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Abstract: Korean red pine (Pinus densiflora) belongs to the Genus Pinus, and its bark contains a great
amount of naturally occurring phenolic compounds. Until now, few studies have been conducted to
assess the neuroprotective effects of Pinus densiflora bark extract against brain ischemic injury. The
aim of this study was to investigate the neuroprotective effects of pre-treatment with the extract
in the hippocampus following 5-min transient forebrain ischemia in gerbils. Furthermore, this
study examined the anti-inflammatory effect as a neuroprotective mechanism of the extract. Pinus
densiflora bark was extracted by pure water (100 ◦C), and this extract was quantitatively analyzed
and contained abundant polyphenols, flavonoids, and proanthocyanidins. The extract (25, 50, and
100 mg/kg) was orally administered once a day for seven days before the ischemia. In the gerbil
hippocampus, death of the pyramidal neurons was found in the subfield cornu ammonis 1 (CA1)
five days after the ischemia. This death was significantly attenuated by pre-treatment with 100 mg/kg,
not 25 or 50 mg/kg, of the extract. The treatment with 100 mg/kg of the extract markedly inhibited the
activation of microglia (microgliosis) and significantly decreased the expression of pro-inflammatory
cytokines (interleukin 1β and tumor necrosis factor α). In addition, the treatment significantly
increased anti-inflammatory cytokines (interleukin 4 and interleukin 13). Taken together, this study
clearly indicates that pre-treatment with 100 mg/kg of Pinus densiflora bark extract in gerbils can exert
neuroprotection against brain ischemic injury by the attenuation of neuroinflammatory responses.

Keywords: flavonoids; hippocampus; inflammatory cytokines; microgliosis; polyphenols; proantho-
cyanidins; pyramidal neuron

1. Introduction

Transient ischemia in brains occurs when blood supply to the brain is temporarily
lost [1]. The most effective treatment for ischemic brains is to restore blood supply to
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the brains as soon as possible. However, when the restoration of blood supply is too
late, ischemia-reperfusion injury leads to delayed neuronal death in vulnerable brain
structures, such as the hippocampal CA1 [2,3]. Numerous studies have proposed diverse
mechanisms of the delayed neuronal death due to ischemia-reperfusion injury, including
glutamate-induced excitotoxicity, oxidative stress following excessive generation of reactive
oxygen species (ROS), glia-mediated neuroinflammation, and blood-brain barrier (BBB)
disruption [4–6]. However, the exact mechanism of the delayed neuronal death has not
been fully elucidated.

Plant extracts have received considerable attention as the potential sources of multi-
target therapeutic agents for the treatment of neurological diseases, including cerebral
ischemia because they have multiple health-beneficial components that display a wide
spectrum of biological properties [7,8]. Pine bark extract has been studied to have us-
able polyphenols, including proanthocyanidins, which display various pharmacological
properties [9,10]. Thus, pine bark extract has been traditionally used for various diseases
and is utilized for nutritional supplements [11,12].

Several reports have demonstrated that pine trees inhabiting coastal regions dis-
play various beneficial properties [13,14]. For a representative example, Pycnogenol®,
a standardized extract from French maritime pine bark (Pinus pinaster Aiton), exerts a neu-
roprotective effect via antioxidant efficacy in a gerbil model of transient forebrain is-
chemia [13]. However, to the best of our knowledge, there is little information available
on the neuroprotective effect of an extract from Korean red pine (Pinus densiflora) bark
against ischemic brain injury. In addition, the mechanisms underlying the neuroprotective
effects of the extract against ischemic injury have not yet been fully established. Therefore,
the present study aimed to investigate the neuroprotective effect of Korean red pine bark
extract in the hippocampus and whether its effect occurred via the anti-inflammatory
function of the extract following 5-min transient forebrain ischemia in gerbils that have
been used as a model for evaluating the efficacy and mechanisms of protective agents in
transient forebrain ischemia [15,16].

2. Results
2.1. Total Polyphenols, Flavonoids, and Proanthocyanidins of Pinus densiflora Bark Extract (PBE)

As shown in Table 1, total polyphenols, total flavonoids, and total proanthocyanidins con-
tained in PBE were 92.89± 066 mg GAE/g, 23.57± 0.11 mg QE/g, and 53.42 ± 6.47 mg CE/g,
respectively (Table 1).

Table 1. Total polyphenols, flavonoids, and proanthocyanidins of PBE.

