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A neuro-computational account of
procrastination behavior

Raphaël Le Bouc 1,2 & Mathias Pessiglione 1

Humans procrastinatedespite being aware of potential adverse consequences.
Yet, the neuro-computational mechanisms underlying procrastination remain
poorly understood. Here, we use fMRI during intertemporal choice to inform a
computational model that predicts procrastination behavior in independent
tests. Procrastination is assessed in the laboratory as the preference for per-
forming an effortful task on the next day as opposed to immediately, and at
home as the delay taken in returning completed administrative forms. These
procrastination behaviors are respectively modeled as unitary and repeated
decisions to postpone a task until the next time step, based on a net expected
value that integrates reward and effort attributes, both discounted with delay.
The key feature that is associated with procrastination behavior across indi-
viduals (both in-lab and at-home) is the extent to which the expected effort
cost (signaled by the dorsomedial prefrontal cortex) is attenuated by the delay
before task completion. Thus, procrastination might stem from a cognitive
bias thatwouldmakedoing a task later (compared tonow) appear asmuch less
effortful but not much less rewarding.

Almost all humans procrastinate to some extent, either on filling tax
returns, paying bills, saving for retirement, or quitting addictive beha-
viors like smoking or gambling. People do so although knowing about
potential adverse consequences, such as financial difficulty1,2 or health
damage3. Despite its high prevalence, affecting ~70%of students4 and up
to 20% of adults5, and its major economic or health consequences, the
mechanisms leading to procrastination remain poorly understood.

Procrastination is considered a stable trait-like behavior6, with
significant heritability demonstrated by twin studies7. However, the
causal pathways through which genes could shape the brain archi-
tecture so as to produce procrastination behavior are not elucidated.
Neuroimaging studies have not gone beyond correlations between
procrastination scores on self-report questionnaires and brain anat-
omy, resting-state activity8–11, or task-related activity12–14. This
questionnaire-based approach offers no mechanistic insight into the
emergence of procrastination, which would require an operational
definition at the cognitive level.

As suggested by its etymology (crastinus is a Latin word for
tomorrow), the common meaning of procrastination is to postpone
duties from one day to the next. This definition has been refined by
psychologists as the unnecessary but voluntary delaying of task com-
pletion (either requested or intended) despite potential harmful
outcomes4,6,15,16. For ancient philosophers such as Aristotle, procrastina-
tion is a prototypical case of akrasia, which designates a lack of self-
control leading to act against one’s best judgment. This perspective is
still present in the psychological literature on procrastination, whichmay
be considered as resulting from self-regulation failure or ‘weakness of the
will’6,17,18.

In the framework of neoclassical economic theory, procrastina-
tion would be considered irrational, because it prevents maximizing
utility in the long run, even when the right course of action is clearly
identified. This seemingly irrational behavior has given rise to the
development of alternative economicmodels that would preserve the
principle of utility maximization.
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An early economic account of procrastination1 emphasized the
importance of costs, meaning the effort and time associated with task
completion, which should be traded against the remote benefits
associated with the outcome of task completion. Procrastination
would stem from present costs (if the task is done now) being per-
ceived in a much more vivid manner than distant costs (if the task is
done later)1. Thus, in this model, the present bias leading to procras-
tination is captured by a vividness parameter that amplifies the cost of
immediate actions1. A variant of thismodel focuses on the opportunity
cost of time, defined as the value of what is forgone when imple-
menting a particular action6. In this variant, procrastination would
result from the distant benefit of task completion being surpassed by
theopportunity cost, i.e. the lost benefit ofwhat couldbe enjoyednow.
Thus, in both cases, a present bias would explain procrastination,
either because completing the task now would be perceived as parti-
cularly aversive, or because enjoying now an alternative activity would
seem particularly attractive.

To be complete, the model should explain not only why people
procrastinate (why they postpone a task) but also why they stop pro-
crastinating at some point (why they finally do it). Further variants of
the procrastination model benefited from the development of eco-
nomic decision theory in which expected utility is progressively dis-
counted with the passage of time19–21, as opposed to a mere present
bias. The core idea was to apply the same temporal discounting
function to both costs and benefits. Functions that would diminish
expected utility by some percentage every day would not account for
procrastination, since they predict stable preferences over time.
However, empirical work suggested that human choices are better
accounted for by inconsistent temporal discounting models, using for
instance hyperbolic functions21, in which the daily discount decreases
over time19,20. These models allow for preference reversal, i.e. the
inversion of the ranking between options when their outcomes get
closer in time. Applied to the case of procrastination, preference
reversal would mean that work may appear less valuable than leisure
when deadlines are distant, but may nonetheless be favored when
deadlines are closer6. This idea has been incorporated in recent psy-
chological investigations22, following on the temporal motivation
theory6,23, which borrows from economic decision models the notions
of expected utility, temporal discounting and cost/benefit trade-off.

Thus, both economic and psychological accounts of procrasti-
nation build on assumptions about temporal discounting functions
and share some limitations. First, these models only account for
situations involving remote benefits, or at least a lag between task
completion and reward delivery, although procrastination has also
been observed with tasks that yield immediate benefits, such as
redeeming gift vouchers24. Second, these models implicitly or expli-
citly consider that avoiding a cost is equivalent to receiving a benefit,
the timing of benefits and the timing of costs being considered as just
flip sides of the same phenomenon25. This makes procrastination a
synonym of impulsivity—the preference for smaller sooner over larger
later benefits—although these two traits have been shown to be
dissociable7. Moreover, recent studies have shown that reward value
and effort cost are processed by distinct neural circuits26,27, whichmay
suggest separate processes for the temporal discounting of costs and
benefits. Third, these models are static, in the sense that the decision
about completion time is made once and for all, which is at odds with
the psychological intuition that procrastination entails iterative deci-
sions (to defer again and again).

Here, we suggest a framework that may overcome these limita-
tions, by combining the seminal intuitions that procrastination relates
to both effort perception and temporal discounting, resulting in the
following assumptions: (1) procrastination stems from choice between
options that integrate costs and benefits both estimated at different
time points (now and later), (2) a unitary decision to procrastinate
reflects a steeper temporal discounting for effort than for reward28,

and (3) recurrent procrastination arises from iterative decisions repe-
ated over time. From this set of assumptions, we derive the predictions
that procrastinators would discount efforts with time more steeply
than non-procrastinators, that these time preferences would be asso-
ciated with neural activity reflecting temporal discounting of effort,
and that dynamic models would outperform static models in pre-
dicting real-life procrastination. To test these predictions, wemeasure
temporal discounting rates for reward and effort in intertemporal
choice tasks and identify their neural signature using fMRI. We find
that temporal discounting of effort cost, either inferred from choice
behavior or from brain activity, could account for procrastination
behavior, observed both in the lab, as a preference for postponing an
effortful task until the next day, and at home, as a delay in returning
completed administrative forms.

Results
A total of 51 healthy adult volunteers performed a series of behavioral
tasks: first, rating tasks (Fig. 1a), to collect subjective effort costs and
reward values that participants would assign to each task and outcome
included in our set of items; second, intertemporal choice tasks
(Fig. 1b), to elicit computational and neural markers of temporal dis-
counting for both the effort and reward domains; and third, tasks
measuring the tendency toprocrastinate, both in the lab (Fig. 1c) and at
home (Fig. 1d), to assess the predictive validity of these markers. All
tasks were performed in that order (Fig. 1e), during a single visit to the
lab, fMRI scanning being only applied to the intertemporal choice task.
Participants were divided into three cohorts: one performing a pilot
version (Exp. 1) of the intertemporal choice task (n = 8), one per-
forming the main version (Exp. 2) of this task (n = 16) and one per-
forming the main version (Exp. 2) within the MRI scanner (n = 27).
Demographic details are provided separately for the three groups in
Supplementary Table 1.

