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Adenosine A1 receptor-deficient mice
develop a phenotype of insulin

resistance and grow fat. Participating
pathophysiological pathways are not
understood in detail yet, as discussed in
our recent manuscript. This commentary
further explores possible pathophysiolo-
gical mechanisms with emphasis on the
roles of the adipokines resistin, retinol-
binding protein 4, adiponectin and the
function of the gastric hormone ghrelin
in adenosine mediated central regulation
of energy balance. The postulate of an
important function of ghrelin/A1AR
axis provides a good hypothetical basis
for further investigations to clarify the
mechanism of A1AR-dependent meta-
bolic homeostasis.

The incidence of diabetes is rising rapidly
and its complications are of major clinical
and socioeconomic impact. Investigating
possible treatment strategies need to be
pursued with high priority. Recently we
reported that adenosine A1 receptor
(A1AR) signaling contributes to insulin-
controlled glucose homeostasis and insulin
sensitivity in C57Bl/6 mice and is involved
in the metabolic regulation of adipose
tissue.1 To our knowledge, our study was
the first to systematically define the
diabetogenic phenotype of A1AR defi-
ciency under in vivo conditions. Earlier
studies using pharmacological treatment
strategies have yielded conflicting results.
Nevertheless, the pro-diabetogenic effects
were largely attributed to adenosine A2b
receptor activation rather than A1AR
blockade.2 The focus of this commentary
is to provide additional information
about possible mechanisms participating

in metabolic control after loss of A1AR
signaling. Our data show that in addition
to causing insulin resistance lacking A1AR
also leads to a profound disturbance of
body composition. A1AR2/2 mice grow
fat even when fed a standard diet.1,3 Since
adult A1AR2/2 mice seem to resemble the
phenotype typically seen in type 2 dia-
betes, one could argue that the disturbed
glucose homeostasis might just evolve as an
epiphenomenon in mice that grow fat,
comparable perhaps to other mice models
of type 2 diabetes such as the db/db mouse.4

However, the fact that high fat feeding
eliminated the difference in growth
without influencing the difference in
glucose tolerance suggests an alternative
mechanism of action. Our findings revealed
a significant decrease of net glucose uptake
in A1AR2/2, especially in white adipose
tissue (WAT) and only to a lesser extent in
muscle tissue. The underlying mechanism
involves a reduced Akt activation but an
increased Akt expression. Glucose trans-
porter 4 (GLUT4) is a common down-
stream factor in the Akt signaling pathway
contributing to muscle glucose uptake after
induction of its expression and trafficking to
the membrane.5 However, no differences
in overall GLUT4 expression could be
detected by western blot of muscle tissue
in adult A1AR-deficient mice (Faulhaber-
Walter R; Jahrestagung of the Deutsche
Diabetes Gesellschaft 2008; oral presenta-
tion). Furthermore, muscle glucose uptake
of A1AR-deficient mice was not signifi-
cantly different from controls in clamp
studies, strengthening our conclusion that
the phenotype of A1AR deficiency is not
influenced by GLUT4 to a major extent.
Therefore alternative mechanisms explain-
ing the involvement of A1AR signaling in

Adipocyte 1:2, 108–111; April/May/June 2012; G 2012 Landes Bioscience

108 Adipocyte Volume 1 Issue 2

http://dx.doi.org/10.4161/adip.19285
http://dx.doi.org/10.4161/adip.19285
http://www.ncbi.nlm.nih.gov/pubmed/21831968
http://dx.doi.org/10.2337/db11-0058
http://dx.doi.org/10.2337/db11-0058


glucose homeostasis needed closer con-
sideration, such as (1) effects of peripheral
adipokines and (2) disturbances of the
central regulation of energy metabolism.

Effects of Peripheral Adipokines

Our glucose clamp study revealed a
significant impairment in whole body
glucose uptake and specifically a signifi-
cantly decreased glucose uptake in white
adipose tissue (WAT). WAT is the
dominant adipose tissue in the adult body
of mice, and it is known to be actively
involved in maintaining glucose home-
ostasis by the production of a variety of
hormones such as adipokines.6 Adipokines
are being secreted into the systemic
circulation and thus can affect energy
metabolism and body composition.7

Leptin has been reported frequently to
play a leading role in this regard.8

However, as discussed in detail in our
study, leptin does not seem to play a major
role in the A1AR-dependent effects so that
other adipokines may be considered as
major contributing factors.