Total Polyphenols
(mg GAE/g)

Total Flavonoids
(mg QE/g)

Total Proanthocyanidins
(mg CE/g)

92.89 ± 0.66 23.57 ± 0.11 53.42 ± 6.74
All values are presented by mean ± SEM. GAE, gallic acid equivalent; QE, quercetin equivalent; CE; cate-
chin equivalent.

2.2. PBE Protected Hippocampal Neurons from Ischemic Injury
2.2.1. Finding by Hematoxylin and Eosin (H&E) Staining

In the vehicle-treated and sham-operated (vehicle + sham) group, cells in the hip-
pocampus were well-stained with H&E, showing that the cells basically consisted of the
stratum pyramidale (SP) in CA1-3 (Figure 1a). In the vehicle-treated and transient forebrain
ischemia (TFI) operated (vehicle + TFI) group, cells stained with H&E in the SP of CA1, not
CA2/3, were smaller in size, and there was a lack of cytoplasm at 5 days post-ischemia
compared to those shown in the vehicle + sham group (Figure 1B,b). This finding means
that the cells of the CA1 SP (called CA1 pyramidal cells or neurons) are damaged or dead.
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Figure 1. Representative images of H&E staining in gerbil hippocampus obtained from the vehicle + sham (A,a),
vehicle + TFI (B,b), PBE (25 mg/kg) + sham (C,c), PBE (25 mg/kg) + TFI (D,d), PBE (50 mg/kg) + sham (E,e), PBE
(50 mg/kg) + TFI (F,f), PBE (100 mg/kg) + sham (G,g), and PBE (100 mg/kg) + TFI (H,h) groups at 5 days post-ischemia.
Cells located in the SP (arrows in (B,b,D,d,F,f)) in the vehicle + TFI and PBE (25 and 50 mg/kg) + TFI groups are apparently
damaged. However, in the PBE (100 mg/kg) + TFI group, H&E stainability (asterisks in H,h) in the SP is similar to that
found in the vehicle + sham group. DG, dentate gyrus; SO, stratum oriens; SR, stratum radiatum. Scale bar = 400 µm
(A)–(H), 100 µm (a)–(h).

In the PBE (25, 50, and 100 mg/kg)-treated and sham-operated (PBE + sham) groups,
H&E stainability in the hippocampus was similar to that shown in the vehicle + sham
group at 5 days post-ischemia (Figure 1C,c,E,e,G,g). In the PBE (25 and 50 mg/kg) + TFI
groups, H&E stainability in the hippocampus was similar to that shown in the vehicle + TFI
group (Figure 1D,d,F,f). However, in the PBE (100 mg/kg) + TFI group, H&E stainability
was similar to that found in the vehicle + sham group (Figure 1H,h). Based on these results,
pre-treatment with 100 mg/kg PBE showed a neuroprotective effect in gerbil hippocampal
CA1 following TFI, and therefore, its underlying mechanisms were investigated in the PBE
(100 mg/kg) + TFI group.

2.2.2. Finding by Neuron-Specific Soluble Nuclear Antigen (NeuN) Immunohistofluorescence

In the vehicle + sham and PBE + sham groups, CA1 pyramidal cells located in
the SP showed strong NeuN immunofluorescence, which is shown in intact neurons
(Figure 2Aa,Ae. In the vehicle + TFI group, NeuN immunoreactive (NeuN+) CA1 pyrami-
dal cells were rarely shown (about 6 cells/250 µm2) at 5 days post-ischemia (Figure 2Ac,B.
However, in the PBE + TFI group, NeuN+ CA1 pyramidal neurons were similar to those
found in the vehicle + sham group (Figure 2Ag,B).
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Figure 2. (A) Representative images of NeuN immunofluorescence (a,c,e,g) and F-J B histofluorescence (b,d,f,h) staining
in CA1 of the vehicle + sham (a,b), vehicle + TFI (c,d), PBE + sham (e,f), and PBE + TFI (g,h) groups at 5 days TFI. In
the vehicle + TFI group, a few NeuN+ and many F-J B+ cells are shown in the SP. However, in the PBE + TFI group,
numerous NeuN+ cells (asterisk in (g)) and a few F-J B+ cells (arrows in (h)) are shown in the SP. Scale bar = 100 µm. (B,C)
Mean numbers of NeuN+ (B) and F-J B+ (C) cells in the SP at 5 days post-ischemia. The bars indicate the means ± SEM
(n = 7/group; * p < 0.05 versus each sham group, # p < 0.05 versus vehicle + TFI group).