Time preferences
The purpose of the intertemporal choice task was to examine how
participants discount costs and benefits with time. In order to infer
temporal discount rate, we first needed to know the values that par-
ticipants would assign to the various reward and effort items pre-
sented in the choice task. To this aim, we had participants rate the
monetary value of hypothetical reward and effort items on an analog
scale (Fig. 1a). Reward items could be either food or goods, and effort
items either motor or cognitive tasks. For a given reward item, parti-
cipants rated how many elements they would claim for a given price
(e.g., howmany pieces of sushi are worth paying 5€). Reciprocal value
ratings were obtained for effort items, by asking participants how
mucheffort theywould exert for a given payoff (e.g., howmany sit-ups
should be done for a fair payment of 5€). Punishment items (either
bodily or abstract) were also included in the rating task, as a control for
specificity in the second experiment (see below). The question was
similar to that asked for effort ratings: participants rated how much
punishment they would accept to endure for a given payoff (e.g., how
manymild electric shocks should be endured for a fair payment of 5€).
Thus, subjective ratings provided monetary values in euros, which
represented the equivalent gain for one element of reward items (e.g.,
the price of one piece of sushi) and the equivalent loss for effort and
punishment (e.g., the payoff for one sit-up or one electric shock).

In the intertemporal choice task, participants indicated their
preference between a lower/sooner and a higher/later hypothetical
reward, or between a lower/sooner and a higher/later hypothetical
effort (Fig. 1b). The two options of a choice were offering a same item
already presented in the rating task butwith different quantities (e.g., 5
pieces of sushi now vs. 10 pieces of sushi in a week). We changed the
framing of delayed efforts between the pilot and test experiments. In a
first pilot experiment (n = 8), delays indicated the precise dates at
which efforts had to be exerted, or at which rewards were to be
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obtained.We examined theweight of the different choice factors using
a logistic regression model (Fig. 2a). Predictably, patient choice fre-
quency in the reward domainwas significantly impactedby the relative
gain (β =0.44, t(7) = 7.74, p < 0.001) and negatively impacted by the
relative delay (β = −0.28, t(7) = −7.23, p <0.001). However, in the effort
domain, preferences revealed an unexpected pattern: patient choice
rate did decrease with the relative cost (β = −0.35, t(7) = −3.78,
p =0.007) but did not show any monotonic effect of delay (β =0.01,
t(7) = 0.29, p = 0.78). The trend was even to expedite the task sooner,
denoting a negative time preference. We assumed this reverse pre-
ference might have resulted from the framing of delay as the specific
date at which effort should be exerted (which might have induced
some dread phenomenon).

We therefore conducted a second experiment (n = 43) using an
intertemporal choice task proposing the same effort options, but with
delays now meaning time limits for effort exertion. In Exp. 2, we also
introduced punishments in the intertemporal choice task, to test
whether temporal discounting of effort would generalize to any
aversive dimension. The logisticfit of choice behavior in Exp. 2 showed
an opposite pattern in the effort domain compared to the reward
domain (Fig. 2a). In the reward domain, patient choice frequency still
increased with the relative gain (β =0.34, t(42) = 14.67, p <0.001) and
decreased with the relative delay between options (β = −0.17,
t(42) = −7.96, p <0.001). However, in the effort domain, the change of
framing resulted in the expected pattern, with a negative effect of

relative cost (β = −0.32, t(42) = −11.40, p < 0.001) and a positive effect
of relative delay (β =0.06, t(42) = 3.38, p = 0.002), meaning that par-
ticipants now preferred effort items that were more distant in the
future. The same pattern was observed for punishments, with a
negative impact of relative loss (β = −0.35, t(42) = −14.04, p < 0.001)
and apositive impact of relative delay (β =0.09, t(42) = 5.72,p < 0.001),
denoting again a preference for delaying aversive events.

We then estimated temporal discount rates for reward, effort and
punishment by fitting hyperbolic choice models onto choice behavior
in Exp. 2 (Fig. 2b). Hyperbolic choice model here means hyperbolic
discounting function to generate option value, combinedwith softmax
function to compare option values and generate choice probabilities:

VA =
NAi × Ri

1 + kR:DA
ð1Þ

and

PA =
1

1 + e�θ:ðVA�VBÞ
ð2Þ

With VA the value of option A calculated as the number of elementsNAi

on offer multiplied by the gain equivalent Ri for one unit of reward i
(inferred from subjective rating), discounted by the delay DA multi-
plied a weight kR (temporal discount rate for reward). The discounted

Fig. 1 | Behavioral tasks. Successive screens displayed in one trial are shown from
left to right, with durations in ms. a Rating task. For each reward, effort and pun-
ishment (not shown), participants indicated on a keyboard the quantity that had
the same subjective benefit (or subjective cost) than earning (or loosing) 1€ and 5€.
b Intertemporal choice task. Participants first observed the two options shown
successively and then indicated their preference by pressing one of two buttons
with the left or right hand. The presentation order of sooner and later options was
counterbalanced across trials. The task was divided into blocks of intertemporal
choices between two rewards, two efforts, or two punishments (not shown).
c ‘Now/tomorrow’ choice task. Participants were presented with an option

combining reward and effort items. Then they indicated whether they preferred to
exert the effort “Now”, and obtain the reward immediately, or “Tomorrow”, and
obtain the reward the next day. The side of presentation of the “Now” and
“Tomorrow” options was counterbalanced across trials. d ‘Form-filling’ home task.
Participants were given 10 administrative forms, such as a passport renewal form.
They had to fill in the forms and send a numeric copy via email within a time limit of
30 days, in order to receive their financial compensation for participating in the
study. They were told that no compensation would be transferred after the dead-
line. e Experimental schedule. Tasks were performed in the alphabetic order. Only
the intertemporal choice task was performed in the MRI scanner.
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Fig. 2 | Time preferences. a Intertemporal choices. Plots show patient choice rate
(preference for the delayed option), as a function of the difference between
option values /costs (top row) or option delays (bottom row). Choices were made
between two rewards (blue), two efforts (red) or two punishments (yellow). The
two options of a choice differed only in delay and value / cost (quantity converted
into euros based on subjective ratings). Note that value represents a gain for
reward and cost a loss for effort and punishment. In Exp. 1 (n = 8 participants),
rewards (dark blue) were to be received and efforts (dark red) were to be exerted
at the specified date. In Exp. 2 (n = 43 participants), rewards (light blue) were to be
received at the specified date, but efforts (light red) and punishments (yellow)
could be exerted or endured at any time before the specified deadline. On each
dot plot, the color mark indicates the mean, the horizonal line indicates the
median, the thick whiskers indicate the range from 25th to 75th percentiles, and
the thin whiskers indicate the range from 5th to 95th percentiles. b Temporal
discounting of reward (left), effort (middle), and punishment (right). The plots

display individual discount curves for reward (thin blue lines), effort (thin red
lines), and punishment (thin orange lines), as well as the population means (bold
lines) and medians (dashed lines). c Accuracy of model fitting. Plots show cor-
relations betweenmodeled and observed choice probability for delayed rewards,
delayed efforts, and delayed punishments. Individual choices were divided into 8
bins of increasing modeled probability; each dot represents modeled and
observed choice probability averaged within one bin. The within-subject (trial-by-
trial) fit can be assessed with the distribution of balanced accuracy across parti-
cipants. Balanced accuracy is the average of prediction accuracy calculated
separately for the two types of choices (now or later). d Temporal discount rates
for reward (kR), effort (kE) and punishment (kP). Significance values are based on
two-tailed paired t tests (n = 43). e Proportion of patient choices for the different
categories of rewards, efforts and punishments. Error bars are inter-subject
standard error of the mean (n = 43). Source data are provided as a Source
Data file.
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value of effort and punishment were computed in the same manner,
except that gain equivalents were replaced by loss equivalents (simi-
larly inferred from effort and punishment subjective ratings) and that
different temporal discount rates (kE and kP) were used. In addition to
temporal discount rate, the softmax included an additional parameter,
the inverse temperature θ, to adjust for choice stochasticity. We
compared this hyperbolic discounting to two classical models of
intertemporal choices: a present-bias model (Eq. 3), and a quasi-
hyperbolic discountingmodel (βδmodel) that includes both a present
bias parameter β and a constant exponential discount factor δ (Eq. 4).
Notice that there is a discontinuity in these functions such that, if
DA =0, VA =NAi x Ri in both models.

