GO-CC cat-
egories and to the D. melanogaster model organism for which a precomputed FFPred3 characterization of pro-
tein sequences was publicly available. Based on these considerations, the Slim D. melanogaster dataset was first 
assembled (see Methods). A first insight on the annotation power of the three methods was assessed from ROC 
curves. Taking into account the natural imbalance between positively and negatively protein sequences annotated 
to each GO-CC category and the importance of positively annotated protein sequences, PR curves were comple-
mentary analyzed. Both ROC and PR curves showed promising comparative results for the FGGA-CC+ method 
(see Fig. 4). These results were further confirmed by precision, recall and F-score evaluations. In this regard, a 
significant effect (p < 0.01; Friedman’s test) of annotation methods on the F-score was first observed (see Table 
Supplementary S3); a significant difference in favor of the FGGA-CC+ method (p < 0.01; Wilcoxon test with 
Bonferroni correction) was afterwards observed (see Table 3, left). Finally, to shed further light on the actual com-
parative performance FGGA-CC+, FFPred3 and CELLO2GO methods taking into account consistency issues, 
hierarchical performance metrics were considered. For this end, predicted GO-CC categories by FFPred3 and 
CELLO2GO methods were first propagated to parent GO-CC terms. The advantages of the FGGA-CC + method 
could be then clearly observed (see Table 3, right).

FGGA-CC+ validation with the annotation of sHSPs in S. lycopersicum.  In plants, fruit maturation 
and oxidative stress can induce small Heat Shock Proteins (sHSPs) synthesis to maintain cellular homeosta-
sis. The diversity of the sHSP gene family is mostly supported by gene duplication events that result in genetic 
redundancy41. Protein SCL plays a key role in the functional diversification process of duplicated genes as follows 
from the differential distribution of their proteins across different subcellular compartments42. Current GO-CC 

Figure 3.  Scatter plots of the average AUC scores attained by GO-BP enriched FGGA-CC+ and native 
FGGA-CC classifiers when performing the GO-CC annotation of protein sequences characterized by the 
Physicochemical+ method. As deeper GO-CC categories are considered, points in the scatter plot turn from 
yellow to red.