2.2.3. Finding by Fluoro-Jade B (F-J B) Histofluorescence

F-J B positive (F-J B+) cells, which are dead or degenerating cells, were not detected in
the vehicle + sham and PBE + sham groups (Figure 2Ab,Af). In the vehicle + TFI group,
many F-J B+ cells (about 77 cells/250 µm2) were observed in the SP at 5 days post-ischemia
(Figure 2Ad,C). However, in the PBE + TFI group, a few F-J B+ cells (about 7 cells/250 µm2)
were detected in the SP at 5 days after TFI (Figure 2Ah,C).

2.3. PBE Attenuated Microglia Activation (Microgliosis) in Ischemic CA1

In the vehicle + sham group, ionized calcium-binding adapter molecule 1 (Iba-1)
immunoreactive (Iba-1+) microglia were scattered in strata oriens (SO) and radiatum (SR)
(Figure 3Aa). They were typical in morphology (as a resting form, small cell body with
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long branched processes) (Figure 3Aa). In the vehicle + TFI group, Iba-1+ microglia were
activated (hypertrophied: enlarged cell bodies with shorter and thicker processes), and the
relative optical density (ROD) of Iba-1+ microglia was gradually and significantly increased
(158.4% at 2 days and 225.5% at 5 days after TFI) compared to that in the vehicle + sham
group (Figure 3A(b,c),B). In particular, at 5 days post-ischemia, many activated Iba-1+

microglia were clustered in the SP (Figure 3Ac).
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Figure 3. (A) Representative images of Iba-1 immunohistochemistry in CA1 of the vehicle + sham (a),
vehicle + TFI (b,c), PBE + sham (d), and PBE + TFI (e,f) groups at 2 days and 5 days post-ischemia.
In the vehicle + TFI group, Iba-1+ microglia are hypertrophied after TFI. Note that hypertrophied
Iba-1+ microglia are clustered in the SP at 5 days post-ischemia. However, in the PBE + TFI group,
the activation of Iba-1+ microglia are significantly attenuated (arrows) (about 58% of that shown in
the vehicle + TFI group) at 5 days post-ischemia. Scale bar = 100 µm. (B) ROD of Iba-1+ structures.
The bars indicate the means ± SEM (n = 7 at each time; * p < 0.05, vs. vehicle + sham group, # p < 0.05
vs. corresponding vehicle + TFI group).

In the PBE + sham group, Iba-1+ microglia were not different in their morphology and
distribution from that shown in the vehicle + sham group (Figure 3Ad). In the PBE + TFI
group, Iba-1+ microglia activation was significantly attenuated when compared with that
found in the vehicle + TFI group at 5 days post-ischemia, and the ROD was 80.8% at 2 days
and 58.4% at 5 days compared with that shown in the vehicle + TFI group (Figure 3A(e,f),B).
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2.4. PBE Decreased Pro-Inflammatory Cytokines in Ischemic CA1 Pyramidal Neurons
2.4.1. Tumor Necrosis Factor α (TNF- α) Immunoreactivity

In the vehicle + sham group, weak TNF-α immunoreactivity was detected in CA1
pyramidal neurons (Figure 4Aa). In the vehicle + TFI group, TNF-α immunoreactivity in
the CA1 pyramidal cells was dramatically increased (252.0% of the sham group) in the
pyramidal cells at 2 days post-ischemia (Figure 4Ab,C), and, at 5 days post-ischemia, TNF-α
immunoreactivity in the CA1 pyramidal cells was hardly shown because the pyramidal
cells were dead at this time: in these pyramidal cells, relative immunoreactivity (RI) was
25.1% of the sham group (Figure 4Ac,C).
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cells was dramatically increased (189.3% of the sham group) at 2 days post-ischemia 

Figure 4. (A,B) Representative images of TNF-α (A) and IL-1β (B) immunohistochemistry in CA1 of the vehicle + sham (a),
vehicle + TFI (b,c), PBE + sham (d), and PBE + TFI (e,f) groups. In the vehicle + TFI group, both TNF-α and IL-1β
immunoreactivities are dramatically increased in pyramidal cells (asterisk in (b)) at 2 days post-ischemia and hardly
shown (arrow in (c) at 5 days post-ischemia. However, in the PBE + TFI group, at 2 days post-ischemia, TNF-α and
IL-1β immunoreactivity in the pyramidal cells (asterisks in (e)) is lower than that shown in the vehicle + TFI group.
Scale bar = 50 µm. (C,D) RI of TNF-α (C) and IL-1β (D) immunoreactivity in CA1 pyramidal cells. The bars indicate the
means ± SEM (n = 7 at each time; * p < 0.05 versus vehicle + sham group, # p < 0.05 versus corresponding vehicle + TIF
group, and † p < 0.05 versus pre-time point group).