VA =
βðNAi × RiÞ, if DA>0

NAi × Ri, if DA =0

�
ð3Þ

VA =
βδDA ðNAi × RiÞ, if DA>0

NAi × Ri, if DA =0

(
ð4Þ

We also tested whether time preferences would generalize across
reward, effort and punishment intertemporal choices. Bayesianmodel
comparison showed that hyperbolic discounting with category-
specific discount rates provided the best trade-off between accuracy
and complexity (Supplementary Fig. 1, log group Bayes factor = 212,
compared to the second-best model). The balanced accuracy
(averaged over participants) was similar for reward, effort and
punishment conditions (0.78, 0.79 and 0.77, respectively, see Fig. 2c).
Discount rates for reward and effort were weakly correlated (Pearson’s
r(41) = 0.29, p =0.07) and were on average greater for effort than for
reward (paired t test, t(42) = 2.48, p =0.017). Discount rates estimated
for punishment were in between (Fig. 2d), and significantly correlated
with both reward (r(41) = 0.46; p = 0.002) and effort (r(41) = 0.61;
p <0.001). Participants, therefore, appeared more ‘impulsive’ with
effort and more ‘patient’ with reward (i.e., they avoided immediate
efforts more than they approached immediate rewards). We checked
(Fig. 2e) that this pattern was not dependent on subcategories of
reward (food vs. goods, t(42) = −0.22, p =0.41), effort (physical vs.
mental, t(42) = −0.35, p =0.36), or punishment (bodily vs. abstract,
t(42) = −1.26, p = 0.11). Note that the discount rates are comparable
here because reward, effort and punishment values were expressed in
the same unit (as equivalent gains and losses in euros). The results,
therefore, suggest that time preferences for reward and effort can
differ both within and between participants.

Neural correlates of time preferences
We next examined whether these distinct time preferences in the
reward and effort domains would involve distinct neural circuits. A
standard signature of the choice process in fMRI data is the decision
variable, here the difference in value or cost between the two options,
at the time of choice. To identify the neural signatures of discounted
reward value and discounted effort or punishment cost, we regressed
fMRI trial-by-trial time series against the chosen (most appetitive)
minus unchosen (least appetitive) reward value, and against the cho-
sen (least aversive) minus unchosen (most aversive) effort or punish-
ment cost. All reward values and effort costs were generated from
individual subjective ratings with the best-fitting hyperbolic dis-
countingmodel (Fig. 3a).We found partially dissociable brain systems,
with activity in the ventromedial prefrontal cortex (vmPFC) positively
related to discounted reward, activity in the anterior insula (AI) posi-
tively related to discounted effort, and activity in the dorsomedial
prefrontal cortex (dmPFC) showing an effect in the two domains
(negative relation to discounted reward and positive relation to dis-
counted effort). The pattern of activity obtained for punishment was

very similar to that of effort (with discounted punishment being
positively reflected in the AI and dmPFC).

To illustrate how these regions represent values and costs, we
extracted their average parameter estimates (Fig. 3b) in corresponding
ROIs taken frompublished probabilistic atlases (seemethods). Activity
in the vmPFC correlated positively with discounted reward
(t(26) = 3.20, p =0.004) but was not significantly affected by dis-
counted effort (t(26) = −1.04, p = 0.31) or discounted punishment
(t(26) = 1.19, p = 0.24). By contrast, activity in the AI correlated posi-
tively with discounted effort (t(26) = 2.69, p =0.012) and discounted
punishment (t(26) = 3.67, p =0.001) but tended to be negatively
associated with discounted reward (t(26) = −1.88, p =0.07). Finally,
activity in the dmPFC was negatively correlated with discounted
reward (t(26) = −2.96, p =0.007) and positively associated with dis-
counted effort (t(26) = 2.87, p =0.008) and discounted punishment
(t(26) = 5.56, p < 0.001). We checked, in two control analyses (Supple-
mentary Fig. 3 and 4), that this patternof activity was robust across the
different subcategories of reward (food vs. good), effort (physical vs.
mental), and punishment (bodily vs. abstract), and when defining ROIs
on the basis of a different probabilistic atlas (Supplementary Fig. 4). In
a conjunction analysis (Fig. 3c), we found that the dmPFC was the only
region whose activity was significantly related to both discounted
reward (negatively) and discounted effort (positively). This is in line
with our previous suggestion that the dmPFCmight integrate the costs
and benefits signaled by regions more sensitive to one or the other27.
Note that in many studies (including ours), this fMRI activation cluster
has been labeled as dACC (for dorsal Anterior Cingulate Cortex),
although strictly speaking it is not located within the cingulate gyrus
(but in a more dorsal region of the medial wall, overlapping with the
paracingulate gyrus).Our results are consistentwith dmPFC/dACCand
AI activity being greater when the chosen alternative (least aversive
cost) was preferred (to the most aversive cost) by a smaller margin.

Procrastination behavior
The tendency to procrastinate was first assessed in the lab with a task
involving choices between performing an effortful task now for an
immediate reward, or postponing both task completion and the
associated reward until the next day (Fig. 1c). Participants were told
that in any case, they would come to the lab twice on two consecutive
days, so in practice, they were offered the choice of performing the
task proposed in a given trial either during the first current visit or
during the second visit on the next day. Theywereonly informed at the
end of the first visit that rewards and efforts were fictive and that the
second visit would not be implemented. Although this is also a sort of
intertemporal choice task, we call it the ‘now/tomorrow’ choice task.
The key difference with standard intertemporal choice tasks is that
there are two attributes (both reward and effort) to integrate with
delay, andnot justone (rewardor effort). Another difference is that the
option proposed at the two delays (today or tomorrow) was the same:
it combined a given amount of a reward item and a given amount of an
effort item. As expected (Fig. 4a), logistic regression showed that
procrastination (preference for ‘tomorrow’) decreased with reward
value (β = −0.09, t(42) = −5.61, p <0.001) and increasedwith effort cost
(β =0.20, t(42) = 10.0, p <0.001), hence globally decreased with the
net value (β = −0.20, t(42) = −10.23, p < 0.001), i.e. the difference
between the discounted benefit and cost associated to the task.

We also assessed procrastination as the delay with which partici-
pants completed at home and sent us the 10 administrative forms that
were mandatory for receiving their financial compensation (Fig. 1d).
The deadline was set to 30 days after the experiment in the lab. Almost
all participants procrastinated to some extent (Fig. 4b). Some of them
(n = 6) never returned the forms andwere therefore excluded from the
analyses of delay distribution presented hereafter. The delay until
completion of administrative forms at home was correlated across
participants to the procrastination tendency observed in the lab ‘now/
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tomorrow’ choice task (r(41) = 0.25, P = 0.05, one-tailed), and to the
procrastination score (r(41) = 0.39, P = 0.004, one-tailed) on a self-
report questionnaire (Lay procrastination scale). However, direct
correlation between procrastination in the ‘now/tomorrow’ task and
procrastination score on the psychometric scale was not significant
(r(41) = 0.15, P =0.16, one-tailed). This may suggest that the psycho-
metric score better reflects recurrent procrastination at home than
one-shot decision to procrastinate as implemented in the lab
choice task.

Predicting procrastination behavior from time preferences
To test whether procrastination could be explained by the differential
temporal discounting of reward and effort, we regressed across par-
ticipants the level of procrastination observed in the ‘now/tomorrow’
choice task, defined as the selection frequency of ‘tomorrow’ options
(Fig. 4c), against temporal discount rates inferred from intertemporal
choice tasks. Effort discount rates were significantly associated with
procrastination level (β =0.40, t(37) = 2.50, p = 0.017, two-tailed t test,
model R2 = 0.24), whereas the other factors included in the regression
model (reward and punishment discount rates plus age and gender)
had no significant effect. This pattern was similar when using a dif-
ferent criterion to define procrastinators, i.e. when fitting the regres-
sion model to procrastination level defined as the delay taken to send

completed administrative forms (Fig. 4d). Again, effort discount rates
were significantly associated with procrastination level (β =0.46,
t(31) = 2.69, p =0.011, two-tailed t test, model R2 = 0.22), while none of
the other factors (reward and punishment discount rates plus age and
gender) was significant. Thus, the hallmark of procrastination severity,
whether measured in the lab or at home, was a steep temporal dis-
counting of effort. This distinctive feature was specific to effort, since
other aversive events such as punishments were not more steeply
discounted in more severe procrastinators.

