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Abstract

Prompted by the recent growing evidence of oscillatory behavior involving MAPK cascades

we present a systematic approach of analyzing models and elucidating the nature of bio-

chemical oscillations based on reaction network theory. In particular, we formulate a minimal

biochemically consistent mass action subnetwork of the Huang-Ferrell model of the MAPK

signalling that provides an oscillatory response when a parameter controlling the activation of

the top-tier kinase is varied. Such dynamics are either intertwined with or separated from the

earlier found bistable/hysteretic behavior in this model. Using the theory of stability of stoichio-

metric networks, we reduce the original MAPK model, convert kinetic to convex parameters

and examine those properties of the minimal subnetwork that underlie the oscillatory dynam-

ics. We also use the methods of classification of chemical oscillatory networks to explain the

rhythmic behavior in physicochemical terms, i.e., we identify of the role of individual biochemi-

cal species in positive and negative feedback loops and describe their coordinated action

leading to oscillations. Our approach provides an insight into dynamics without the necessity

of knowing rate coefficients and thus is useful prior the statistical evaluation of parameters.

Introduction

Mitogen-activated protein kinase (MAPK) cascades represent a key step of chemical signal

transduction in cellular systems and are widely conserved in eukaryotes [1]. MAPK cascades

usually consists of three phosphorylation/dephosphorylation tiers or stages [2]. For example,

affinity reaction of tyrosin kinase membrane-bound receptors with extracellular ligands leads

to a sequence of reaction steps resulting in the activation of specific intracellular proteins such

as Ras. The Ras protein starts the MAPK cascade via activation of a kinase-kinase-kinase

enzyme (MAPKKK). This protein then phosphorylates twice the kinase-kinase enzyme

(MAPKK) yielding its MAPKKp and MAPKKpp forms in the middle tier. Because the dissoci-

ation rate of monophosphorylated enzyme complex MAPKKK-MAPKKp is much faster than

the second phosphorylation step yielding MAPKKpp, the double phosphorylation process

obeys the distributive enzyme kinetics requiring reassociation of MAPKKp [3]. MAPKKpp

finally double phosphorylates the kinase enzyme (MAPK) in the last tier. The single and

biphosporylated enzyme forms are deactivated by phospahatases. The biphosphorylated kinase
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(MAPKpp) then targets different molecules such as transcription factors or cytosolic proteins.

The protein modification can lead to cell proliferation, adaption to surrounding environment,

cell differentiation, tissue morphogenesis, cell apoptosis and other processes [4] that are tightly

connected to autocrine/paracrine communication mediated by membrane receptors and their

ligands [5, 6]. MAPK cascades are responsible for signal amplification and ultrasensitivity at

certain range of input signal [7]. The sensitivity of MAPK cascades can be characterized by a

high value of the Hill cooperative kinetics that suggests switch-like response of the cascade.

For example, the Huang-Ferrell model of three-stage MAPK cascade predicts the effective Hill

coefficient greater than five [2].

MAPK cascades are involved in various positive and negative feedback loops regulating

many intracellular processes [7, 8]. MAPK cascades do not form any purely autonomous reac-

tion network. They are interconnected with other subnetworks such as phosphatidylinositol

3-kinase (PI3K) pathways [9] or are affected by complex signal inputs such as calcium oscilla-

tions [10]. However, detailed analyses of MAPK cascades detouched from other processes

revealed extraordinary rich behavior so that consideration of cross-talks with other reaction

networks or cascades somewhat obscures understanding of the origin of strongly nonlinear

dynamical characteristics of MAPK cascades. Consequently, considerable attention has been

paid to dynamics of an isolated MAPK cascade or its subsystems.

A large body of work has focused on model formulation and subsequent numerical analysis.

Kholodenko [8] studied a three-stage MAPK cascade with MAPKpp inhibiting MAPKKK

activity. It was shown that this negative feedback loop can lead to sustained oscillations of

kinase activity with the period ranging from minutes to hours. Chickarmane et al. [11] sug-

gested that MAPK networks exhibiting oscillations have to contain at least one double phos-

phorylation tier with additional negative feedback. However, grater number of tiers produces

sustained oscillations more effectively due to the delay between a signal input and negative

feedback. Further, Blüthgen et al. [12] found that substrate sequestration due to binding to a

kinase or phosphatase can suppress occurrence of oscillations in kinase cascades with simple

negative feedback. Nguyen [13] considered a hypothetical arrangement of MAPK cascade with

two negative feedbacks in which MAPKpp inhibits the formation of phosphorylated forms of

MAPKKK and MAPKK. It was shown that the outer negative feedback (MAPKKK inhibition)

promotes oscillatory behavior, whereas the inner suppresses (MAPKK inhibition) the oscilla-

tions. Mai and Liu [14] developed a generic mathematical model of three tier MAPK cascade

with positive and negative feedbacks and discussed the conditions leading to oscillations, bist-

ability, ultrasensitivity, and transient activation. It was revealed that MAPK cascades exhibit

bistable and oscillatory behavior even if no direct positive or negative feedback between

MAPKpp and MAPKKK is present. Markevich et al. [15] found that bistable behavior is pro-

vided by the distributive enzyme kinetics of double phosphorylation/dephosphorylation in a

single tier of MAPK cascades. In such arrangement, the MAPKK and MAPKKp forms of sub-

strate compete for binding sites of MAPKKK, and MAPKKp and MAPKKpp compete for

binding sites of phosphatase. Two distinct stable steady states are formed, one rich in in the

MAPKK and the other one rich in the MAPKKpp. Kholodenko and Birtwistle in their review

[4] summarized the necessary conditions for bistability occurrence: competitive inhibition of a

kinase or phosphatase, saturation of respective enzyme by its substrates, and the ratio of phos-

phorylation/dephosphorylation rate constants in the first phosphorylation must be less than

that in the second step. When synthesis and degradation of particular proteins are considered

in addition to the enzyme processes in single tier double phosphorylation cascade, sustained

oscillations of MAPK activity were observed by Wang et al. [16]. The period of oscillations was

determined by protein degradation rate. Occurrence of autonomous oscillations in two-stage

or three-stage versions of the Huang-Ferrell model of the MAPK cascade with no extra
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feedback was reported by Qiao et al. [17] They found large regions of bistabilities and oscilla-

tions in the high-dimensional parameter space of the Huang-Ferrell model. Statistical treat-

ment of obtained results confirmed a double phosphorylation subsystem as the necessary

condition for emergence of bistability. In agreement with the findings of Wang et al. [16], even

temporary consumption or production of a kinase (e.g., represented by the first tier of MAPK

cascade) together with the double phosphorylation/deposphorylation motif lead to

oscillations.