In the PBE + sham group, TNF-α immunoreactivity in CA1 pyramidal cells was
similar to that in the vehicle + sham group (Figure 4Ad,C). In the PBE + TFI group, TNF-α
immunoreactivity in CA1 pyramidal cells was slightly increased after TFI: the RI was
131.3% at 2 days and 126.0% at 5 days post-ischemia compared with that the sham group
(Figure 4A(e,f),C).

2.4.2. Interleukin 1β (IL-1β) Immunoreactivity

In the vehicle + sham group, IL-1β immunoreactivity was found in CA1 pyramidal
cells (Figure 4Ba). In the vehicle + TFI group, IL-1β immunoreactivity in the pyramidal
cells was dramatically increased (189.3% of the sham group) at 2 days post-ischemia



Molecules 2021, 26, 4592 7 of 15

(Figure 4Bb,D), but, at 5 days post-ischemia, IL-1β immunoreactivity in the pyramidal cells
was hardly shown (27.9% of the sham group) due to their death (Figure 4Bc,D).

In the PBE + sham group, IL-1β immunoreactivity found in CA1 pyramidal cells was
not different from that shown in the vehicle + sham group (Figure 4Bd,D). In the PBE + TFI
group, IL-1β immunoreactivity in the pyramidal cells was slightly increased (120.8% at
2 days and 117.1% at 5 days post-ischemia compared with that in the vehicle + sham group)
after TFI (Figure 4B(e,f),D).

2.5. PBE Increased Anti-Inflammatory Cytokines in Ischemic CA1 Pyramidal Neurons
2.5.1. IL-4 Immunoreactivity

In the vehicle + sham group, IL-4 immunoreactivity was weakly shown in CA1
pyramidal cells (Figure 5Aa). However, in the vehicle + TFI group, IL-4 immunoreactivity
in the CA1 pyramidal cells was significantly decreased (62.7% at 2 days and 23.8% at 5 days
after ischemia versus the vehicle + sham group) after TFI (Figure 5A(b,c),C).
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TIF. Scale bar = 50 µm. (C,D) RI of IL-4 (C) and IL-13 (D) immunoreactivity in CA1 pyramidal cells. The bars indicate the
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In the PBE + sham group, IL-4 immunoreactivity in CA1 pyramidal cells was signif-
icantly higher (123.1%) than that found in the vehicle + sham group (Figure 5Ad,C). In
the PBE + TFI group, increased IL-4 immunoreactivity in the CA1 pyramidal cells was
maintained (123.0% at 2 days and 121.0% at 5 days after ischemia versus the sham group)
after TFI (Figure 5A(e,f),C).
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2.5.2. IL-13 Immunoreactivity

In the vehicle + sham group, IL-13 immunoreactivity was found in CA1 pyramidal cells
(Figure 5Ba). In the vehicle + TFI group, IL-13 immunoreactivity in the pyramidal cells was
significantly reduced at 2 days (83.1% versus the vehicle + sham group) and more decreased
(17.6% versus the vehicle + sham group) at 5 days post-ischemia (Figure 5B(b,c,)D).

In the PBE + sham group, IL-13 immunoreactivity in CA1 pyramidal cells was slightly
higher (111.5%) than that shown in the vehicle + sham group (Figure 5Bd,D). In the
PBE + TFI group, increased IL-4 immunoreactivity in the pyramidal cells was not sig-
nificantly altered after TFI compared with that in the PBE + sham group (Figure 5B(e,f,)D).

3. Discussion

Extracts from natural sources contain multiple biological-active compounds and have
gained increasing attention due to their diverse pharmacological actions [17–19]. For this
reason, they have been developed as commercial products for improving human health [20].
Additionally, many studies have shown the protective potential of natural products in the
experimental models of neurological diseases, including brain ischemia [8,21,22].