We then examined whether differential time preferences for
reward and effort could account for individual procrastination beha-
vior in the ‘now/tomorrow’ choice task. The temporal discount rates,
as well as subjective ratings of reward and effort items, were rigidly
incorporated in the choice model (Eq. 5) explaining the decision to
perform the task ‘Now’ or ‘Tomorrow’, without any adjustment to the
data (Fig. 4e). This choice model simply compared in a softmax func-
tion the net values (i.e., the difference between hyperbolically dis-
counted benefit and cost associated to the proposed task) of the ‘now’
and ‘tomorrow’ options:

VN orT =
NR ×Ri

1 + kR:D
� NE × Ej

1 + kE :D
ð5Þ

Fig. 3 | Neural correlates of time preferences. a Statistical parametric map (SPM)
of discounted reward (chosen minus unchosen option discounted value), dis-
counted effort and discounted punishment (chosen minus unchosen option dis-
counted cost) during intertemporal choice, at the timeof deliberation. Positive and
negative effects are shown with yellow-red and green-blue color codes.
b Regression coefficients (betas) of discounted reward (blue), discounted effort

(red), and discounted punishment (orange) extracted from anatomically-defined
regions of interest (see methods). Error bars are inter-subject standard error of the
mean; significance values are based on two-tailed one-sample t tests (n = 27).
Source data are provided as a Source Data file c Conjunction between the negative
contrast for discounted reward and positive contrast for discounted effort, at the
time of deliberation.

Article https://doi.org/10.1038/s41467-022-33119-w

Nature Communications |         (2022) 13:5639 6



With delay D being 0 or 1 depending on the considered option
being ‘Now’ or ‘Tomorrow’, kR and kE the temporal discount rates for
reward and effort (inferred from intertemporal choices),NR andNE the
quantities of reward i and effort j on offer, whose unitary gain and loss
equivalents wereRi and Ej (inferred from individual subjective ratings).
The only parameter that was fitted to the now/tomorrow choices was
the inverse temperature θ of the softmax function, which could not
adjust the mean of individual preferences (i.e., procrastination level),
but just their stochasticity.

Prediction of trial-by-trial choices was significantly above chance
(mean balanced accuracy = 0.57, t(42) = 3.88, p <0.001, two-tailed t
test). We checked that considering different time preferences for
reward and effort provided a better fit than using a single common
discount rate (Supplementary Fig. 2, log groupBayes factor = 115). This
suggests that the steeper discounting of effort relative to reward does
help explain the decision to postpone a task until tomorrow. Indeed, it
makes postponing a task beneficial because an effort scheduled for
tomorrow would appear much less costly, while the reward delayed
until tomorrow would not seem much devalued. In other words, the
net value of the ‘tomorrow’ option would loom larger than that of the
‘now’ option.

Predicting procrastination behavior from neural correlates of
time preferences
To estimate time preferences from their neural correlates, we focused
on the dmPFC, which integrated all factors manipulated in the inter-
temporal choice task. The general linear model (GLM) used to explain
choice-related neural activity now included two distinct regressors
representing trial-by-trial variations in relative delay and undiscounted
decision variable (meaning the difference in rewardvalue or effort cost
between the two options). In line with previous results, dmPFC activity
was significantlymodulatedbyboth factors, as shownby a conjunction
analysis (Fig. 5a). We then extracted the delay regression estimates
(betas), separately for the reward and effort sessions, within an
anatomically-defined dmPFC ROI (see methods). To correct for any
subject-specific noise in fMRI data that could corrupt regression esti-
mates, we normalized these betas by the overall activation level (beta
weight of the categorical regressormodeling choice onset) in the same
ROI. The normalized betas thus represented neural estimates of time
preferences, estimated independently from those based on choice
behavior (temporal discount rates of the hyperbolic discount model).
Yet neural and behavioral measures of time preferences were corre-
lated across participants (Pearson’s r(79) = 0.31, p = 0.002), combining
reward, effort, and punishment estimates (Fig. 5b).

Fig. 4 | Explaining procrastination with time preferences. a Procrastination
behavior in the lab ‘now/tomorrow’ choice task. Plots show choice rates for the
‘tomorrow’ option as a function of reward value (left), effort cost (middle), or the
task net value (right). On each dot plot, the color mark indicates the mean, the
horizonal line indicates the median, the thick whiskers indicate the range from 25th
to 75th percentiles, and the thin whiskers indicate the range from 5th to 95th
percentiles. (n = 43). Source data are provided as a Source Data file
b Procrastination behavior in the at-home ‘form-filling’ task. Histograms show the
distribution of the delay before participants completed and returned administrative
forms. c Regression estimates of the temporal discount rates for reward (kR), effort
(kE) and punishment (kP) obtained from fitting a linear model (also including age
and gender) to procrastination level in the ‘now/tomorrow’ choice task. Error bars
represent SD; significance values are based on two-tailed one-sample t tests (n = 43).

d Regression estimates of reward, effort and punishment discount rates obtained
from fitting a linear model (also including age and gender) to procrastination level
in the ‘form-filling’ home task. Error bars represent SD; significance values are based
on two-tailed one-sample t tests (n = 37). Note that in both cases (in lab or at home),
discount rates are inferred from intertemporal choices, which were observed
independently from the procrastination behavior that they contribute to explain.
e Accuracy of model fitting. The plot shows the correlation between modeled and
observed choice frequency for the ‘tomorrow’ option. Individual choices were
divided into 8 bins of increasing modeled frequency; each dot represents modeled
and observed choice frequency averaged within one bin for one participant. The
within-subject (trial-by-trial) fit can be assessed with the distribution of individual
balanced accuracy (inset). Balanced accuracy is the average of prediction accuracy
calculated separately for the two types of choices (now or later).
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We then tested the link between neural time preferences and
procrastination behaviors. We found that procrastination behaviors
were associatedwith neuralmeasures of temporal discount rates in the
effort domain only (Fig. 5c). Neural measures of temporal discounting
for efforts were significantly associated both with procrastination in
the ‘now/tomorrow’ lab choice task (β =0.45, t(18) = 2.21, p =0.040,
two-tailed t test, model R2 = 0.59) and with the delay to return com-
pleted administrative forms (β = 1.29, t(14) = 2.50, p = 0.026, two-tailed
t test, model R2 = 0.22). In contrast, there was no significant effect on
the neural measures of temporal discount rates for reward or pun-
ishment, and no effect of the sensitivity to undiscounted value or cost.
We also found no significant effect for gender, and age had a sig-
nificant effect only on procrastination at home (β = −0.55, t(14) = −2.20,
p =0.044, two-tailed t test), but not on procrastination in the lab. Thus,
at the neural level, the hallmark of procrastination was a greater
temporal discounting of effort expressed in dmPFC activity at the time
of choice.

From static to dynamic computational model of recurrent
procrastination
Finally, we developed computational models that articulate unitary
decisions to procrastinate, as probed in the ‘now/tomorrow’ choice
task, and daily-life recurrent procrastination, as probed in the ‘form-
filling’ task.We compared twomodels that both incorporate the choice
model, but fundamentally differed in how procrastination arises. The
staticmodel implemented a formof pre-commitment, in the sense that
the date of task completion was determined a priori, when returning
home, as the delay with the highest net value over all possible delays
before the deadline (Fig. 6a). The predicted date of task completion
(i.e., the duration of procrastination) is, therefore, the one that

maximizes the net value function:

d*task = argmax
d

Vd

� �
= argmax

d

Ri

1 + kR:d
� Ei

1 + kE :d

� �
ð6Þ

With d*task the optimal day for task completion, Vd the value of per-
forming the task on day d, Ri the financial compensation contingent on
completing the administrative forms and Ei the subjective cost of filling
in those forms. Note that this model is not necessarily deterministic: the
probability of completing the task after a given delay d could be calcu-
lated through a softmax function comparing net values over all delays.