Organism

HP HR HF

FGGA-CC FGGA-CC+ FGGA-CC FGGA-CC+ FGGA-CC FGGA-CC+

D. rario 72.877 72.914 71.848 72.348 68.313 68.507

A. thaliana 73.587 75.919 68.471 76.442 69.616 71.190

S. cerevisiae 66.473 67.248 83.426 83.896 70.931 71.935

D. melanogaster 70.690 72.015 73.563 74.635 69.531 71.067

M. musculus 66.592 67.043 77.840 79.002 69.952 70.943

Table 2.  Annotation performance of native FGGA-CC and GO-BP enriched FGGA-CC+ classifiers when 
predicting GO-CC terms for protein sequences in five model organisms. Protein sequences are characterized 
with the Physicochemical+ method. The average 5-fold hierarchical precision (HP), recall (HR) and F-score 
(HF) measures are reported. For each model organism, the best performing method according to the HP, HR 
and HF measures (p < 0.01; Wilcoxon test) is shown in bold.
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annotation of the sHSP gene family in S. lycopersicum genome remains scarce, with less than 10 in a set of 33 gene 
family members having some GO-CC annotation. Here, we focus on the in-silico GO-CC annotation of three 
clusters (I, II and III) of tandem duplicated sHSP genes in S. lycopersicum. These three clusters involve a total 
of nine sHSP genes, six of them without a GO-CC annotation. In addition, at each of them, one representative 
sHSP gene with a GO-CC annotation supported by some experimental evidence is present (Solyc06g076520, 
Solyc08g062450, and Solyc08g078700). In this regard, we recall that a cytosolic SCL annotation has been reported 
for Solyc06g07652043 belonging to cluster I comprising four sHSP genes in chromosome 6, that a chloroplast SCL 
annotation has been reported for Solyc08g06245044 belonging to a cluster II comprising two sHSP genes in chro-
mosome 8, and that a mitochondria SCL annotation has been reported for Solyc08g07870045 belonging to cluster 
III comprising three sHSP genes also in chromosome 8. Aiming to shed light on the GO-CC annotation of the 
six remaining sHSP genes without a GO-CC annotation, a FGGA-CC+ classifier trained on A. thaliana protein 
sequences was considered. Owing to the tandem constraint, we further expect that FGGA-CC+ annotations are 
consistent with the common ancestral origin of sHSP genes within each cluster, i.e., cytosolic, chloroplast, and 
mitochondrial related GO-CC annotations are respectively expected for sHSP genes in Clusters I, II, and III. 
Recalling that for hierarchical ensembles of classifiers like FGGA-CC+, a prediction is considered correct as long 
as the actual solution is contained in the predicted graph, the three positive GO-CC annotation controls were ver-
ified (see Table 4 and Figures Supplementary S4–S6). Expected GO-CC annotations within the three clusters were 
confirmed for all but one, with Cluster I and II retaining their ancestral cytosolic and chloroplastic localization 
respectively. Meanwhile, in Cluster III, the mitochondrial localization was only predicted for Solyc08g078700 and 
Solyc08g078720. For the remaining related gene Solyc08g078710, a nonspecific organelle localization was pre-
dicted, possible due to lack of some peptide signal, adding further evidence for its gene pseudogenization process.

Discussion and Conclusions
A graphical model-based machine learning approach for the automated and consistent GO-CC annota-
tion of protein sequences has been presented. In this approach, a novel class of hierarchical classifiers, named 
FGGA-CC+, map the GO-CC protein annotation problem to that of discovering hidden nodes in factor graphs 
defined by, latent GO-CC and GO-BP categories, semantic relationships between categories, observable predic-
tions of individual categories, and probability density functions modeling the prediction noise over individual 
categories. As a result, inconsistencies among observable GO-CC and GO-BP predictions -issued by binary SVM 
classifiers- can be transparently handled the well-known iterative Sum-Product algorithm in factor graphs. At 
the end of this leveraging process, a set of consistent GO-CC and GO-BP annotations are obtained. These com-
putational modeling efforts are paid off when observing the improvement of AUC scores accomplished by native 
FGGA-CC classifiers with regard to naive ensembles of binary SVM classifiers. Similarly, they are pay-off when 
observing the improvement of AUC and hierarchical performance metrics of FGGA-CC+ classifiers with regard 
to their native FGGA-CC alternatives. Concerning mandatory comparisons of FGGA-CC+ classifiers with state 
of art GO-CC annotation methods like FFPred3 and CELLO2GO, flat performance metrics were first considered. 
In the former case, significant improvements on F-score results were observed. However, in terms of precision 
performance, the CELLO2GO method performed better, but at lower recall levels. We wonder if we could reach 
CELLO2GO precision levels (0.65) by raising the threshold of our decisions. In effect, we found that by raising 
the decision threshold from 0.5 to 0.9, an average precision of 0.65 with an average recall of 0.57 (F-score of 
0.56) was accomplished (see Supplementary Table S4), suggesting that FGGA-CC+ classifiers can accommodate 

Figure 4.  FGGA-CC+ (black), CELLO2GO (red) and FFPred3 (blue) GO-CC annotation performance on 
protein sequences from the Slim D. melanogaster dataset. AUC measures favor (p < 0.01; Wilcoxon test with 
Bonferroni correction) the FGGA-CC+ method.