It has been reported that pine bark extract exerts strong neuroprotective effects. For
some instances, Pycnogenol®, which is a standardized pine bark extract originating from
French maritime, shows an excellent neuroprotective effect against brain ischemic injury
induced by TFI in gerbils by strong antioxidant efficacy [13]. Furthermore, the neuropro-
tective potential of Pycnogenol® has been multifariously studied in a series of experiments
in vitro and in vivo. In detail, Kobayashi et al. (2000) demonstrated that Pycnogenol®

protected HT4 neuronal cells (rat hippocampal cell line) from cytotoxicity induced by glu-
tamate [23]. Furthermore, a recent study by Ozoner et al. (2019) showed that Pycnogenol®

alleviated the death of cortical neurons following transient focal cerebral ischemia induced
by middle cerebral artery occlusion in rats [24]. Additionally, PineXol®, which is derived
from Korean red pine bark and used as a commercialized additive for functional foods
and cosmetics, protected neuronal PC-12 cells from H2O2-induced oxidative cell death by
antioxidant efficacy [14].

A precedent study showed that Pycnogenol® contained 70% ± 5% of standardized
procyanidins [13]. Compared with this, in the present study, we quantitatively analyzed
the PBE and found that the PBE contained an abundant amount of phenol, flavonoid, and
proanthocyanidin. With this PBE, we examined the neuroprotective efficacy of pre-treated
PBE in gerbil hippocampal CA1 after 5-min TFI using H&E staining, NeuN immunofluo-
rescence, and F-J B histofluorescence and found that pre-treatment with 100 mg/kg, not
25 or 50 mg/kg, of PBE, effectively protected CA1 pyramidal neurons from ischemic injury.
In light of the above-mentioned and our present findings, it is strongly suggested that
pre-treatment with 100 mg/kg PBE protects brain neurons from transient ischemic injury.
Hippocampal neuronal death in gerbils is easily induced by 5-min TFI. The hippocampus
is a substructure of the brain and is deeply involved with cognitive and memory functions.
In this regard, precedent studies on neuroprotective effects in a gerbil model of transient
ischemia have demonstrated the amelioration of cognitive decline following TFI [13,25].

It is well addressed that when the CNS is under pathological conditions, reactive
gliosis (astrogliosis and microgliosis) occurs, showing that the glial cells are proliferated
and hypertrophied with thickened processes [26–28]. With a focus on the microglia, they
act as an immunocyte in the CNS and are classified as M1 and M2 microglia [29,30]. Be-
tween the two types, M1 microglia secrete pro-inflammatory cytokines, which lead to an
advance in the inflammatory response [26,30,31]. For example, some previous studies
demonstrated that, under microgliosis, M1 microglia were predominantly distributed in
ischemic brain regions [26,30]. In this regard, numerous researchers have searched for
neuroprotective materials that considerably attenuate reactive microgliosis in the CNS fol-
lowing ischemic insults [17,26,32,33]. Further, our current study showed that pre-treatment
with PBE significantly ameliorated TFI-induced reactive microgliosis in ischemic gerbil
hippocampal CA1.
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Our current findings showed that pre-treatment with 100 mg/kg PBE significantly
reduced pro-inflammatory cytokines (TNF-α and IL-1β) expression in CA1 after TFI. In
addition, pre-treatment with PBE significantly inhibited the decrease of anti-inflammatory
cytokines (IL-4 and IL-13). It has been reported that ischemia-induced neuroinflamma-
tory response can lead to beneficial and/or deleterious conditions in the CNS, and this is
modulated by pro- and anti-inflammatory cytokines [34,35]. Namely, in ischemic CNS, pro-
inflammatory cytokines exacerbate inflammatory response; whereas, anti-inflammatory
cytokines generate advantageous inflammation via inhibiting the expressions of pro-
inflammatory cytokines [36,37]. In this regard, accumulating experimental data have
coherently shown that neuroprotective materials up-regulate anti-inflammatory cytokines
and suppress pro-inflammatory cytokines in ischemic brain regions following ischemic
insults. For example, it was reported that chlorogenic acid, a phenolic compound composed
of ester bond between caffeic acid and quinic acid, protected pyramidal neurons in the
hippocampus from ischemic injury induced by transient ischemia in gerbils by regulating
such pro- and anti-inflammatory cytokines [25]. In addition, a recent study showed that
Pycnogenol® reduced the levels of pro-inflammatory cytokines (TNF-α and IL-1β) in the
ischemic cerebral cortex induced by bilateral common carotid artery occlusion in rats [24].
Taken together, our present results correspond with the results from such precedent stud-
ies showing that pre-treatment with neuroprotective extracts or materials suppressed
TFI-induced elevation of pro-inflammatory cytokines and enhanced anti-inflammatory
cytokines in ischemic brains.