In the dynamicmodel, the delay of task completion resulted from
iterative decisions, repeated each day, to postpone the task or not
(Fig. 6b). Thus, theprobability of having completed the task beforeday
di is the probability of having not postponed the task on every day
before di, which is given by one minus the product of probabilities to
postpone the task (i.e., not doing it now) on every day until di:
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With τ the time at which the task is eventually performed, di the con-
sidered day for task completion, D the deadline (30 days), Vt the value
of task completion at a given time t (t = 0means now), calculated with
the same function as in Eq. 6, and θ an inverse temperature parameter.
Note that the probability to perform the task Pd increases with time
because fewer dates before the deadline are available for comparison
in the softmax function (Fig. 6c).When deadline is reached (d =D), this

Fig. 5 | Explaining procrastination with neural correlates of time preferences.
a Statistical parametric maps (SPM) of delay (chosen minus unchosen delay),
– (undiscounted) reward value and + (undiscounted) effort cost, and the
conjunction between the two regressors, at the time of deliberation.
b Correlation between behavioral and neural estimates of the weight on
delay (temporal discount rates in choice model versus delay regression
estimates in dmPFC activity). Source data are provided as a Source Data file.
c Regression estimates of beta weights on dmPFC activity for delay and

(undiscounted) value or cost of reward, effort, and punishment, obtained
from fitting a linear model to procrastination level observed either in the lab
choice task (preference for ‘tomorrow’ options) (n = 27) or at home (delay in
returning administrative forms) (n = 23). Note that neural activity was
recorded during intertemporal choices, independently from the procrasti-
nation behavior assessed in the lab or at home. Error bars represent SD;
significance values are based on two-tailed one-sample t tests.
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probability becomes one, predicting that the last procrastinators
should complete the task then. The cumulative probability of having
completed the task P is further increasing across days as more prob-
abilistic terms are introduced in the product (see Fig. 6c). Under the
dynamicmodel, the predicted task delayd*task is given by the expected
time at which the task is performed:

d*task = E τ½ �=
XD

d =0
d ×P τ =dð Þ=

XD

d = 1
d × P τ ≤dð Þ � P τ ≤d � 1ð Þð Þ

ð8Þ

Simulations showed that under both the static and dynamic models,
participants would only postpone the task if temporal discount rates
are higher for effort than for reward (Fig. 6a, b), which was the case in
our participants. This relates to the net value function that is used in
bothmodels. If the temporal discount rate is higher for reward than for
effort, the optimal day of task completion is always now, whether the
net value is positive or negative (Supplementary Fig. 5). However, only
the dynamic model predicts a monotonic relationship between pro-
crastination duration and decreasing reward or increasing effort dis-
count rates. To assess which of thesemodels wasmore consistent with
behavioral data, we first examined how procrastination duration var-
ied as a function of temporal discount rates across participants
(Fig. 6d). We found that the tendency to discount effort more steeply
was associated with longer procrastination (Pearson’s r(35) = 0.35,
p =0.02), while the tendency to discount rewardmore steeply showed
an opposite but non-significant effect (Pearson’s r(35): −0.07,p =0.34).
This pattern is qualitatively consistent with the predictions of the
dynamic model and suggests that, although in principle postponing
tasks could stem from both decreasing reward and increasing effort
temporal discount rate, the latter was driving the procrastination
behavior observed in our participants.

We then quantitatively compared the predictions of thesemodels
using Bayesian model selection. Note that, again, we did not fit tem-
poral discount rates but rigidly incorporated those inferred from data
collected in the intertemporal choice task, togetherwith the subjective
cost of administrative form filling expressed by participants in the
rating task. Results of Bayesian model selection designated the
dynamic model as more plausible than the static model (model log-
evidence = −148.7 vs. −169.1, log Bayes Factor = 20.4). Moreover, the
dynamicmodel significantly explainedprocrastination duration across
participants (Fig. 6e; one-tailed Pearson’s r(35) = 0.29, p =0.040).
Together, these results support the idea that the delay in task com-
pletion resulted from iterative decisions to postpone the task, whose
probability depended on differential time preferences for effort and
reward. Finally, informing the dynamic model with neural time pre-
ferences provided equivalent accounts of task completion delays
across participants (Fig. 6e; one-tailed Pearson’s r(21) = 0.38,
p =0.035), which confirms that recurrent procrastination at homemay
stem from how the brain discounts effort versus reward with time.

Fig. 6 | From static to dynamic computational model of procrastination.
a Static model. Effort cost and reward value are both discounted with time, and
reward value vanishes after the deadline. The predicted delay for task completion
(i.e., procrastination duration) is the one that maximizes the net value function
(green dot). Simulations of procrastination duration under the static model shows
that it mostly occurs with low temporal discount rates, even lower for reward than
for effort b Dynamic model. Every day, the net value of completing the task now is
compared to all other remaining available dates (white dots) through a softmax
function that provides choice probabilities. As time goes by and the deadline gets
closer, the comparison includes fewer dates, which increases the probability of
performing the task. This probability obtained for each day is added to the prob-
ability of having completed the task on every past day, to generate a cumulative
probability. Thepredicteddelayof task completion is the expected value under this
cumulative distribution. Simulations of procrastination duration under the
dynamic model shows that it occurs with a wide range of temporal discount rates,
provided that they are lower for reward than for effort. c Daily and cumulative
probability of task completion across time, under the dynamic model. Each curve
represents one participant. d Observed procrastination duration plotted against
temporal discount rates for reward (kR) and effort (kE). Eachdot is a participant. Red
bars represent the means, and whiskers the 25th and 75th percentiles, in three bins
of equal size. e Inter-participant one-tailed Pearson’s correlation between observed
and modeled procrastination duration, under the dynamic model, based on
behavioral data or neural data. Each dot is a participant. The number of dots cor-
responds to the number of participants who did send back the completed forms
(n = 37 for behavioral data and n = 23 for fMRI data). Source data are provided as a
Source Data file.
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Discussion
Themain finding here is that procrastination is related to how effort is
discounted with time, relative to reward. Indeed, discount factors
estimated during intertemporal decisions between effortful options,
whether inferred from behavior or from brain activity, were sig-
nificantly associated with independent decisions probed in the lab to
postpone a rewarded task until the next day. These discount factors
were also significantly associatedwith the delay taken at home to fill in
and send back administrative forms, which in turn was significantly
correlated with procrastination scores measured using a standard
questionnaire (Lay procrastination scale). Because our study may be
underpowered to capture the full variability of naturally occurring
individual differences in procrastination behavior, these findings
require further confirmation in future studies with larger samples.
They nevertheless provide initial support to a computational model
assuming that (1) unitary decisions to postpone a task until the next
day are based on a net value that integrates reward and effort attri-
butes both discounted with time, and that (2) the date of task com-
pletion within the allotted time period results from iterative decisions
to postpone the task or not. This computational model might there-
fore account for the recurrent procrastination behavior that is fre-
quently observed in real-life situations.

Regarding unitary decisions to do a task now or tomorrow, we
usedhyperbolic discountingwith time and linear integration of reward
and effort. Hyperbolic discounting was used for consistency with
intertemporal choices, which were better explained by hyperbolic
models than with models including a present bias. This comparison
between time discounting functions could not be performed in the
now/tomorrow choice task which only compared two delays (0 and 1).
Linear integration (without scaling factor) wasmade possible by using
subjective ratings of reward and effort items that provided equivalent
gains and losses in euros. In first approximation, the same delays were
used for the effort and reward components, since the tasks proposed
could be completed in a few seconds or minutes. Thus, the time
between task completion and outcome delivery was negligible com-
pared to the delay due to procrastination (one day). Yet, in real-life,
task completion can take time and the outcome can be delayed fur-
ther, which could aggravate procrastination behavior22. Ourmodel can
be easily generalized to those cases, by using different delays for
reward and effort discounting. Thus, the differential time discounting
of reward and effort may be considered as a general explanation: it
accounts for procrastination behavior even when the aversive task
completion is immediately followed by the rewarding outcome (e.g.,
when passing a phone call to cheer up a relative in pain), and a fortiori
when the task is long to complete or the outcomedeliveredmuch later
(e.g., when preparing an exam to obtain a diploma).

When accounting for now/tomorrow choices within participants,
the model suggests that time discounting is not the only factor: pro-
crastination is more likely to occur with less rewarded and more
effortful tasks. This is in linewith studies that emphasized the failure to
regulate emotional responses to task aversiveness as a key determi-
nant of procrastination behavior6,17,18,22. However, across participants,
these factors were neutralized in the current study by using subjective
ratings to adjust the pairing of effort cost and reward value, whichmay
be viewed as emotional responses to task aversiveness and outcome
attractivity. Inter-subject variability in procrastination (preference for
tomorrow) was mainly captured by the weight on delay in the esti-
mation of effort cost, which may represent a general trait explaining
procrastination above and beyond the particular appraisal of specific
tasks and outcomes. This weight on delaywas obtained independently
from fitting choices between effortful options in the intertemporal
task, or by estimating the neural response to delay during those
choices.