Method Precision Recall F-score HP HR HF

FGGA-CC+ 0.54 0.64 0.56 0.72 0.68 0.68

CELLO2GO 0.65 0.51 0.53 0.72 0.55 0.61

FFPred3 0.50 0.60 0.52 0.71 0.62 0.60

Table 3.  FGGA-CC+, CELLO2GO, and FFPred3 methods are considered for the GO-CC annotation of protein 
sequences in the Slim D. melanogaster dataset. Both flat (Precision, ecall and F-score) and hierarchical (HP, 
HR and HF) performance metrics are considered; average results are reported. The best performing method 
according to the F-score or HF metrics (p < 0.01; Wilcoxon test with Bonferroni correction) is shown in bold.
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a wide spectrum of precision/recall requirements. To shed light on the actual comparative performance of the 
FGGA-CC+, FFPred3 and CELLO2GO methods, hierarchical performance metrics were then considered. In 
these evaluations, the advantages of the FGGA-CC+ method could be clearly observed, with comparable results 
in terms of the hierarchical precision and significant better results in terms of the hierarchical recall.

For purposes of FGGA-CC+ validation, the challenging annotation of nine sHSP genes of tandem duplica-
tion origin in the tomato genome was considered. Verification of three positive controls allowed us to tackle the 
in-silico annotation of the six remaining sHSP genes. Consistent GO-CC annotation results were mostly observed 
with the sole exception of Solyc08g078710, for which a nonspecific organelle prediction, instead of a mitochon-
drial one, was obtained. Posterior analysis of the sHSP characterization patterns used for FGGA-CC+ queries 
revealed that differently from its two tandem duplicated counterparts, Solyc08g078710 lacks of a key signal allow-
ing its transport into the mitochondria. This signal is the Tom20 motif, a mitochondrial targeting signal expected 
at the N-terminal presequences that is recognized by the Tom20 import receptor at the outer mitochondrial 
membrane46. This finding points out the importance of using a comprehensive, GO-CC specific, characterization 
of protein sequences for their reliable GO-CC annotation.

Computational and biological concepts underlying the design of FGGA-CC+ classifiers, from techniques used 
for the characterization of protein sequences, to the factor graph modeling of target GO-CC subgraphs, including 
the integration of GO-BP knowledge and the modeling of GO-CC prediction noise at flat binary SVM classifi-
ers, provide a systematic framework for designing a computational tool allowing the integral GO annotation of 
protein sequences. By characterizing a sufficient large collection of annotated proteins in the three GO subdo-
mains, including those coming from orthologous protein coding genes, it should be possible to provide accurate 
and integral and precise GO annotations of protein coding genes in many non model organisms. Finally, as 
pointed out in47, and demonstrated in a series of recent publications33,48,49, user-friendly and publicly accessible 
web-servers represent the future direction for developing practically more useful prediction methods and com-
putational tools. In this regard, we shall make efforts in our future work to provide a web-server for the method 
presented in this paper.

Methods
To develop really useful sequence-based statistical classifiers for a biological system, such as those reported in a 
series of recent publications33,48,50, one should observe the 5-step rule51. As a result, one should make the following 
five steps very clear: (i) how to construct a valid benchmark dataset to train and test the classifiers; (ii) how to 
characterize protein sequences so that they can reflect their intrinsic correlation with target categories; (iii) how to 
develop a powerful algorithm for predicting target categories; (iv) how to properly perform cross-validation tests 
to objectively evaluate the anticipated accuracy of classifiers; and (v) how to establish a user-friendly web-server 
for the classifiers that is accessible to the public. In what follows, we describe how to deal with these steps 
one-by-one for the specific case of FGGA-CC+ classifiers and the prediction of GO-CC categories.

Datasets.  Benchmark datasets.  GO-CC annotation data with experimental and computational evidence 
codes [http://geneontology.org/page/guide-go-evidence-codes] was first collected. Regarding experimental 
codes, Inferred from Experiment (EXP), inferred from Direct Assay (IDA), Inferred from Physical Interaction 
(IPI), Inferred from Mutant Phenotype (IMP), inferred from Genetic Interaction (IGI) and Inferred from 
Expression Pattern (IEP), were considered. Regarding computational evidence codes, inferred from Sequence or 
structural Similarity (ISS), inferred from Sequence Orthology (ISO), inferred from Sequence Alignment (ISA) 
and inferred from Sequence Model (ISM), were considered. In addition, annotation data was also collected for 