4. Materials and Methods
4.1. Preparation of PBE Administration

Pinus densiflora inhabiting Gangneung (Gangwon, Korea) maritime was cultivated,
and their bark was harvested. The bark was washed with pure water and fully dried.
Thereafter, using an IKA M20 grinder (IKA, Staufen, Germany), the dehydrated bark was
pulverized into a fine powder. The powder was extracted with pure water (100 ◦C) for 24 h
three times, and the extract was filtered using a filter paper (Whatman No. 1; Whatman
Ltd., Maidstone, Kent, UK). Next, the extract was concentrated by a vacuum evaporator
(N-12, Eyela Singapore Pte. Ltd., Singapore). The evaporated extract was rapidly freeze-
dried at −55 ◦C using a lyophilizer (FD8512, ilShin BioBase Co. Ltd., Seoul, Korea) and
stored at −20 ◦C.

4.2. Qualitative Analysis of PBE
4.2.1. Total Phenol Content

Total phenol content was determined using Folin–Ciocalteu’s colorimetric method [38].
Ten percent of Folin–Ciocalteu reagent (1 mL) and sample (1 mL) were mixed. Then 1 mL of
2% sodium carbonate (Na2CO3) reagent was added, followed by mixing and incubating for
1 h in a darkroom. The absorbance was evaluated at 750 nm using a microplate reader. The
total phenol content was determined from the standard curve (prepared using gallic acid).

4.2.2. Total Flavonoid Content

Total flavonoid content was determined with the aluminum nitrate method [39]. To
the sample (0.5 mL), 1.5 mL of 95% ethyl alcohol, 0.1 mL of 1M potassium acetate, 0.1 mL
of 10% aluminum nitrate, and 2.8 mL of distilled water were added. The reaction was
carried out at room temperature for 30 min, and the absorbance was evaluated at 415 nm
using a microplate reader. The flavonoid content was determined from the standard curve
(prepared using quercetin).

4.2.3. Total Proanthocyanidin Content

Total proanthocyanidin content was measured by modifying the vanillin-hydrochloric
acid method [40]. Methanol solution (l mL) containing 0.8 mg of sample was placed in
a brown tube, and 6 mL of the methanol solution containing 4% vanillin was added to this.
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After stirring, concentrated hydrochloric acid (3 mL) was added to the solution. Thereafter,
the solution was shaken every 5 min for 15 min, and the absorbance was evaluated at
490 nm using a microplate reader. The proanthocyanidin content was determined from the
standard curve (prepared using catechin).

4.3. Experimental Animals

Six-month-old male adult gerbils weighing 72–78 g were supplied by the Experi-
mental Animals Center (Kangwon National University, Chuncheon, Korea). The protocol
for this research was approved (approval no. KW-200113-1; 18 February 2020) by In-
stitutional Animal Care and Use Committee (IACUC) in Kangwon National University
(Chuncheon, Korea). This protocol adhered to the guidelines contained in the “Current
International Laws and Policies”, a part of the “Guide for the Care and Use of Laboratory
Animals” of The National Academies Press (8th Ed., 2011). We did our best to minimize
the total number of gerbils used in this study and to reduce their pain.

4.4. Experimental Groups and PBE Administration

A total of 70 gerbils were blindly and randomly divided into eight groups as follows:
(1) vehicle plus (+) sham group (n = 7), which was treated with vehicle (sterilized normal
saline; 0.85% NaCl w/v) and not subjected to TFI; (2) vehicle + TFI group (n = 14), which
was treated with vehicle and given TFI; (3)–(5) 25, 50, and 100 mg/kg PBE + sham group
(n = 7 respectively), which were treated with 25, 50, and 100 mg/kg of PBE, respectively,
and not subjected to TFI and; (6)–(8) 25, 50, and 100 mg/kg PBE + TFI group (n = 7, 7, and 14,
respectively), which were treated with 25, 50, and 100 mg/kg of PBE, respectively, and given
TFI. PBE (25, 50, and 100 mg/kg in saline, respectively) or vehicle was orally administrated
once a day for seven days before TFI induction. In this experiment, the behavior of the
gerbils treated with PBE was not different from that shown in normal gerbils.