Another direction in the research of the MAPK cascades is based on purely analytical

approach. Conradi et al. [18] found analytical expressions for the location of regions with

steady state multiplicities in the parameter space for one tier MAPK cascade. They utilized the

reaction network theory developed by Horn and Feinberg [19, 20]. Perez-Millan and Turjanski

[21] found that three tier MAPK cascades without extra feedback exhibit so called toric steady

states, which allowed to find values of rate constants that correspond to bistability. Ventura

et al. [22] approximated each phosphorylation/dephosphorylation step by single variable and

pointed out that each such step affects not only downstream members of kinase cascades but

also preceding reactions leading to pseudonegative feedback and strongly nonlinear responses

to simple stimulus. This method allowed for identification of bistabilities and oscillations in

MAPK cascades [23]. A stability based criterion for different biochemical reaction networks

including MAPK cascades was introduced by Arcak and Sonntag [24]. Zumsande and Gross

[25] used bifurcation analysis to reveal dynamical characteristics of MAPK cascades. Their

approach is based on direct parametrization of the Jacobi matrix instead of the right hand

sides of governing equations. In addition to bistability and oscillatory behavior, the authors

identified quasiperiodic and chaotic dynamics close to a double Hopf bifurcation point in

three-tier MAPK cascade. Other techniques of analyzing dynamics of MAPK networks have

been used, e.g., Vera et al. [26] used power-law models with possible noninteger and negative

reaction orders. Spatial distributions of different forms of kinases between the nucleus and

cytosolic membrane were studied by Zhao et al. [27]. They observed traveling waves of kinase

concentration originating from the bistable and oscillatory character of the MAPK cascades.

Nomura and Okada-Hatakeyama [28] carried out phase response analysis of MAPK cascade

and found response functions with negative values of phase shift as well as synchronous and

asynchronous oscillations of two coupled MAPK cascades.

Last but not least, there is a growing experimental evidence for oscillatory dynamics in

MAPK cascades observed in vivo. Sustained oscillations in MAPK phosphorylation were

experimentally observed in yeasts continuously exposed to a mating-pheromone stimulus by

Hilioti et al. [29]. They found that oscillations in the MAPK cascade formed by Ste11, Ste7,

and Fus3 kinases led to periodic mating-gene expression with period of a few hundred min-

utes. Shankaran et al. [30] reported on sustained oscillations in MAPK cascade in human epi-

thelial cells stimulated by an epidermal growth factor (EGF). Oscillations were persistent for

more than 45 cycles with the period of about 15 minutes. Upon exposition of a fibroblast cell

lines to fibroblast growth factor stimulus, oscillatory activation of MAPK cascade with the

period of about two or three hours were reported by Nakayama et al. [31]. Recently, Hu at al.

[32] observed oscillations in MAPK and PI3K signaling cascades upon stimulation of breast

cancer cells by EGF. A typical period of observed oscillations was about 20 minutes. The exper-

imental observations suggest that oscillatory dynamics in MAPK cascades may play an impor-

tant role in the regulation and timing of cell processes. Thus it is increasingly important to

fully understand the origin of this behavior.

As suggested in earlier work [4, 11, 15] the MAPK dual-phosphorylation subsystem

described in terms of Michaelis-Menten kinetic terms requires competitive inhibition of

MAPKKK by MAPKK and MAPKKp that lead to bistable dynamics. Recently we reported on
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a mass action reaction subnetwork possessing the double phosphorylation motif found in an

isolated second or third stage of the MAPK cascade that displays competitive autocatalysis as a

major contributor to bistability [33]. With the use of techniques of stoichiometric network

analysis established by Clarke [34], we systematically reduced complexity of this motif and

obtained a minimal network that still retains bistability. Convex parametrization of the mini-

mal subsystem allowed to obtain analytical formulas for the bistability region in the parameter

space. Here we apply this approach to identify a minimal network exhibiting periodic

oscillation.

Methods

Stoichiometric network analysis (SNA)

The methods of the SNA [34] start with a decomposition of the reaction network into irreduc-

ible subsystems called elementary or extreme subnetworks, subsequently examines linear stabil-

ity of admissible steady states in each subnetwork and, finally, draws general conclusions on

the stability of the network as a whole.

A reaction network (also called a chemical or stoichiometric network) is constructed from a

set of n chemical species occurring in a set of r chemical reactions with given kinetics. A chem-

ical reaction Rj is specified by providing left and right stoichiometric coefficients nL
ij; nR

ij resp.,

of species i in reaction j and the reaction rate vj as a function of the concentrations xi of

reactants.

Mass balance for each species implies that in a spatially homogeneous (open or closed) iso-

thermal system dynamics is governed by the evolution equations, put in a compact form

dx
dt
¼ NvðxÞ ; ð1Þ

where N ¼ fnR
ij � nL

ijg is the stoichiometric matrix; the concentration vector x = (x1, � � �, xn)

has positive components and the reaction rate vector v = (v1, � � �, vr) has nonnegative compo-

nents. The concentration dependence of reaction rates is assumed to have a power law form

v ¼ fvj ¼ kj

Q
i xkij

i g where the rate coefficients can be arranged in a vector k = (k1, � � �, kr)

and reaction orders in a matrix K = {κij}. Inflows and outflows are treated as pseudoreactions.

A reaction order of species i in reaction Rj can be generally any real number, but for mass

action kinetics considered here it is assumed equal to the stoichiometric coefficient of the reac-

tant, kij ¼ nL
ij. There may be conservation constraints relating certain groups of species that do

not flow in or out of the system (such as various enzyme forms within cytosol). The inflow/

outflow rates, the rate coefficients and the total concentrations of species subject to conserva-

tion constraints represent the parameter space of Eq (1).

At steady state x0 ¼ ðx0
1
; � � � ; x0

nÞ the reaction rate vector v0 = v(x0) of the network satisfies

Nv0 ¼ 0 : ð2Þ

The decomposition into elementary subnetworks amounts to finding a set of irreducible

solutions of Eq (2) represented by non-negative extreme vectors forming edges of a convex

cone in the right null space of N of dimension d = r − rank(N). Each of these edges/subnet-

works represent a distinct connected pathway encompassing a subset of species. The number f
of elementary subnetworks may exceed the dimension d of the cone. An alternative to the

term elementary subnetwork is the term extreme current used to emphasize a broad analogy to

electrical circuits. It is convenient to normalize each elementary subnetwork so that the sum of

all reaction rates is equal to one and arrange them as columns in an (r × f) matrix E that can be
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computed by linear programming algorithms [35] or pathway oriented algorithms [36, 37].