Gene ID DGE Expected Predicted GO-CC leaf terms

Solyc06g076520 Up cytosolic nucleoplasm, cytosol, chloroplast envelope, NADH dehydrogenase complex, symplast, 
plastid thylakoid and inner mitochondrial membrane protein complex

Solyc06g076540 Up cytosolic
nucleoplasm, cytosol, chloroplast envelope, NADH dehydrogenase complex, photosynthetic 
membrane, mitochondrial respiratory chain and inner mitochondrial membrane protein 
complex

Solyc06g076560 Up cytosolic cytosolic ribosome, chloroplast envelope, NADH dehydrogenase complex, symplast, plasma 
membrane, nucleolus and inner mitochondrial membrane protein complex

Solyc06g076570 Up cytosolic nucleoplasm, cytosolic ribosome, chloroplast envelope, chloroplast thylakoid, 
photosynthetic membrane, symplast, plasma membrane and mitochondrial inner membrane

Solyc08g062450 Up chloroplastic cell-cell junction, cell periphery, chloroplast and nucleus

Solyc08g062340 Up chloroplastic cytosolic small ribosomal subunit, plasmodesma, chloroplast, nucleoplasm, mitochondrial 
membrane, nucleolus and plasma membrane

Solyc08g078700 Up mitochondrial plastid, mitochondrial membrane, organelle lumen and intracellular non-membrane-
bounded organelle

Solyc08g078710 NDE mitochondrial organelle

Solyc08g078720 NE mitochondrial cytosolic ribosome, chloroplast thylakoid membrane, chloroplast envelope, and 
mitochondrial respiratory chain complex I

Table 4.  GO-CC annotation of the S. lycopersicum sHSP genes with FGGA-CC+ classifiers. Nine tandem 
duplicated sHSP genes (Gene ID) are considered. Differential gene expression (DGE) profiles during fruit 
ripening, i.e., up-regulated (Up), not differentially expressed (NDE) or not expressed at all (NE), are included. 
Positive GO-CC annotation controls are shown in bold.

http://geneontology.org/page/guide-go-evidence-codes
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GO-BP boundary nodes, i.e., GO-BP terms connected to GO-CC terms through the non-transitive occurs_in 
relationship. For GO-BP boundary nodes, we considered annotation data with experimental, computational or 
Inferred from Electronic Annotation (IEA) evidence codes. This kind of soft annotation data policy for GO-BP 
boundary nodes aims to compensate the lack of sufficient protein sequences with experimental or computa-
tional evidence codes that may overshadow the actual power of GO-BP boundary nodes for the enhancement 
of GO-CC predictions. Regarding minimum requirements for learning individual GO terms with binary SVM 
classifiers, a minimum of 50 positively annotated protein sequences was considered. In addition, to assemble 
conveniently balanced binary training datasets52, positively annotated protein sequences were complemented 
with negative annotated protein counterparts using the inclusive separation policy53. As shown in Table 5, datasets 
comprising both positively and negatively GO-CC annotated protein sequences from five models organisms, D. 
rario54, A. thaliana55, S. cerevisiae56, D. melanogaster57 and M. musculus58, were finally assembled.

Slim D. melanogaster dataset.  D. melanogaster protein sequences were collated from the UniProt database based 
on their annotation to any of the 89 GO-CC categories predefined by the FFPred3 method; to allow fair hierarchi-
cal comparisons of GO-CC predictions between methods, 22 ancestor GO-CC categories were also included. In 
addition, the same evidence codes of benchmark datasets were used. Taking into account the high computational 
overhead of FFPred3 GO-CC predictions, a reduced set of 270 protein sequences was finally considered (see 
Supplementary Data file 1).