4.5. Induction of TFI

As previously described [41], 5 min of TFI was induced by occlusion of both common
carotid arteries. In brief, the gerbils in all groups were anesthetized using a mixture of
2–2.5% isoflurane (Hana Pharm. Co., Hwaseong, Korea) in 33% oxygen and 67% nitrous
oxide using an inhaler [42]. Under anesthesia, a middle incision on the neck was made, and
both arteries were isolated and clamped with aneurysm clips for 5 min. To confirm perfect
ischemia, the interruption of blood flow was observed in central arteries of both retinae,
which are branches of the internal carotid arteries, using an ophthalmoscope (HEINE
K180) (Heine Optotechnik, Herrsching, Germany). After this confirmation, the clips were
removed for reperfusion. For body temperature during this operation, normal rectal
temperature was controlled (37 ± 0.2 ◦C) using a thermometric blanket. The monitoring
of temperature was done using a rectal temperature probe (TR-100) of Fine Science Tools
(Foster City, CA, USA). The gerbils of the sham groups were given the surgical procedure
without the occlusion of the arteries

4.6. Preparation of Brain Tissue Sections

As described in our published paper [43], the preparation of gerbil brain sections
containing the hippocampus was carried out. Briefly, gerbils (n = 7 each time point after
TFI) received deep anesthesia by intraperitoneal injection of 200 mg/kg pentobarbital
sodium (JW pharm. Co., Ltd., Seoul, Korea) [42]. Under the anesthesia, their brains were
washed by perfusion of 0.1 M phosphate-buffered saline (PBS, pH 7.4) via the ascending
aorta and immediately fixed the brains with 4% paraformaldehyde (in 0.1 M PB, pH 7.4).
The fixed brains were removed and stored in the same fixative. Six hours later, the brains
were soaked in 30% sucrose solution for 10 h to prevent the brains from freezing injury.
The cryoprotected brains were cut into frontal planes of 30 µm thickness in a cryostat. For
this experiment, the sections selected were between −1.4 and −2.2 mm levels based on
Bregma with reference to the gerbil brain atlas [44].
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In this experiment, we had toxicological observations. The conditions of some organs
(i.e., liver) of the gerbils treated with PBE were not different from those of normal gerbils.

4.7. H&E Staining

To examine histopathology in CA1 of all groups, H&E staining was done in the sections
at 5 days after TFI; at this time, pyramidal neurons in CA1 were dead after 5-min TFI. In
brief, according to a published procedure [43], the sections were put onto microscopy slides
(coated with gelatin). Thereafter, these sections were stained with H&E, dehydrated with
serial ethanol, and cleared with xylene. Finally, they were mounted with Canada balsam
(Kanto Chemical, Tokyo, Japan).

These prepared slides were examined using a light microscope of BX53 (Olympus,
Tokyo, Japan) equipped with a digital camera of DP72 (Olympus, Tokyo, Japan) connected
to a PC monitor.

4.8. NeuN Immunofluorescence and F-J B Histofluorescence Staining

To assess the neuroprotective effects of PBE in CA1 at 5 days after TFI, neurons were
stained with NeuN (a marker for neurons) by immunofluorescence staining and F-J B
(a fluorescent marker for cellular damage or degeneration) by histofluorescence staining.

In brief, as described previously [41], for NeuN immunofluorescence staining, the
sections were briefly rinsed and reacted with a diluted mouse anti-NeuN (1:1,000) (Chemi-
con, Temecula, CA, USA) at room temperature for 7 h. They were washed and reacted
with a diluted Cy3-conjugated donkey anti-mouse immunoglobulin G (IgG) (1:500) (Vector
Laboratories Inc., Burlingame, CA, USA) for 2.5 h at room temperature.

For F-J B histofluorescence, the sections were briefly immersed in 1% sodium hydrox-
ide solution and incubated in 0.06% potassium permanganate solution. Thereafter, they
were reacted with 0004% F-J B solution (Histochem, Jefferson, AR, USA). Finally, they were
briefly washed and put onto slide warmers (50 ± 0.5 ◦C) for the reaction of F-J B.