Retinol-binding protein 4 (RBP4) is a
recently described adipokine that has been
identified as a possible link between
obesity, insulin resistance and type 2
diabetes.9,10 In contrast to leptin, no direct
involvement of adenosine in RBP4 regu-
lation has been described yet. Moreover,
the link between RBP4, insulin resistance
and obesity has been identified as an
impaired glucose metabolism of the liver,
where our clamp studies did not show a
difference in glucose uptake between
control and mutant animals. In addition,
lack of A1AR signaling did not lead to
reduced glycolysis or gluconeogenesis in
the liver (Gavrilova O, personal communi-
cation). Therefore it seemed unlikely that
A1AR play a crucial role in the physio-
logical effects regulated by RBP4.
Regarding adenosine effects on net glucose
metabolism in the liver, in vitro experi-
ments using rat hepatoma cells showed
that these effects were mostly conferred by
A2b signaling leading to glycogenolysis
and gluconeogenesis.11

Another adipokine, resistin, initially also
was linked to obesity and insulin resist-
ance.12 Resistin is increased in obesity
and rises during feeding.13 Experimental

evidence however led to contradicting
conclusions about its role in metabolic
control. Banerjee at el. reported that in a
mouse model lacking resistin, fasting
glucose was low and that this was due to
reduced hepatic glucose production after
activation of AMP-kinase. Lacking resistin
suppressed a post-fast hyperglycemia that
is usually linked to obesity.14 On the other
hand, chronic resistin infusion was accom-
panied by reduced fat mass and improved
insulin resistance and involved the activa-
tion of the Akt pathway.15 Since, as shown
in our paper, the A1AR-dependent meta-
bolic control seems to involve the Akt-
pathway, it could not be excluded that
resistin somehow participates in exerting
downstream effects after A1AR activation.
Tullin et al. reported that growth
hormone, a potent inducer of resistin
expression in WAT of spontaneous dwarf
rats, is rapidly induced by adenosine via
A1AR in vivo—although the authors
failed to demonstrate the same effects in
vitro. Thus, growth hormone may be
feasible as a link between A1AR and
resistin expression.16,17 However because
hepatic effects were rather negligible in
our model, and because resistin has not
been reported as being regulated directly
through adenosine receptor signaling,
resistin does not seem to be of central
importance for the A1AR-dependent
regulation. Nevertheless, investigating the
role of resistin in more detail might be
worthwhile in future studies looking into
the specific downstream mechanisms of
A1AR-dependent metabolic regulation.

Adiponectin is another important adi-
pokine derived from WAT. Reduced levels
of adiponectin have been associated with
obesity and diabetes in mammals.18

Szkudelski et al. reported that adiponectin
secretion was effectively reduced by the
A1AR antagonist DPCPX (8-cyclopentyl-
1,3-dipropylxanthine) in rat adipocytes in
vitro.19 In contrast, we did not detect
differences in protein expression levels
of adiponectin when comparing adult
A1AR2/2 with wild-type mice in vivo.
Hence adiponectin did not appear to
contribute in a major way to the pheno-
type of A1AR deficiency. Another group
however, Marecki et al., very recently
studied another in vivo rodent hyper-
insulinemic model by overfeeding young

prepubertal rats. Their results suggest
an age-dependent role of adiponectin
in metabolic dysregulation, as well as
an organ-specific differentiation (e.g.,
hepatic vs. muscle) and an adiponectin-
independent ectopic fat deposition.20 The
A1AR2/2 phenotype in our study parallels
these symptoms in that it also presents
with an age- and diet-dependent exaggera-
tion of disturbed metabolic control.
Hence in view of these latest findings on
adiponectin and the role of A1AR, it seems
worthwhile to perform longitudinal mea-
surements of serum adiponectin levels in
the A1AR2/2 mice at different ages.