Any non-negative linear combination of the columns of E forms a feasible solution of Eq (2),

Eα ¼ v0; α ¼ ða1 � 0; � � � ; af � 0Þ: ð3Þ

Thus any steady state reaction (sub)network can be expressed as a combination of elementary

subnetworks.

A useful representation of a (sub)network is provided by a network diagram, which con-

nects species via multi-head, multi-tail arrows representing reactions. The left stoichiometric

coefficient nL
ij of a species in a reaction is given by the number of ‘feathers’ at the tail, left ‘feath-

ers’ indicate the order κij (for simplicity there is just a straight feather when nL
ij ¼ kij ¼ 1) and

the right coefficient nR
ij of a species is indicated by the number of barbs at the head of a reaction

arrow.

Identification of elementary subnetworks is useful when examining the stability of the (sub)

network at steady state x0 via eigenvalues of the Jacobi matrix J of Eq (1) linearized about the

steady state. Of particular interest is emergence of an oscillatory instability when some of the

parameters are varied. This occurs when a pair of complex eigenvalues crosses the imaginary

axis (a Hopf bifurcation). Also of interest is the saddle-node bifurcation, when a real eigen-

value crosses zero. While the latter has been the subject of our previous work, here we focus on

the former.

One of the most convenient features of the SNA approach is that when assessing stability of

a steady state network, knowledge of steady state concentrations x0 can be partly circumvented

by switching from the original inflow-kinetic-constraint parameters to convex parameters: the

vector of reciprocal steady states, h ¼ ðh1 ¼ 1=x0
1
; � � � ; hn ¼ 1=x0

nÞ, and the vector of the coeffi-

cients α. Then the Jacobi matrix is expressed as [34],

Jðh;αÞ ¼ N diagðEαÞKT diagðhÞ ¼ � B diagðhÞ ; ð4Þ

A preliminary stability analysis can be done by examining the matrix B, which does not

depend on steady state concentrations. The stability of the subnetwork v0 = E α is indicated by

principal subdeterminants/minors βℓ of order ℓ = 1, . . ., n of B. There are
n

‘

 !

different βℓs

related to combinations of ℓ species out of n. If there is a negative βℓ, then an eigenvalue of J

has positive real part(s) provided that the values of the reciprocal steady state concentrations of

the corresponding ℓ species are sufficiently large [34]. At this point there is no clear distinction

between a saddle-node and a Hopf bifurcation and a more detailed examination involving h

must be made, e.g. employing the Routh-Hurwitz criterion [38]. However, a negative principal

minor βℓ has direct physical interpretation: it implies that positive feedback dominates over

negative feedback involving the relevant ℓ species. Moreover, when a subnetwork is indicated

as unstable, the entire network will display the same type of instability provided that the unsta-

ble subnetwork is dominant. This observation makes it possible to introduce a classification of

reaction networks which display either steady state bistability or oscillations.

Classification and role of species in oscillations

A strictly rigorous approach showing that there is an oscillatory instability via Hopf bifurcation

is rather technical [38, 39] and does not necessarily provide a physical insight. For that purpose

a theory of classification of chemical oscillators has been successively built [40, 41] based partly
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on rigorous results from the network analysis and partly on heuristics accumulated in the pro-

cess of analyzing various chemical oscillators ranging from inorganic to biochemical. Accord-

ing to this approach, there are species essential and nonessential for oscillations, the former

must be present in the mechanism as dynamical variables, whereas the latter can be kept fixed

without losing oscillatory dynamics. Three basic types of essential species that need to be prop-

erly embedded in the network’s topology to obtain oscillations in mass action networks having

first order autocatalytic step(s) and thereby reflecting majority of realistic mechanisms are:

type X (autocatalytic species), type Y (exit or direct inhibition species) and type Z (negative

feedback or indirect inhibition species). A negative principal minor βℓ of B implies positive

feedback. Moreover, species that are labeled by the index sequence of that minor are all either

type X or type Y species [42]. The minimal subnetwork that involves all the species indicated

by βℓ may also involve a type Z species that provides for a specific negative feedback so that the

subnetwork alone is oscillatory. Alternatively, type Z species and its negative feedback may be

present in a combination of the unstable subnetwork with others. Typically, such minimal sub-

networks are either directly edges or low-dimensional faces of the convex cone, therefore it is

important to know the hierarchy of all k-dimensional faces of the cone, k = 1, � � �, d − 1. Thus

both rigorous mathematical analysis and heuristic physical interpretation in terms of classifica-

tion of species and explaining their role can be combined to uncover the nature of (bio)chemi-

cal oscillators.

Results

Reduction to a minimal oscillatory model

In our earlier work we started with applying mass action kinetics to express each Michaelian

step in the Stage 2 of the Huang-Ferrell model of MAPK cascade and reduced it to a minimal

biochemically consistent model possessing bistability based on competitive autocatalysis [33].

When mass action kinetics are applied, systematic simulations of Qiao et al. [17] have indi-

cated that Stages 1 and 2 should be involved in oscillations, see Fig 1. For convenience, we use

abbreviated notation for various enzymes in Fig 1 summarized in Table 1. In the first stage

activation of the kinase A using an enzyme D1 to A� and simultaneous deactivation via another

enzyme D2 takes place while the subsequent Stage 2 involves a sequential double phosporyla-

tion/double dephosphorylation in a scheme known as distributive model. Specifically, the acti-

vated kinase A� phosphorylates two substrates, B and its phosphorylated form B1; the double

phosphorylated form B2 as well as the single phosphorylated form B1 are dephosphorylated by

the phosphatase C.

Using the approach outlined in the section Methods, we take the two-stage subset of the

MAPK cascade and reduce it to a minimal oscillatory network and simultaneously show how

the minimal model for bistability fits within the oscillatory network. Provided that each of the

enzymatic reactions obeys Michaelis-Menten reaction steps, the Stages 1 and 2 involve n = 14

chemical species and r = 18 reactions (forward and reverse steps are counted as separate) sum-

marized in Table 2 that follow mass action kinetics.