The fact that reward, effort and punishment are differentially
discounted with time is supported by ourmodel comparison based on

intertemporal choice data. This is not a novel idea: early accounts of
intertemporal decisions already suggested that discount rates may
vary across attributes of actions and outcomes29,30. A specific temporal
discount factor for effort was even hypothesized in both the
economic1,28,31 and motor-control literature32. However, although
temporal discounting of reward has been studied extensively, very few
studies have assessed temporal discounting of effort in humans so
far33,34, and virtually none in animals. Among aversive outcomes,
monetary losses have received more focus. Previous investigations
have shown that losses are discounted with functions qualitatively
similar to gains but with lower discount rates29,35–39, a gain-loss asym-
metry called the sign effect29. This does not appear to be a general
feature of aversive outcomes, since we observed that effort, unlike
loss, is more steeply discounted than rewards.

Interestingly, although people generally want to postpone losses
for as long as possible, other aversive outcomes, such as receiving a
mild electric shock, are sometimes expedited rather than delayed. This
negative time preference has been accounted for by dread, i.e. the
desire to avoid the experience of anticipating unpleasant future
outcomes29,40,41. At the neural level, the dread for electric shocks has
been related to increased neural activity in the posterior elements of
the cortical pain matrix, which has been interpreted as reflecting the
attention devoted to the expected physical response41. A dread com-
ponent might also play a role in the effort domain, explaining why
tasks such as cleaning cages are rather expedited than delayed when
choosing between specific dates29. In our pilot study (Exp. 1), which
framed delays as the obligation to complete effortful tasks on specific
dates, we observed a preference for intermediate delays, consistent
with negative discountingof anticipation value combinedwithpositive
discounting of consumption value29. However, in Exp. 2, where delays
were framed as deadlines for completing the effortful task or enduring
the punishment, participants showed a preference for longer delays.
More than the aversive nature of effort or punishment, it might
therefore be their uncontrollable occurrence at precise dates that cri-
tically determines the weight of the dread component.

The differential discounting of reward and effort might relate to
the recruitment of different brain networks. Neuroimaging studies
have implicated both common and separate networks in the temporal
discounting of gains and losses42–44, but to our best knowledge, no
study has ever investigated the neural bases of effort temporal dis-
counting. Our fMRI results are compatiblewith the view that appetitive
and aversive events are signaled by opponent systems (vmPFC and AI,
respectively) and integrated in a common region (dmPFC)26,45–51. This
region was labeled dmPFC here because it was dorsal to the cingulate
gyrus, although activation clusters positioned on similar locations are
often labeled dACC in the literature on effort, conflict and cognitive
control. Despite looking for brain responses to the sequential pre-
sentation of the two options, we only found significant neural corre-
lates of option values at the time of choice, possibly because
participants waited for this moment to consider the options. In all
three clusters of interest, the neural representation of option values
was framed by the choice, meaning that brain activity correlated
(positively or negatively) with the difference between chosen and
unchosen option values, as reported in many previous studies52–54. We
note that the double dissociation between vmPFC and AI was only
partial, as the vmPFC also tended to deactivate with effort (but less
reliably than the activation with reward), while the AI also tended to
deactivate with reward (but less reliably than the activation with
effort). In the dmPFC, the pattern of activity was qualitatively similar to
that observed in theAI, but correlationswere significantwith all option
attributes, so the neural response to delay couldbe extracted from this
region for reward, effort and punishment. This extraction of delay
regression estimates was independent from the temporal discount
factors estimated from choice behavior, but the two markers (neural
and behavioral) were correlated across participants. Although the
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dmPFC was similarly sensitive to effort and punishment on average,
procrastination was specifically related to its sensitivity to the delay of
effortful tasks, not the delay of punishment outcomes.

This result suggests that procrastination behavior is related to
how the brain discounts effort with time, but not necessarily to the
specific computation operated by the dmPFC, which could just receive
information about option attributes fromother brain regions. Also, the
direct contribution of the dmPFC to postponing a task could not be
assessed here, because we have not scanned participants during the
‘now/tomorrow’ choice task. Still, one may speculate that during this
kind of choice, the dmPFC would signal the decision variable, i.e. the
net value of doing the task now relative to the net value of doing the
task tomorrow (with both effort cost and reward value discounted by
one day). Depending on this signal, the brain might engage or not in
task completion. Engaging in task completion might itself recruit
cognitive control brain systems, with regions such as the lateral pre-
frontal cortex (lPFC).

Such an interaction between the dmPFC (or dACC) signaling the
need for control and the lPFC implementing the required control has
already been postulated in published models55–57. It could represent a
common proximal pathway between procrastination (difficulty in
exerting an immediate effort) and impulsivity (difficulty in resisting an
immediate pleasure), even if the distal causes are distinct. The exis-
tence of both shared and distinct mechanisms may help explain why,
although they are distinguishable phenotypic traits7, procrastination
and impulsivity are correlated across individuals6,11,58, and share a sig-
nificant genetic variability in twin studies7,59. Self-regulation failure (or
cognitive control deficiency) has indeed been proposed as a common
core component of short-sighted behaviors60,61. Consistent with this
idea, impulsivity has been associated with small lPFC volume62,
reduced lPFC activity63 and lPFC inactivation64, while procrastination
has been associated with both lPFC volume9, lPFC resting-state
activity10, and control-related lPFC activity12. Thus, the tendency to
procrastinatemight bedue toboth thedmPFC signaling values in favor
of postponing the task and/or the lPFC failing to implement the control
necessary for task completion.

Beyond unitary decisions to postpone the task, the results of our
model comparison show that recurrent procrastination at home is
better explained by iterative decisions (dynamic model) than by a
direct readout of the net value function (static model). Without extra-
assumptions, the dynamic scheme naturally accounts for the deadline
effect (earlier deadline shortening procrastination duration) that has
been reported in several studies24,65,66. Indeed, at every step, the
number of possible time slots remaining to perform the task later is
reduced, as the deadline approaches, until the probability of doing the
task immediately reaches one on the last allotted slot. Note however
that, if no deadline is set, meaning that the number of available time
slots is high or even countless, the probability will not vary very much
across days, such that the model is likely to make the same decision
again and again. If it startswith a lowprobability of completing the task
on the first day, there is a good chance that the task would never be
completed, as is also commonly observed in real life.

Compared to the static model, the dynamic model adds a crucial
factor in the occurrence of procrastination: the rate at which decisions
to complete or postpone the task are considered. As there was no way
for us to control the choice rate while participants wereback home, we
postulated a same constant rate (one decision per day) for everyone.
Yet, even if it was the case that some participants thought about filling
in the administrative forms every day, it is likely thatmany of them just
forgot about these forms for some time. Integrating the choice rate in
the model might therefore help better account for interindividual
variability in procrastination behavior. Indeed, themodel predicts that
individuals who consider completing the task less frequently should
procrastinate longer. This feature of the model may account for why
prospective memory and external reminders have a significant impact

on procrastination:67–70 they may increase the rate at which the option
of completing the task now is envisaged.

To conclude, our results are consistent with a neuro-
computational mechanism accounting for why people repeatedly
postpone a task, even when they consider that the benefits surpass
the costs (when just comparing reward and effort, ignoring time). Yet
these results remain silent about underlying causes, i.e., why effort
cost is more discountedwith time than reward value in the first place.
The explanation might involve attentional processes, if for instance,
people focus more on the benefit when the potential task is distant in
the future and more on the cost related to its practical imple-
mentation when it gets closer in time71. At a different time scale, the
explanation might involve evolutionary justifications, such as natural
selection of the capacity to preserve energetic resources, until it
becomes certain that the task needs to be done now. In modern life,
procrastination might be adaptive for other reasons, one being that
rushing before deadlines might speed up task completion and
therefore save time in a busy agenda. In any case, our dynamicmodel
of recurrent procrastination would imply a lack of self-awareness:
participants would ignore that by making the same decision again
and again, they are likely to miss the optimal date of task completion
as defined by their own net value function. Thus, such a cognitive
bias might result in many people never completing tasks that would
yet improve their well-being.

Methods
Participants
In total, 51 healthy adults participated in the study (30 females,median
age = 23 ± 2.5 y). This includes three different cohorts (Supplementary
Table 1) of participants who participated in a pilot Experiment 1 (n = 8),
in Experiment 2withbehavioral testingonly (n = 16), and in Experiment
2 with fMRI (n = 27). All participants gave informed consent prior to
participating and all data were recorded anonymously. Participants
were screened for exclusion criteria: left-handedness, age below 18 or
above 40, any history of neurologic or psychiatric illness, regular use
of drugs or medication, and contraindications to MRI scanning. Parti-
cipants were informed that theywould receive a fixed amount for their
participation (25€ for behavioral studies, 75€ for MRI sessions). The
study was approved by the Ethics Committee of the Pitié-Salpêtrière
Hospital (Paris, France).