S. lycopersicum (cv. Heinz 1706) sHSP dataset.  Although the tomato reference genome was published in 2012, 
the functionality of sHSP genes in this model organism for fleshy fruit development remains mostly unknown. 
Using a transcriptomic (RNA-seq) and evolutionary genomic approach, a family of thirty-three sHSP genes in 
S. lycopersicum (cv. Heinz 1706) genome was recently established41. Here, the GO-CC annotation of this gene 
family is considered. We restrict our attention to tandem duplicated sHSP genes arranged into physical clus-
ters with at least one of its members being up-regulated during fruit ripening to ensure functionality, and with 
a established SCL annotation to validate annotations at each cluster. As a result, the GO-CC annotation of 
nine tandem duplicated genes sHSP genes arranged into three physical clusters was tackled: a cluster of four 
members (Solyc06g076520, Solyc06g076540, Solyc06g076560, Solyc06g076570) in chromosome 6, a cluster 
of two members (Solyc08g078710, Solyc08g078720) in chromosome 8, and another cluster of three members 
(Solyc08g062340, Solyc08g062450, Solyc08g078700) also in chromosome 8.

Protein sequence representation.  Protein sequences were characterized in terms of a fixed number fea-
tures. As shown in Table 6, four characterization methods were analyzed: (i) Signal+, encoding features used 
by well-known TargetP27, SignalP59, Transmembrane Helices60, WoLF PSORT61, and MitoFates62 tools for the 
prediction of standard SCL categories, along with the presence/absence of localization signals collected in 
the LocSigDB63 database, (ii) PrositeBin encoding just the presence/absence of Prosite domains, (iii) Signal+ 

+, encoding features in the Signal+ and PrositeBin characterizations, and (iv) Physicochemical+, encoding fea-
tures in the Signal+ characterization, together with of physicochemical and secondary structure properties64–67. 
Characterization methods were implemented with in-house R scripts. To assess the effect of characterization 
methods in the prediction power of FGGA-CC+ classifiers, the largest annotation dataset (A. thaliana) was 
considered.

Consistent GO-CC annotation of protein sequences with FGGA-CC+ classifiers.  GO-CC anno-
tation of protein sequences was first tackled with native FGGA-CC classifiers, hierarchical ensembles of binary 
SVM classifiers relying on the power of factor graph models for overcoming inconsistencies among flat SVM pre-
dictions of individual GO-CC categories (see Fig. 5). FGGA-CC classifiers arise as a natural extension of FGAA 
classifiers originally developed for the automated and consistent GO-MF annotation of protein coding genes. 
Both the GO-MF and GO-CC subontologies make extensive use of the fundamental transitive is-a relationship. In 
addition, the GO-CC subontology makes extensive use of the transitive part of relationship. Both relationships are 
considered by native FGGA-CC classifiers when performing GO-CC annotations. Aiming to accomplish more 
accurate GO-CC annotations, the integration of SCL knowledge from GO-BP boundary terms was additionally 
considered. As a result, native FGGA-CC classifiers were further extended into FGGA-CC+ classifiers. To accom-
plish this extension, the non-transitive occurs-in relationship between GO-CC and GO-BP terms was further 
considered. However, since non-transitive relationships may lead to non-transitive inference paths precluding 

Organism
# GO-CC 
terms

# Soft GO-BP 
terms # Samples

A. thaliana 143 8 22778

M. musculus 304 17 13417

D. melanogaster 167 11 6176

S. cerevisiae 174 12 5134

D. rario 52 1 1243

Table 5.  Annotation datasets used for the prediction of GO-CC categories. Protein sequences from five model 
organisms are considered. The number of GO-CC terms, with the number of soft GO-BP boundary terms used 
for the enhancement GO-CC predictions along with the number of annotated samples, are shown.
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the free propagation68,69 and consistency checking of GO-CC annotations in supporting factor graphs, a transitive 
closure screening process was introduced prior to factor graph modeling. After transitive closure processing, the 
resulting GO subgraph is ready to be transformed into a factor graph classification model using roughly the same 
methodology described in40.