We assume spatial homogeneity of the reaction environment to cast the model in terms of

ordinary differential equations. This is certainly a simplification, because despite small size of

the cell, diffusive transport within cytosol may be effectively hindered due to the presence of

endoplasmic reticulum and other subcellular structures with complex geometry. A simple cal-

culation of diffusion time scale in a cell of a characteristic size 1 × 10−5m with a diffusing pro-

tein having effective diffusivity 1 × 10−11 m2 s−1 leads to a diffusion time 10 s, which is much
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shorter than periods observed in experiments. Thus the oscillatory dynamics will be primarily

determined by kinetics and on the qualitative level of description, the assumption of spatial

homogeneity is relevant. The time evolution of the concentrations of the species involved in

Stages 1 and 2 is given by the evolution equations (see also Eq (1)):

dx
dt
¼ NvðxÞ ; ð5Þ

Table 1. Notation used for chemical species.

Symbol Chemical species

A MAPKKK

A* MAPKKK*

B MAPKK

B1 MAPKKP

B2 MAPKKPP

C MAPKKP’ase

A*B MAPKKK*MAPKK

A*B1 MAPKKK*MAPKKP

CB1 MAPKKP’aseMAPKKP

CB2 MAPKKP’aseMAPKKPP

D1 enzyme activating MAPKKK

D2 enzyme deactivating MAPKKK

https://doi.org/10.1371/journal.pone.0178457.t001

Fig 1. Schematic of the Stages 1 and 2 of the Huang-Ferrell model of the MAPK cascade.

https://doi.org/10.1371/journal.pone.0178457.g001
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with the stiochiometric matrix

N ¼

0 0 0 0 0 0 0 0 � 1 1 0 0

0 0 0 0 0 0 0 0 0 0 � 1 1

0 0 0 0 0 0 0 0 1 � 1 0 0

0 0 0 0 0 0 0 0 0 0 1 � 1

0 0 0 0 0 0 0 0 � 1 0 0 1

� 1 1 � 1 1 0 0 0 0 0 1 � 1 0

� 1 0 0 0 0 0 0 1 0 0 0 0

0 1 � 1 0 0 1 � 1 0 0 0 0 0

0 0 0 1 � 1 0 0 0 0 0 0 0

0 0 0 0 � 1 1 � 1 1 0 0 0 0

1 � 1 0 0 0 0 0 0 0 0 0 0

0 0 1 � 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 � 1 0 0 0 0

0 0 0 0 1 � 1 0 0 0 0 0 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; ð6Þ

and rate expressions as in Table 2. The ordering of species (rows) is D1, D2, D1A, D2A�, A, A�,

B, B1, B2, C, A�B, A�B1, CB1, CB2 and that of reactions (columns) as in Table 2. Concentrations

of other species (ATP, water) are assumed fixed due to elevated concentrations (also referred

to as pool condition) and included in the rate coefficients kj. Since the total amounts of all five

enzymes are conserved within the system, Eq (5) must obey the conservation constraints

Atot ¼ ½A� þ ½A
�� þ ½A�B� þ ½A�B1� þ ½D1A� þ ½D2A�� ; ð7Þ

Btot ¼ ½B� þ ½B1� þ ½B2� þ ½A
�B� þ ½A�B1� þ ½CB1� þ ½CB2� ; ð8Þ

Ctot ¼ ½C� þ ½CB1� þ ½CB2� ; ð9Þ

E1;tot ¼ ½D1� þ ½D1A� ð10Þ

E2;tot ¼ ½D2� þ ½D2A�� : ð11Þ

Table 2. The reaction mechanism of the MAPK Stage 1 + 2.

No. Reaction Reaction rate

(1) Bþ A
�
Ð A

�
B v1 ¼ k1½A

�
�½B� � k� 1½A

�
B�

(2) A*B! A* + B1 v2 = k2[A*B]

(3a) B1 þ A
�
Ð A

�
B1 v3a ¼ k3a½A

�
�½B1� � k� 3a½A

�
B1�

(3b) A*B1! B2+A* v3b = k3b[A*B1]

(4a) B2 þ CÐ CB2 v4a ¼ k4a½C�½B2� � k� 4a½CB2�

(4b) CB2! B1+C v4b = k4b[CB2]

(5a) B1 þ CÐ CB1 v5a ¼ k5a½C�½B1� � k� 5a½CB1�

(5b) CB1! B + C v5b = k5b[CB1]

(6a) D1 þ AÐ D1A v6a ¼ k6a½A�½D1� � k� 6a½D1A�

(6b) D1A! D1 + A* v6b = k6b[D1A]

(7a) D2 þ A
�
Ð D2A

� v7a ¼ k7a½A
�
�½D2� � k� 7a½D2A

�
�

(7b) D2A*! D2+A v7b = k7b[D2A*]

https://doi.org/10.1371/journal.pone.0178457.t002
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This model has effectively rank(N) = 14 − 5 = 9 independent variables since each concentra-

tion constraint makes one of the respective enzyme forms dependent on others. The corre-

sponding network diagram is shown in Fig 2. The decomposition into elementary

subnetworks and stability analysis applied directly to the reaction network defined by Eq (5)

indicates f = 9 elementary subnetworks. Since the dimension of the steady state cone is

d = r − rank(N) = 18 − 9 = 9 and f = d, the cone is simplicial, i.e., it is generated by a minimal

number of edges. Six elementary subnetworks are simple forward-reverse pairs corresponding

to reversible enzyme-substrate complex formation. Unsurprisingly, these subnetworks can

never give rise to an instability when considered separately or mutually mixed. The remaining

three subnetworks do not include any reverse steps; the first one involves phosphorylation of B

combined with dephosphorylation of B1, the second involves phosphorylation of B1 together

with dephosphorylation of B2, the third one involves activation of A and deactivation of A�.

Each of them taken separately is also stable. In fact, the only unstable subnetwork (in the sense

of possessing a negative principal minor βℓ and therefore a positive matrix feedback, see sec-

tion Methods) is the combination of first and second phosphorylation, which is exactly the

subnetwork found in our earlier work [33] to generate bistability. It is also straightforward to

find out that the simplest way of obtaining an oscillatory instability emerging via Hopf

Fig 2. Network diagram of the two-stage model of the MAPK cascade. The oscillatory subnetwork is indicated by thick lines.

https://doi.org/10.1371/journal.pone.0178457.g002
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bifurcation is to combine all three irreversible elementary subnetworks, in other words, to

combine the irreversible Stage 2 possessing positive feedback with the irreversible Stage 1 that

provides for suitable negative feedback. This oscillatory subnetwork is indicated in Fig 2 by

thick lines. Adding any of the six equilibrium subnetworks to the double-phosphorylation sub-

network dose not provide negative feedback leading to oscillations.