Tasks
Before performing the tasks, participants were given written instruc-
tions, which were also repeated orally step by step. Tasks presentation
and behavioral recordings were programmed with MATLAB using the
psychophysics Toolbox (www.psychtoolbox.org).

Rating tasks. Participants were instructed to report the subjective
value of a set of rewards, the subjective cost of a set of efforts, and
the subjective cost of a set of punishments, should they (hypotheti-
cally) experience these items. For each item, they were asked to
indicate the quantity of the item that had the same subjective value
(or subjective cost) than earning (or loosing) 1€ and 5€, successively.
Items and their units (e.g. number, grams, meters, etc.) were written
in the center of the screen, and participants had to indicate the
equivalent quantity with a keyboard. Responses were self-paced. The
task was made up of one block of reward items equally divided into
food items (e.g., pieces of sushi) and goods (e.g., flowers), one block
of effort items equally divided into cognitive (e.g., memorizing n
digits) and motor efforts (e.g., doing n sit-ups), and one block of
punishment items equally divided into bodily (e.g., enduring n mild
electric shocks) and abstract losses (e.g., losing my smartphone for n
hours). The order of block presentation was counterbalanced across
participants. Each block contained 50 items in Exp. 1 and 60 items
in Exp. 2.
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Intertemporal choice task. This task was designed to assess how
participants discounted reward, effort, and punishment with time. The
punishment condition was used as a control to assess whether effort
was discounted by a specific rate or by the same rate as other aversive
outcomes. The task was made up of blocks of reward items, blocks of
effort items, and blocks of punishment items, whose presentation
order was counterbalanced across participants. In each block, parti-
cipants were presentedwith a series of hypothetical choices between a
sooner/lower quantity of an item and a later/greater quantity of the
same item. Delays were randomly drawn from a set of ten delays (0, 1,
2, 3, 5, 7, 10, 14, 21, 30 days). The quantities for each option were
adjusted on the basis of item-specific ratings, delays and a priori dis-
count rates to evenly sample the value space. More specifically, the
same distribution of option values was used for reward, effort, and
punishment, and pseudo-randomly ordered across trials. This inter-
temporal choice task was used in two separate experiments. While
delays indicated the date of delivery for reward items in both experi-
ments, the framing was changed for effort and punishment items in
Exp. 2. In Exp. 1 (8 participants), delays indicated the precise date at
which efforts had to be exerted, or at which punishments had to be
endured, which induced negative time preference (the desire to
expedite efforts or suffer punishments sooner). In Exp. 2 (43 partici-
pants), however, delays indicated a time limitwithinwhichparticipants
could freely decide when to exert the effort, or endure the punish-
ment, which reverted the preferences toward deferring both efforts
andpunishments. Optionswere presentedon the left and right sides of
the screen. The side of the sooner option was counterbalanced across
trials. Responses were self-paced, and the selected item was high-
lighted in red for 500ms (plus a 0–2000ms intertrial interval jitter in
MRI sessions). The task consisted of 50 choices per block in Exp. 1, and
60 choices per block in Exp. 2, such that no itemwas repeated within a
block. Reward, effort, and punishment blocks were repeated six times
in Exp. 1 (behavioral sessions only, 8 participants), four times in
behavioral sessions of Exp. 2 (16 participants), and twice in fMRI ses-
sion of Exp. 2 (27 participants).

‘Now/Tomorrow’ choice task. This task was designed to assess how
participantsprocrastinated inone-shot decisions that involved reward,
effort, and delay. On each trial (Fig. 1c), participants of Exp. 2 were
proposed offers comprising both a reward and an effort item. They
were asked to decidewhether to produce the effort “Now” (and get the
reward immediately) or “Tomorrow” (and get the reward on the next
day). The two responses were randomly displayed on the left and right
sides of the bottom part of the screen (position counterbalanced
across trials). Reward and effort items were selected randomly from
the same sets used in the rating tasks, with no repetitionwithin a block.
Reward and effort quantities were adjusted on the basis of partici-
pants’ item-specific ratings, such that reward values and efforts costs
were drawn from the same uniform distribution and were pseudo-
randomly ordered across trials. The task was self-paced and contained
3 blocks of 50 choices. To elicit genuine procrastination choices,
participants had been asked, prior to participating in the study, to
agree with coming twice to the lab for two experimental sessions on
two consecutive days. They were also told that one trial would be
randomly selected, and that they would receive the reward on the
chosen day (today or tomorrow) and would have to perform the effort
on the same day. They were informed only at the end of the experi-
mental session that rewards and efforts were fictive and that a second
visit was not required. During debriefing, none of the participants
declared having doubted that the second visit would take place and
that the rewards and efforts would be actually implemented.

Form-filling home task. In order to get an independent and natur-
alistic measure of recurrent procrastination, participants of exp. 2
(n = 43)were informed at the end of the experimental session that they

would be given ten printed administrative forms (e.g., passport
renewal form; Cerfa documents 10840, 12100, 12485, 12670, 12669,
14445, 14881, 50040, 50239, 50731) at the end of the experimental
session, and that they would only receive their financial compensation
for participating in the study after filling in the documents and sending
a numeric copy by email within a time limit of 30 days. They were told
that money transfer would occur as soon as the task was completed,
and that no compensation would be transferred after the deadline. In
reality, all participants were eventually paid, even those who did not
completed the task within the allotted time. However, participants
whonever sent the formsback (n = 6)were not included in the analyses
regarding this task, since there was no delay to predict in their case.

Behavioral analyses
Subjective values (equivalent gains) and subjective costs (equivalent
losses) were estimated per unit for each item by averaging ratings
made for 1€questions and ratingsmade for 5€questions (dividedby 5).
Using a linear scaling was a first-order approximation of the true utility
function,whichwe considered reasonable given that reward values and
effort costs werewithin the range of a few euros. To checkwhether this
approximation was indeed reasonable, we fitted linear and power uti-
lity functions on individual ratings and use the fitted functions to
estimate the values of options presented in the intertemporal choice
task. The correlation between values estimated with linear and power
functions was 0.98 for reward, 0.97 for effort, and 0.87 for punishment
(Pearson’s correlation coefficients). We, therefore, kept the linear
approximation to avoid introducing additional flexibility (with power
parameters) in the choice models. In all choice tasks, we considered
choices as the dependent variables, which were regressed against
logistic models including experimental factors: difference in value (or
cost) and difference in delay for the intertemporal choice tasks; reward
value or effort cost on offer in the now/tomorrow choice task. Pro-
crastination measures in the now/tomorrow choice task and in the
form-filling home task were also regressed across participants against
behavioral or neural measures of time preferences, as well as age and
gender. Two-tailed t tests were used to assess the significance of
regression coefficients across participants when they could in principle
go both ways; one-tailed tests were usedwhen the direction could only
be one way (i.e., when testing correlations across participants between
alternative measures of the same construct, such as procrastination
level). For all t tests, the assumption of normality was tested using a
Kolmogorov–Smirnov test. Comparisons of parameter means were
performed using two-sample t tests assuming either equal or unequal
variance. The assumption of homoscedasticity was tested using a two-
sample F test for equal variance.

Computational models
In intertemporal choice tasks, options were discounted with delay D
through classical hyperbolic discounting models, in which three dis-
count rates kR, kE and kP characterized the steepness of the temporal
discounting of reward, effort and punishment, respectively:

VA =
NAi × Ri

1 + k:DA
ð1Þ

With VA the value of option A calculated as the number of elements NA

on offermultiplied by the subjective value (Ri, inferred from subjective
rating), discounted by the delay DA multiplied a temporal dis-
count rate k.

We compared this hyperbolic discounting to two classicalmodels
of intertemporal choices: a present-bias model (Eq. 3), and a quasi-
hyperbolic discountingmodel (βδmodel) that includes both a present
bias parameter β and a constant exponential discount factor δ (Eq. 4).
Notice that there is a discontinuity in these functions such that, if
DA =0, VA =NAi×Ri in both models. Further, both β and δ are
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constrained so that 0 ≥ β ≥ 1 and 0 ≥ δ ≥ 1.