Transitive Closure Screening of GO-CC subgraphs enriched with GO-BP boundary nodes.  Given a GO-CC 
subgraph enriched with GO-BP boundary nodes, a transitive closure screening process is performed using a 
Depth-First Search (DFS) algorithm70 ignoring repeated nodes. Starting from a bottom-leaf node, a link between 
a child node and its parent node is accepted only if, for all grandparent nodes, the boolean function h is satisfied 
for all composite child-parent-grandparent relationships. If any of these h evaluations fail, the child-parent link is 
deleted. In the definition of h, all reasoning rules established for standard71 and experimental72 relationships, like 
the occurs_in, are considered (see Table 7).

For example, in Fig. 6a, the transitive closure of inference paths in a GO subgraph including non-transitive 
relationships is analyzed. In particular, the presence of the GO:7 → GO:6 link involving the non-transitive reg-
ulates relationship is evaluated. Since h is verified by composite path GO:7 → GO:6 → GO:4 but is rejected by 
composite path GO:7 → GO:6 → GO:5, the GO:7 → GO:6 link gets removed (see Fig. 6b).

Factor graph transformation and inference of GO-CC annotations.  After transitive closure screening, the result-
ing GO subgraph is first transformed into a core factor graph (see Fig. 6c). For this purpose, GO terms are 
mapped to binary variable nodes and relationships between GO terms are mapped to logical factor nodes -logical 
functions- implementing the True Path Graph (TPG) constraint. Specifically, the TPG constraint ensures that if 
a child GO term is annotated positive, then its parent GO term(s) must also be annotated positive; on the other 
hand, if a parent GO term is annotated negative, then its children GO term(s) must also be annotated negative. 
The core factor graph is then enriched with observable variable nodes and probabilistic factor nodes. Observed 
variable nodes model practical binary SVM predictions over ideal, but hidden/latent, variable nodes in the core 
factor graph. On the other hand, probabilistic factor nodes model zero mean Gaussian distributions modeling the 
prediction noise of practical SVM classifiers.

For a given query protein sequence, GO-CC annotations are obtained by the execution of the iterative 
Sum-Product algorithm between nodes of the enriched factor graph. The algorithm starts from the observable 
but noisy predictions at leaf nodes of the factor graph. After a few number of iterations, approximated APPs on 
hidden variable nodes -target GO-CC categories- can be obtained40. We recall that only approximated APPs can 
be guaranteed since cycles73 are naturally expected in GO-CC compliant factor graphs. From these probabili-
ties, corresponding MAP estimates -minimizing the probability of erroneous GO-CC predictions- are obtained; 
practically, a maximum of 50 iterations were allowed. Note that since our GO-CC predictions follow from MAP 
estimates, we do not expect they are able to optimize more elaborate performance metrics like the F-score. We 
note, however, that the design of optimal F-score classification algorithms remain a challenging computational 
problem even for the prediction of flat multiclass/multilabel categories74.

Soft-margin SVM classifiers with a radial basis function kernel and default parameters were used for the pre-
diction of individual GO-CC and GO-BP categories. To fulfill the assumption of zero-mean Gaussian prediction 
noise, the margins of SVM classifier outputs were used. A complementary validation stage after the training of 
SVM classifiers was used to assess the standard deviation of Gaussian distributions modeling the prediction noise 
of individual GO-CC and GO-BP categories. Practically, SVMs classifiers were implemented with e-1071 R pack-
age75. In addition, the factor graph iterative Sum-Product algorithm was implemented with in-house R [https://
cran.r-project.org/] scripts.

Performance evaluation.  The prediction performance of native FGGA-CC and FGGA-CC+ classifiers was 
evaluated with 5-fold cross-validation tests. Taking into account the hierarchical relations among target GO-CC 
categories, both flat hierarchical classification performance metrics were considered76. Differently from their flat 
counterparts, hierarchical classification performance metrics appropriately recognize partially correct classifica-
tions and correspondingly penalize more distant or more superficial errors -prediction errors at upper levels of a 
hierarchy should be punished more severely that those at deeper levels77. In particular, the hierarchical precision 
(HP), the hierarchical recall (HR), and the hierarchical F-score (HF) measures introduced in78 were used. Below 
are their formulas:

∑ ∩=
| |

|↑ ↑ |
↑∈ ∈

HP s
l P s

c q
q

( ) 1
( ( ))

max
(1)G q l P s c l C s( ( )) ( ( ))

G G

Method Features # Features

Signal+ Established predictors of standard 
SCLcategories + LocSigDB signals 96

PrositeBin Presence/absence of Prosite domains 1354

Signal+ + Signal+ + PrositeBin 1450

Physicochemical+ Signal+ + Physicochemical and 
secondary structure properties 165

Table 6.  Characterization methods for protein sequences.

https://cran.r-project.org/
https://cran.r-project.org/
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where s is a protein sequence, G is GO subgraph, PG(s) ⊂ G is the predicted GO subgraph of s, CG(s) ⊂ G is the 
actual GO subgraph of s, l(PG(s)) is the set of leaves of the PG(s) and l(CG(s)) is the set of leaves of CG(s). In addi-
tion, ↑q is the set of ancestors of a node q belonging to PG(s), and ↑c is the set of ancestors of a node c belonging to 
CGO(s). Concerning fair comparisons of FGGA-CC+ classifiers against established, but not hierarchical, methods 
for the automated GO-CC annotation of protein coding genes, the average precision, the average recall and the 
average F-score performance metrics were used. Specifically, for each protein sequence s, the precision p(s) was 
calculated as 

+
tp s

tp s fp s
( )

( ) ( )
, the recall r(s) as 

+
tp s

tp s fn s
( )

( ) ( )
 and the F-score as ⋅ ⋅

+
p s r s

p s r s
2 ( ) ( )

( ) ( )
, where tp is the number of GO-CC 

categories correctly predicted as positives (true positives), fp is the number of GO-CC categories incorrectly pre-
dicted as positives (false positives) and fn is the number of GO-CC categories incorrectly predicted as negatives 
(false negatives).

Figure 5.  GO-CC annotation of a protein sequences with FGGA-CC classifiers. A GO-CC subgraph defining 
the expected structure of GO-CC predictions is first converted to a factor graph (FG) model. Protein sequences 
of any length are characterized in terms of a fixed number of features. Flat binary SVM classifiers (SVMi) 
predict individual GO-CC categories (GO:i) upon protein sequence queries. Flat, likely inconsistent, binary 
GO-CC predictions are leveraged by executing the Sum-Product algorithm on the FG model. At the end, a set of 
consistent GO-CC predictions is obtained.

GO:j → GO:j → GO:z h GO:i → ;GO:j → GO:z h

is a is a 1 regulates is a 1

is a part of 1 regulates part of 1

is a regulates 1 regulates regulates 0

is a occurs in 1 regulates occurs in 0

part of is a 1 occurs in is a 1

part of part of 1 occurs in part of 1

part of regulates 0 occurs in regulates 0

part of occurs in 1 occurs in occurs in 0

Table 7.  Transitive closure screening of a GO subgraph by means of a boolean function h. The admissibility 
of composite relationships between a GO term GO:i, its parent GO:j, and its grandparent GO:z, are checked by h.
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Evaluation protocol.  Firstly, the annotation performance of native FGGA-CC classifiers was evaluated 
against that of flat ensembles of binary SVM classifiers. Secondly, the annotation performance of (GO-BP 
enriched) FGGA-CC+ classifiers was evaluated against that of native FGGA-CC counterparts. In the former 
case, average AUC scores79 at individual GO-CC categories were additionally computed using the facilities in 
the PerfMeas package80. FGGA-CC+ classifiers were also evaluated against two established methods for GO-CC 
annotation, FFPred3 and CELLO2GO; literature results on these methods have been reported only with flat per-
formance metrics. Aiming fair comparisons, both flat and hierarchical performance metrics were used. For these 
evaluations, the Slim D. melanogaster dataset was used. In all cases, the statistical significance of observed differ-
ences was assessed with the Friedman and Wilcoxon rank sum tests at α = 0.01 significance level.
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