However, the irreversible form of the model still possesses 9 effective dynamical variables,

which makes further analysis cumbersome. By arguments analogous to those in [33] this

scheme can be significantly reduced while keeping its oscillatory properties by merging the

steps (3a) and (3b) and assuming that the activation/deactivation enzymes D1, D2 and the

phosphatase C are in pool condition. This implies first order activation/deactivation as well as

first order dephosphorylation of B2 to B1 and B1 to B. As a result, we obtain the simplified

mechanism found in Table 3 and the corresponding reaction network is shown in Fig 3. The

rate coefficients are essentially those of the forward steps in the reversible reactions in the orig-

inal network with included concentrations of the pool species.

Dynamics of the minimal oscillating subnetwork is described by

dx1

dt
¼ k6x6 � k7x1 � k1x1x2 þ k2x4; ð12Þ

dx2

dt
¼ k5x3 � k1x1x2; ð13Þ

dx3

dt
¼ k2x4 � k3x1x3 þ k4x5 � k5x3; ð14Þ

dx4

dt
¼ k1x1x2 � k2x4; ð15Þ

dx5

dt
¼ k3x1x3 � k4x5; ð16Þ

dx6

dt
¼ k7x1 � k6x6: ð17Þ

where x1, x2, x3, x4, x5, and x6 stand for [A�], [B], [B1], [A�B], [B2], and [A], respectively. There

are two conservation equations for various forms of the two types of kinases,

Atot ¼ x1 þ x4 þ x6 ; ð18Þ

Btot ¼ x2 þ x3 þ x4 þ x5 : ð19Þ

Table 3. The minimal oscillatory mechanism of the MAPK cascade.

No. Reaction Reaction rate

(1) B + A*! A*B v1 = k1[A*][B]

(2) A*B! A* + B1 v2 = k2[A*B]

(3) B1 + A*! B2 + A* v3 = k3[A*][B1]

(4) B2! B1 v4 = k4[B2]

(5) B1! B v5 = k5[B1]

(6) A! A* v6 = k6[A]

(7) A*! A v7 = k7[A*]

https://doi.org/10.1371/journal.pone.0178457.t003
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Decomposition of the minimal system at steady state yields only three elementary subnet-

works, E1 includes reactions 6, 7 (activation/deactivation), E2 includes reactions 1, 2 and 5

(first phophorylation/second dephosphorylation), E3 includes reactions 3 and 4 (second pho-

phorylation/first dephosphorylation). The 2-dimensional face of the cone formed by E2 and E3

constitutes the minimal bistable system [33] and coupling of E1 contributes to negative feed-

back necessary for oscillations. The steady state cone has very simple structure by being a

three-dimensional open simplicial cone. Below we first use numerical analysis [43, 44] to show

bifurcation behavior and transitions from bistable to oscillatory dynamics and focus on

explaining the nature of oscillations by using the classification of chemical oscillators [40, 41].

Then we show that the steady states can be found analytically in kinetic parametrization and

used to partly construct the bifurcation diagram and finally we use stability analysis in convex

parameters to prove the presence of a Hopf bifurcation.

Numerical bifurcation analysis and classification of oscillations

Any steady state reaction vector v0 = v(x0) of Eqs (12)–(17) can be expressed as a non-negative

linear combination of E1, E2 and E3 (see Eq (3)):

Eα ¼

0 0 1=3

0 0 1=3

0 1=2 0

0 1=2 0

0 0 1=3

1=2 0 0

1=2 0 0

2

6
6
6
6
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1
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1
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3
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6
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1

0

B
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@

1

C
C
C
C
C
C
C
C
C
C
C
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¼ vðx0Þ; ð20Þ

The stoichiometric network theory indicates that only combination of E2 and E3 provides an

Fig 3. Network diagram of the minimal oscillatory MAPK subnetwork.

https://doi.org/10.1371/journal.pone.0178457.g003
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unstable subnetwork, and there is one negative principal minor β3 corresponding to the spe-

cies A�, B and B1. Those species should have small concentrations relative to others for the

steady state to be unstable. Guided by this analysis, for numerical calculations we can arbi-

trarily choose α2 = α3 = 1 and x0
1
¼ x0

2
¼ x0

3
¼ 0:1 nM; x0

4
¼ x0

5
¼ 1 nM. Eq (20) implies that

the values of rate coefficients of the first five reactions are k1 = 1/3 × 102 nM−1s−1, k2 = 1/3 s−1,

k3 = 50 nM−1s−1, k4 = 1/2 s−1, k5 = 1/3 × 101 s−1 and from Eq (19) we obtain Btot = 2.2 nM. We

assume these parameters to be fixed. Depending on the type of parametrization, we choose a

pair of free parameters: i) for the kinetic parametrization we additionally fix k7 at 0.7 s−1 while

Atot and k6 are allowed to vary, ii) for the convex parametrization α1 and x0
6

are the free param-

eters. The choice of k6 is motivated by step 6 being the activation of the top tier enzyme

MAPKKK, which is initialized by an externally controlled ligand while Atot specifies the total

amount of MAPKKK available. The choice of free convex parameters is complementary, α1

controls the coupling of inactive MAPKKK to the unstable subnetwork and x0
6

is the amount

of inactive MAPKKK available. Kinetic parameters are used in numerical calculations and also

to analytically express steady states, while convex parameters are useful for analysis proving

the presence of oscillations and, in addition, provide for guidance and insight.

In terms of convex parameters, it is convenient to view the system’s steady state as a mixture

α1E1 + E2 + E3. The steady state is stable when α1 is large enough due to strong negative feed-

back holding the unstable subnetwork back, but a Hopf bifurcation occurs as α1 is decreased

and the unstable subnetwork becomes dominant, resulting in emergence of oscillations. Even-

tually, when α1 approaches zero oscillations are lost.

Conditions for oscillatory behavior are indicated by a two-parameter bifurcation diagram

in the plane of k6 and Atot shown in Fig 4. As expected, there is a cusp-shaped region of bist-

ability delimited by two branches of saddle-node bifurcation curves meeting at a cusp point.