Other adipokines that play a role in
metabolic control and/or regulation of
endothelial function and vascular tone as
part of the metabolic syndrome, such as
visfatin, omentin, apelin, vaspin and/or
pro-inflammatory molecules like TNFa,
IL-6, PAI-I or serum-amyloid A among
others have not been studied with specific
reference to A1AR signaling in metabolic
control. In summary, the peripheral
adipokines each occupy a well-defined
role in energy metabolism.7,21 However,
none of them appears to be a satisfying
candidate to explain the phenotype of the
A1AR2/2 in vivo.

Ghrelin, Adenosine
and the Hypothalamic Axis

Varying receptor expression and/or activa-
tion patterns permit differential effects of
adenosine in the brain. A1AR receptor
dependent signals for instance play a role
for the sleep-wake cycle controlled by
hypothalamic neurons.22 Adenosine A1
activation exerts pleiotropic central effects
as a neurotransmitter; mostly such as
cognition, motor function and a role in
cyclic regulation.23 As reported in more
detail in our manuscript, disturbances of
the central regulation of cyclic control in
humans suffering from narcolepsy can be
influential toward increased eating beha-
vior. In line with the hypothesis deduced
in our study, Yang et al. very recently
reported that the release of ghrelin
from the mouse stomach seems to be
disinhibited when missing the A1AR-
stimulus.24 Ghrelin is a peptide hormone
that exerts a potent appetite-stimulating
activity, which is “supposed to play a role
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in long-term regulation of energy balance,
as chronic administration of ghrelin causes
weight gain by reducing fat utilization as
an energy source.”21 Of interest, ghrelin
seemingly does so by targeting hypotha-
lamic orexin/hypocretin expression that
may directly link to central A1AR-signal-
ing since the hypothalamic expression of
orexin/hypocretin is negatively controlled
by A1AR signaling.25,26 Mice lacking
A1AR therefore might develop a disturbed
metabolic control first by disinhibition of
gastric ghrelin, followed by orexin stimu-
lation, which is also directly disinhibited
centrally because of the missing A1AR-
signal. Often synergistic mechanisms in
biological systems lead to more than
purely additive effects. On this premise,
the main contribution of A1AR signaling
in homeostasis of metabolism could be to
play an inhibitory part as tonic negative
“controller.” Without doubt the central
nervous system is involved in the fine
tuning of the energy metabolism and
maintenance of body weight. Lee et al.
summarize that even the slightest distur-
bance of the hypothalamic control can
possibly deflect the metabolic pendulum

toward inappropriate appetite and reduc-
tion in energy expenditure which then can
result in a progressive and significant
weight gain over subsequent years.27,28

Interestingly, orexin/hypocretin action is
associated with the central nervous dopa-
minergic reward system and the possibility
of an orexin-stimulated hedonic feeding in
rodents has been suggested.29 Another hint
supporting the influence of central nervous
system control of glucose metabolism in
the A1AR2/2 can be derived from the
IA-2/IA-2β double knockout mouse model.
Islet-associated proteins 2 and 2β (IA-2
and IA-2β) are major autoantigens in
type 1 diabetes and transmembrane pro-
teins in dense core secretory vesicles of
neuroendocrine cells. Mice deficient in
IA-2 and IA-2β completely lack the first-
phase insulin response after glucose stimu-
lus, a finding that exactly matches the
insulin response of adult A1AR-deficient
mice during high fat feeding which display
the most diabetogenic phenotype of all our
study groups (see Fig. 4C in our original
article).1,30 Later studies have shown in
addition that IA-2 and IA-2β have a global
effect on the secretion of certain brain

neurotransmitters including dopamine.31

Our group demonstrated that central
effects of IA-2/IA-2β include cyclic control
of basic body functions, such as the
circadian rhythm of body temperature
and arterial blood pressure.32 Reports on
the hypothalamic regulation of tempera-
ture specifically by A1AR were conflicting,
but the participation of adenosine per se
was clearly demonstrated and also repro-
duced by our group (Eisner C; FASEB J
21:A1312, 2007; abstract).33,34 This possi-
ble connection certainly needs further
experimental evidence, but it seems reason-
able to accept the basic connection between
insulin function, glucose metabolism and
hypothalamic cyclic control.

In summary, the postulate of a ghrelin/
A1AR/orexin axis may serve well to pro-
vide the base of a model to explain the
metabolic phenotype of the A1AR2/2

mice. This model provides a good hypo-
thetical basis for further research.
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