NeuN-immunostained neurons and F-J B-positive cells were evaluated according
to a published method [45]. Briefly, digital images of both cells were captured using
a fluorescence microscope of BX53 (Olympus, Tokyo, Japan) with green and blue excitation
lights (510–560 nm and 450–490 nm of wavelength, respectively). The captured neurons
were counted in 250 µm2 at the center in CA1. Cell count was carried out by averaging the
total numbers using the image analyzing system (software: Optimas 6.5) of CyberMetrics
(Scottsdale, AZ, USA).

4.9. Immunohistochemistry

Immunohistochemical staining was performed to examine neuroinflammation us-
ing Iba-1 for microgliosis, IL-1β and TNF- α for pro-inflammatory response, and IL-4
and IL-13 for anti-inflammatory response, respectively. The sections were immunohisto-
chemically stained according to a published protocol [46]. In short, the prepared sections
were incubated with each primary antibody: rabbit anti-Iba-1 (1:900, Wako, Osaka, Japan),
rabbit anti-IL-1β (1:250, Santa Cruz Biotechnology, Santa Cruz, CA, USA), rabbit anti-
TNF-α (1:1200, Abcam, Cambridge, UK), rabbit anti-IL-4 (1:300, Santa Cruz Biotech-
nology, Santa Cruz, CA, USA), and rabbit anti-IL-13 (1:300, Santa Cruz Biotechnology,
Santa Cruz, CA, USA). After washing briefly, they were reacted with biotinylated donkey
anti-rabbit IgG (1:250, Vector Laboratories Inc., Burlingame, CA, USA) and horse anti-
mouse IgG (1:250, Vector Laboratories Inc.) and exposed to Elite avidin-biotin enzyme
complex (ABC; Vector Laboratories Inc.). Finally, these immunoreacted sections were visu-
alized with a solution of 3,3′-diaminobenzidine tetrahydrochloride (DAB) (Sigma-Aldrich,
St. Louis, MO, USA).

Negative control tests were performed to establish the specificity of each immunos-
taining, with preimmune serum in place of each primary antibody. As a result, any
immunostained structures were not shown in the sections, although the data were not
shown at present.
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To quantitatively analyze the density of Iba-1, TNF-α, IL-1β, IL-4, and IL-13 immunore-
active structures, RI or ROD was used for the analysis using Adobe Photoshop (version 8.0)
and NIH Image (1.59 software), as previously described by [45]. Briefly, a digital image
of each immunoreactive structure was captured using the above-mentioned method. The
captured image was calibrated into an array of 512 × 512 pixels. RI or ROD was evalu-
ated on the basis of optical immunoreactivity (OI) or optical density (OD), respectively.
Iba-1 immunoreactive structure was expressed as ROD, and TNF-α, IL-1β, IL-4, and IL-13
immunoreactive structures were expressed as RI.

4.10. Statistical Analysis

Data obtained in this experiment are expressed as the means ± standard error of
the mean (SEM). All of the statistical analyses were performed with GraphPad Prism
(version 5.0) of GraphPad Software (La Jolla, CA). Differences of the means among all
of the groups were analyzed by two-way analysis of variance (ANOVA) with a post hoc
Bonferroni’s multiple comparison tests to elucidate TFI-mediated differences among all of
the groups. p < 0.05 was used for statistical significance.

5. Conclusions

In this experiment using gerbils, pre-treatment with 100 mg/kg of PBE exerts a remarkable
neuroprotective effect through attenuation of TFI-induced neuroinflammatory responses
(attenuation of microglia activation, inhibition of pro-inflammatory cytokine expression,
and increase of anti-inflammatory cytokine expression) in hippocampal CA1 after TFI.
Based on the above-mentioned previous and current results, the anti-inflammatory effect
of PBE pre-treatment may contribute to protecting neurons from TFI. Therefore, PBE may
be utilized as a preventive or alternative medicine for the prevention of brain ischemic
damage. However, further investigation is necessary to uncover other mechanisms of PBE
against ischemic brain injury.
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Abbreviations

CA cornu ammonis
F-J B fluoro-Jade B
H&E hematoxylin and eosin
IL interleukin
NeuN neuron-specific soluble nuclear antigen
PBE Pinus densiflora bark extract
RI relative immunoreactivity
ROD relative optical density
SO stratum oriens
SP stratum pyramidale
SR stratum radiatum
TFI transient forebrain ischemia
TNF-α tumor necrosis factor α
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