There is also an adjacent region of oscillations in the upward direction delimited by two curves

of Hopf bifurcation making for the well-known cross-shaped phase diagram. The two

branches of the Hopf bifurcation terminate at the saddle-node curve via Bogdanov-Takens

points located very near the cusp. Oscillations occur mostly within the region delimited by the

Hopf curves, although strictly speaking, there is a narrow belt of oscillations coexisting with

one stable steady state surrounding the main oscillatory region due to a subcritical Hopf bifur-

cation [45]. Notably, the oscillatory region is delimited to values of k6 markedly smaller than

the fixed value of k7 = 0.7 s−1 signifying that the activation of A must be slower than the deacti-

vation of A�. This observation points to a more general feature implied by the negative minor

β3 for the unstable subnetwork: occurrence of any instability requires the steady state values of

A�, B and B1 to be small relative to other species. More specifically, x0
1

for A� must be less than

x0
6

for A, which by virtue of Eq (20) implies k6=k7 ¼ x0
1
=x0

6
< 1. The oscillatory region disap-

pears as k6 approaches zero. In this limit only unique stable steady state occurs but bistability

would be obtained if both k6 and k7 were vanishing.

To analyze the nature of oscillatory dynamics, we choose a sample point within the corre-

sponding region from Fig 4. The oscillatory waveform is shown in Fig 5. Using the classifica-

tion of chemical oscillators [41, 42] we can determine the role of species played in forming the

oscillations (for a brief account see section Methods). Firstly, species essential and nonessential

for the oscillations must be distinguished. There are several methods available, but the most

straightforward one, applicable when a mechanism given, is to fix concentration of a selected

species and find out whether oscillations in the modified network can be recovered. If so, the

species is nonessential. Note that fixing a species’ concentration means that the species is buff-

ered or set to a pool condition, nonetheless it is still present in the mechanism.
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The species with small concentrations as required by the negative principal minor β3 (i. e.,

B, B1, A�) are always essential. By applying the fixing method to the other species the resulting

classification is as follows: i) A is nonessential and may be assumed in pool condition, as

already assumed for D1, D2 and C, ii) the other two species play a mutually complementary

role, if B2 is fixed and A�B is kept as dynamical variable, oscillations are recovered and vice

versa. Thus both B2 and A�B are essential for oscillations but only one of them suffices as

dynamical variable at a time.

Next, based on Fig 5 the essential species can be classified by the method of mutual phase

shifts. The low-concentration species are arranged in two groups, B and B1 are oscillating in-

phase, whereas A� is oscillating anti-phase (i.e., shifted by approximately half a cycle). The

large-concentration species B2 and A�B are mutually anti-phase. At the same time, B2 is

advancing B and B1 but delaying A�, whereas A�B has just the opposite phase shift. These

Fig 4. Bifurcation diagram in the parameter plane Atot vs k6. Values of fixed parameters are given in the text. Blue curve—saddle-node

bifurcation delimiting region of three steady states, black curve—Hopf bifurcation, red square—Bogdanov-Takens point.

https://doi.org/10.1371/journal.pone.0178457.g004
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observations suggest that the species B, B1 are the autocatalytic species, A� is the exit (direct

inhibition, type Y) species and either B2 or A�B or both simultaneously play the role of the neg-

ative feedback (type Z) species. Importantly, phase shift signatures can be taken as a measure

of qualitative agreement between model/mechanism and experiments.

An interesting feature of the MAPK mechanism is that, unlike in many other chemical

oscillators [40], there is no cycle that would mutually connect the autocatalytic species B and

B1 with no other species in the cycle. As already pointed out in our previous work [33], there is

a topological feature in the network called competitive autocatalysis that is the central point

contributing to positive feedback. Namely, type X species B and B1 compete for the type Y spe-

cies A�. Using the identification of a positive feedback subnetwork and the indentification of

essential species, the self-accelerating effect can be explained by carefully examining the phase

relations and oscillatory amplitudes of species shown in Fig 5. For the sake of clarity, let us ini-

tially assume that parameters are chosen so that activation/deactivation steps 6 and 7 are

turned off, the system is in a bistable region and the current steady state is fully phosphory-

lated, i.e., B and B1 are low and B2 is high. When the concentration of B is sufficiently increased

above its steady state level, A� is consumed by rapid step 1. Because step 2 is much slower, the

complex A�B tends to accumulate so that B1 and A� form by step 2 only after a delay. The

available B1 competitively consumes A� via step 3 and is reformed from B2 by the slow step 4.

However, because concentration of B2 is high, the rate of formation of B1 is significant. There-

fore all three steps 3, 4 and 5 run at a high rate, successively recycling B1 and B so that they

accumulate at the expense of B2 until A� is depleted. In the absence of negative feedback made

possible by activation/deactivation steps 6 and 7, this process eventually leads to accumulation

of B while both B1 and B2 maintain low level. Thus a switch from phosphorylated to unpho-

sphorylated steady state occurs. A reverse switch is achieved by adding A�, which triggers the

Fig 5. Oscillatory dynamics in the minimal model. Parameters: k6 = 0.1 s−1, Atot = 1.7 nM, other

parameters are given in the text.

https://doi.org/10.1371/journal.pone.0178457.g005
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phosphorylation process. Thus positive feedback is present within the group of species B, B1

and A� as suggested by the principal minor β3.

If the steps 6 and 7 are included, then the competitive autocatalysis is controlled by revers-

ible conversion of A to A� and oscillations can occur. Under these conditions there is an alter-

nation of the autocatalytic phase and an inhibitory phase. During the autocatalytic phase B is

accumulated and toward the end A� and B2 are depleted which brings the autocatalytic growth

of B and B1 to an end. As a result, the rate of step 6 is higher than that of step 7 and thus activa-

tion prevails and A� starts to regenerate. At the same time the complex A�B has become accu-

mulated to the point when the rate of the slow step 2 is significant thereby producing A� and

B1 which immediately recombine via fast step 3 to regenerate B2. During this phase B and B1

are being depleted at an increased pace due to continual supply of A�. Therefore the rate of

step 2 overcomes that of step 1 and concentration of A�B reaches maximum and begins to

decrease. Subsequently, production of the inhibitory species A� ceases as the removal of A� by

step 7 becomes faster than its production by step 6. Thus phosphorylation via steps 2 and 3

diminishes while dephosphorylation via steps 4 and 5 is initiated and a new autocatalytic phase

starts off.

Negative feedback is achieved by coordinated action of the complex A�B (type Z) with the

activated kinase A� (type Y) and is marked by phase delay of A�B with respect to unpho-

sphorylated and mono-phosphorylated kinases B and B1 (type X species). As mentioned ear-

lier, even if B2 is buffered, the oscillations are preserved. Likewise, if A�B is buffered, the

decisive role of negative feedback species is taken over by B2. These ultimately simplified sub-

oscillators are a direct consequence of the oscillatory clockwork described above but represent

probably too crude an approximation of the original MAPK mechanism.