VA =
βðNAi × RiÞ, if DA>0

NAi × Ri if,DA =0

�
ð3Þ

VA =
βδDA ðNAi × RiÞ, if DA>0

NAi × Ri, if DA =0

(
ð4Þ

Decisions were modeled with a softmax function that converted the
value difference between the two options A and B into a choice
probability, depending on a temperature parameter θ that captured
choice stochasticity.

PA =
1

1 + e�θ:ðVA�VBÞ
ð2Þ

In the now/tomorrow choice task, the net value of options was mod-
eled as the difference between the reward and the effort on offer,
hyperbolically discounted with delay by rates kR and kE.

VN orT =
NR ×Ri

1 + kR:D
� NE × Ej

1 + kE :D
ð5Þ

With delay D being 0 or 1 depending if the considered optionwas ‘Now’
or ‘Tomorrow’, kR and kE the temporal discount rates for reward and
effort (inferred from intertemporal choices),NR andNE the quantities of
reward i and effort j on offer, whose unitary gain and loss equivalents
were Ri and Ej (inferred from subjective ratings). Again, a softmax
function incorporating an inverse temperature parameter θwas used to
map net value differences onto choice probabilities. The inverse tem-
perature was individually adjusted, as a free parameter of no interest.

In the form-filling home task, models were meant to predict how
many days participants would procrastinate in real-life when required
to perform an effortful task before a deadline. We developed two
models that both embedded the net value function with differential
temporal discounting for effort and reward, but fundamentally dif-
fered in how procrastination was generated.

In the static model, procrastination results from a maximization, at
the initial stage, of the expected net value over the course of the allotted
timeperiod. Thismodel predicts that the task is completedondayd*task,
which corresponds to the delay that maximizes the expected net value.

d*task = argmax
d

Vd

� �
= argmax

d

Ri

1 + kR:d
� Ei

1 + kE :d

� �
ð6Þ

With d*task the optimal day for task completion, Vd the value of per-
forming the task on day d, Ri the financial compensation contingent on
completing the administrative formsand Ei the subjective costoffilling
in those forms.

In the dynamic model, by contrast, procrastination arises from
binary decisions, repeated over time, about whether to postpone the
task or not. On each day d, the probability of task completion is given
by a softmax function that compares the net value V0 of performing
the task now to the net values Vt of performing the task at any other
moment before the deadline D. Net values were normalized per par-
ticipant to account for interindividual differences in value range. Let τ
be the time at which the task is eventually performed. The probability
P τ ≤di

� �
of having completed the task before daydi is theprobability of

having not postponed the task on every daybefore di, which is given by
one minus the product of probabilities to postpone the task (i.e., not

doing it now) on every day until di:

P τ ≤di

� �
= 1�

Ydi

d =0
1� P τd =d

� �� �
= 1�

Ydi

d =0
1� eθV0P D�dð Þ

t =0ð Þ e
θVt

0
@

1
A
ð7Þ

where τt is the delay that would be chosen at time t, under the
assumption that the task was postponed until time t. Note that, by
construction, P τD =D

� �
= 1, i.e., the task cannot be postponed beyond

the deadline. Under the dynamicmodel, the predicted task delay d*task
is given by the expected time at which the task is performed:

d*task = E τ½ �=
XD

d =0
d ×P τ =dð Þ=

XD

d = 1
d × P τ ≤dð Þ � P τ ≤d � 1ð Þð Þ

ð8Þ

where we have assumed that the decision about whether the task is
postponed or not is repeated on each consecutive day.

To illustrate how the predicted delay of task completion was
determined for eachmodel, we simulated the expected net value of an
option combining a subjective gain of 100 a.u. and a subjective cost of
85 a.u with a temporal discounting rate of 0.05 for reward and 0.2 for
effort. We also performed 106 simulations, varying all free parameters
with a deadline set to 30 days, and estimated the average procrasti-
nation duration in the space of discount rate parameters, margin-
alizing over reward values and effort costs. The simulations spanned
the following ranges for the different parameters and variables:
Ke =0–0.5, Kr= 0–0.5, R = 40–60 a.u., E = 20–40 a.u., θ =0.5. We then
informed thesemodels with participant’s data (expected gratification,
form-filling cost ratings, and temporal discounting rates for reward
and effort) to model the observed procrastination duration.

Bayesian model estimation and selection
The different models were inverted using a variational Bayes approach
under the Laplace approximation72,73, implemented in the VBA toolbox
(available at https://mbb-team.github.io/VBA-toolbox). This algorithm
notonly inverts nonlinearmodelswith an efficient and robust parameter
estimation, but also estimates the model evidence, which represents a
trade-off between accuracy (goodness of fit) and complexity (degrees of
freedom). The following non informative priors were used for para-
meters estimation: μ=0, σ= 1 for Kr and Ke; μ= 1, σ= 1 for θ. The model
log-evidence was then used as a criterion to select which model best
accounted for temporal discounting and recurrent procrastination.

Neuroimaging acquisition
Multiband T2*-weighted echoplanar images (EPIs) were acquired
with blood oxygen level-dependent (BOLD) contrast on a 3.0 T MRI
scanner (Siemens Trio) in 27 participants. The sample size was cho-
sen to be larger than the sample size used in a previous study from
our group that identified option values signals during intertemporal
choice74. A tilted plane acquisition sequence was used to optimize
functional sensitivity in the orbitofrontal cortex. To cover the whole
brain (except the cerebellum), we used the following parameters:
1022ms repetition time (TR), 25ms echo time (TE), 45 slices, 2.5mm
slice thickness, 0.5mm interslice gap, 2.5mm× 2.5mm in-plane
resolution, 80 × 80 matrix, 60° flip angle, x3 acceleration factor. T1-
weighted structural images were also acquired, coregisteredwith the
mean EPI, segmented and normalized to a standard T1 template, and
averaged across all participants to allow group-level anatomical
localization. EPIs were analyzed in an event-related manner, within a
GLM, using SPM12 (www.fil.ion.ucl.ac.uk/spm). The first five volumes
of each session were discarded to allow for T1 equilibration effects.
Preprocessing consisted of spatial realignment, normalization using
the same transformation as structural images, and spatial smoothing
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using a Gaussian kernel with a full-width at half-maximum
(FWHM) of 8mm.

Neuroimaging analysis
We used a first GLM to generate SPMs of discounted reward and effort,
as follows. All trials of the intertemporal choice tasks were modeled as
single events with Dirac delta-functions at the time of deliberation
onset. The difference in discounted value between chosen and uncho-
sen rewards, or the difference in discounted cost between chosen and
unchosen efforts or punishments, was incorporated as parametric
modulation. These decision variables are typically signaled during the
comparison of options by neural activity in key brain regions involved
in value or cost estimation52–54. All regressors of interest were convolved
with a canonical hemodynamic response function. To correct for
motion artifact, subject-specific realignment parameters were modeled
as covariates of no interest. Linear contrasts of regression coefficients
(betas) were computed at the individual participant level and then
taken to a group-level random effect analysis (using one-sample t test).
All reported significant activations contained voxels surviving a
threshold of p <0.05 after familywise error correction for multiple
comparisons at the cluster level (c-FWE), unless otherwise mentioned.

To specify how procrastination was related to reward and effort
temporal discounting, we extracted betas from a second GLM that
incorporated one event per trial, at the time of deliberation onset. The
difference in delay and in undiscounted value or cost between chosen
and unchosen options were incorporated as parametric modulation.
We extracted betas from vmPFC, AI and dmPFC regions of interest
(ROIs) defined from published atlases: the vmPFC ROI corresponded
to the 14m area of the Mackey and Petrides probabilistic atlas75; the
anterior insula ROI consisted of the anterior short gyrus and the
anterior inferior cortex from the Hammersmith atlas76; and the dmPFC
ROI corresponded to the paracingulate regions of the Harvard-Oxford
brain atlas distributed with FSL (https://www.fmrib.ox.ac.uk/fsl) that
do not extend anterior to the genu of the corpus callosum. Procrasti-
nation measures in the lab and at home were then regressed against a
linear model that included the betas obtained for delay, undiscounted
value and cost, as well as age and gender.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw behavioral data that support the findings of this study and
brain maps are available for download (https://github.com/rlebouc/
procrastination). Raw fMRI data can be obtained from the corre-
sponding author upon reasonable request. Source data are provided
with this paper.

Code availability
All computer codes for analysis will be made available by the corre-
sponding author upon reasonable request.
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