A complementary view of the role of species in oscillations is provided by looking at the

dependence of steady state values on specific parameters near the Hopf bifurcation and in the

range of multiple steady states. In Fig 6 we plot the physically meaningful (i.e., nonnegative)

steady states in dependence on Atot for two fixed values of k6. The indicative property is the

increase/decrease (or upregulation/downregulation) of steady state values of the essential spe-

cies as Atot is increased [40]. The switch in Fig 6A is downwards for A�B, B and B1 and

upwards for A� and B2. Consistently, the corresponding curves in Fig 6B are sloping down/up

close to the Hopf bifurcation. The low-concentration species are separated to downregulating

(B, B1) and upregulating (A�) with respect to Atot, indicating their opposing role. The key fea-

ture in high-concentration species is downregulation of A�. It is in fact a negative self-regula-

tion, which is a distinguishing property of negative feedback (type Z) species [40]. B2 is

upregulating, i.e., complementary to A�B. However, B2 is downregulating with respect to itself

(not shown), marking it as the second type Z species. In addition, downregulation with

increasing Atot of B and B1 indicates their autocatalytic role and upregulation of A� its inhibi-

tory role [41]. Thus the concentration shift analysis is leading to the same results as the phase

shift analysis.

Kinetic parametrization

At steady state, Eqs (12)–(17) together with the conservation Eqs (18) and (19) can be solved

analytically using software for symbolic manipulations (Matlab, Maple) to yield expressions

for steady state concentrations, see Appendix for the corresponding expressions. There are

three independent solutions xðiÞj ; x
ðiiÞ
j ; xðiiiÞj ; j ¼ 1; � � � ; 6. Upon discarding the complex and

negative roots, the Eqs (31)–(52) show that there are up to three physically plausible steady

states and explicitly specify conditions for the boundary of the region of multiplicity obtained

when any two roots merge, i.e., b2 = 0 or b4 = b2 + b3 or b4 = b2 − b3. An analytical formula
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Fig 6. One-parameter bifurcation diagram. Dependence of the steady state values of all six components

on Atot, (A) k6 = 0.25 s−1, (B) k6 = 0.15 s−1. Other parameters are given in text. Full line—stable, dashed line—

unstable, black square—Hopf bifurcation.

https://doi.org/10.1371/journal.pone.0178457.g006
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expressing conditions for the Hopf bifurcation is obtained by substituting the steady states

into the Jacobian matrix of Eqs (12)–(17) and requiring a pair of complex conjugate eigenval-

ues be pure imaginary. This is more convenient to perform in convex coordinates as shown

below. However, an indication of the presence of oscillations is readily obtained by evaluating

the Jacobian matrix at the cusp point where all three solutions merge into one, i.e., when b2 = 0

and b3 = b4 and calculating eigenvalues for any chosen set of parameters. There are always

three vanishing eigenvalues, two of them because of concentration constraints (Eqs (18) and

(19)) and the third one because of the cusp bifurcation point. The remaining eigenvalues are

either all negative, or one may become positive. The latter is directly pointing to an adjacent

oscillatory region, since when parameters are properly readjusted away from the cusp point,

the bifurcating zero eigenvalue becomes positive so that there is a pair of real positive eigenval-

ues which upon further variation of a parameter become complex conjugate and ultimately

pure imaginary, i.e., a Hopf bifurcation is reached.

Convex parametrization

As outlined in the section Methods, dynamical Eqs (12)–(17) can be reformulated in convex

parameters resulting in

dX1

dt
¼

1

3
a3h1ðX4 � X1X2Þ þ

1

2
a1h1ðX6 � X1Þ; ð21Þ

dX2

dt
¼

1

3
a3h2ðX3 � X1X2Þ; ð22Þ

dX3

dt
¼

1

3
a3h3ðX4 � X3Þ þ

1

2
a2h3ðX5 � X1X3Þ; ð23Þ

dX4

dt
¼

1

3
a3h4ðX1X2 � X4Þ; ð24Þ

dX5

dt
¼

1

2
a2h5ðX1X3 � X5Þ; ð25Þ

dX6

dt
¼

1

2
a1h6ðX1 � X6Þ; ð26Þ

where Xj ¼ xj=x0
j are dimensionless concentrations of respective species scaled with corre-

sponding reference steady state values taken as parameters. For convenience, reciprocal values

are used instead, hj ¼ 1=x0
j . Convex parameters are h1, h2, h3, h4, h5, h6 and α1, α2, α3. In order

to set definite conservation constraints, Atot and Btot are assumed to be fixed and the conserva-

tion equations are

Atot ¼
X1

h1

þ
X4

h4

þ
X6

h6

; ð27Þ

Btot ¼
X2

h2

þ
X3

h3

þ
X4

h4

þ
X5

h5

: ð28Þ

As in the kinetic parametrization, there are up to three non-negative steady states that can be

expressed analytically by formulas analogous to Eqs (31)–(38). However, with the aim of
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determining conditions for emergence of oscillations, it is unnecessary to use all three roots, it

suffices to use any of them as a reference solution, since the system is parametrically overdeter-

mined [34] and every steady state of the system can be reached by variation of the convex

parameters. By virtue of the reparametrization, one of the solutions of Eqs (27) and (28) is sim-

ply Xj = 1, j = 1, � � �, 6. By taking this solution, the Jacobian matrix according to Eq (4) has a

form amenable to algebraic manipulations. In particular, Routh-Hurwitz criterion [38] can be

applied giving the necessary conditions for a Hopf bifurcation in an analytic form. To this end

coefficients of the characteristic polynomial can be expressed in terms of convex parameters

and Routh-Hurwitz determinants [38] can be evaluated. The characteristic equation is in the

form

l
2
ðc0l

4
þ c1l

3
þ c2l

2
þ c3lþ c4Þ ¼ 0 ; ð29Þ

where the roots λj are the eigenvalues. Because of the concentration constraints, two roots are

zero. When a parameter is varied, a Hopf bifurcation from a stable steady state occurs when a

pair of complex conjugate eigenvalues crosses imaginary axis from left to right and the remain-

ing two eigenvalues have negative real parts. This condition is fulfilled when certain inequali-

ties and equalities for the Routh-Hurwitz determinants are met [38], which in our case reads

c0 > 0; c1 > 0; c1c2 > c0c3 and c3ðc1c2 � c0c3Þ � c2
1
c4 ¼ 0 : ð30Þ

The formulae expressing the coefficients cj in terms of the convex parameters are readily avail-

able by using symbolic manipulation software. As an example, here we use Condition (30) for

a specific choice of parameters. As in our previous setting, let h1 = h2 = h3 = 10, h4 = h5 = 1 and

α2 = α3 = 1; the two free parameters are α1 and h6. Fig 7 shows an analytically determined

Hopf bifurcation curve (see Eq (53) in Appendix). Oscillations bifurcate from a stable steady

state as α1 passes from the right to the left through the critical value α1,c corresponding to the

Fig 7. Bifurcation diagram in α1–h6 plane. Analytically determined Hopf bifurcation curve delineates the

plane of the convex parameters into region of oscillations and region of stable steady states.

https://doi.org/10.1371/journal.pone.0178457.g007
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curve. The oscillations vanish via an infinite period as α1 approaches zero, where only bistabil-

ity can occur. Variation of h6 corresponds to variation of Atot due to Eq (27) and variation of

α1 corresponds to variation of k6 and k7 according to Eq (20).

Emergence of oscillations can be interpreted in agreement with our numerical analysis as

follows: when α1 > α1,c the unstable subnetwork E2+E3 is stabilized by strong coupling to the

equilibrium subnetwork E1 but destabilizes the steady state below the critical value of α1. It is

also a straightforward implication of Eq (53) that if α1 = 0, the Routh-Hurwitz criterion is

never satisfied, which bears out earlier findings about minimal bistable system formed solely

by Stage 2.

Discussion

We have carried out analysis leading toward detailed understanding of emerging oscillatory

dynamics in the widely used Huang-Ferrell model of the MAPK signalling, which is based on

detailed mass action kinetics. The methods of stoichiometric network theory and classification

used in this kind of analysis have been previously applied mostly to inorganic chemical oscilla-

tors, but we endeavored to demonstrate their usefulness in the context of biochemical net-

works. The advantage of compactness of the approach using kinetic rate expressions based on

quasi-steady state assumptions, such as saturation kinetic terms, is replaced by readily per-

formed stability analysis when the kinetics of elementary (or quasi-elementary) steps are

retained regardless of the size of network. Systematic tools are available to find dynamically

relevant subnetworks, determine the role of species in the dynamic modes resulting from com-

plex competition of positive and negative feedback and, particularly, to help understand the

nature of oscillatory modes [40, 41].

The Huang-Ferrell model has an in-built feature of taking into account distributive and

avoiding processive phosphorylation. Using the symbols in this work, a processive sequence

would be step 1 followed by an on site second phosphorylation forming A�B1 and subsequently

B2 thus bypassing the steps 2 and 3. It is known that processive phosphorylation cannot have

multiple steady states [46]. By the absence of the processive step, our reduction from the origi-

nal mechanism shown in Table 2 to that in Table 3 preserves the dynamic instabilities despite

neglecting reverse reaction steps. When going back from the reduced model to the original

one, the hysteretic and oscillatory instabilities are preserved. In particular, the delumped com-

plex A�B1 plays a role similar as B2, that is, of type Z species. Also, given the values of convex

parameters, the coupling of reverse reactions may be indifferent to an instability or suppress it

to a variable degree. Recently, a detailed model has been proposed by Rubinstein et al. [47]

that combines both processive and distributive phosphorylation and takes into account an

ordered process, whereby two different sites (tyrosine and threonine) are used sequentially for

the first and second phosphorylation as well as dephosphorylation. They report oscillations of

various types in an isolated Stage 2. A preliminary network analysis using our tools indicates

several unstable subnetworks with topologies involving either processive or distributive steps,

or unique combinations thereof, capable of generating oscillatory instability consistent with

their findings. The specific roles of species elucidating interactions leading to oscillatory

dynamics will be determined in our future work.

When comparing results of this work with earlier analysis of stability and oscillations in the

models of MAPK cascades [8, 11, 15] we would like to point out that in many ways the results

are consistent, but looked upon from different viewpoints. In particular, the conditions for

bistability in a single MAPK tier assuming distributive phosphorylation are described by Mar-

kevich et al. [15] in terms of Michaelis-Menten (polynomial fractions) rate expressions with

the conclusions that bistability is caused by several inhibitory loops: inhibition of the second
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phosphorylation by B, inhibition of the second dephosphorylation by B2, inhibition of the first

phosphorylation and first dephosporylation by B1 and inhibition of both dephosphorylation

steps by B. Of special importance is the competitive inhibition by the monophosphorylated

form B1. These inhibitory effects were introduced in the model and shown to provide bistable

switches. Oscillatory dynamics was then obtained by additional negative feedback loop from

the double phosphorylated product to the top-tier kinase in a three-stage cascade [8] and later

in a two-stage cascade or layers of such cascades [11]. An important aspect of using the mass

action network is that no ad hoc inhibitory loops are needed, all the necessary negative feed-

backs are in-built provided that suitable enzyme-substrate complexes are kept in the network

as independent dynamical variables along with at least one of the enzymes (kinase A� or phos-

phatase C). We chose the kinase to be dynamical variable but the mass action network of a sin-

gle stage is symmetric with respect to both enzymes so their roles could be reversed to observe

bistability.

However, unlike phosphatase, the activated kinase cannot be fixed when the oscillatory

dynamics is to take place within the Huang-Ferrell model. As indicated in numerical calcula-

tions by Qiao et al. [17], in the mass action model Stage I should be added for oscillations.

Here we have examined this aspect rigorously and pointed out that activation/deactivation of

A naturally takes part in oscillatory negative feedback without the need of assuming feedback

on A� by B2. Also, we have shown that a crucial feature of the network resulting in positive

feedback is competitive autocatalysis, which in essence is formed by competition of the sub-

strates B and B1 for the activated kinase A� with the additional recycling pathway from B2 to

B1 to B. In the oscillatory mode B2 and the complex A�B serve as temporary buffers, which

implies a separation of the steps into fast and slow, in particular, the first phosphorylation

cycle ratio k2/k5 is less than the ratio k3/k4 for the second cycle. These observations are mostly

consistent with previous work based on the Michaelis-Menten rate expressions but go further

by classifying the species and elucidating their role in oscillations simply by analyzing and ulti-

mately reducing the detailed model rather than starting with the condensed Michaelian kinetic

form and rationalizing its extensions.

Biological significance of the oscillatory mode in MAPK cascades is yet to be understood.

Nonetheless, with the growing body of experimental evidence of oscillations in MAPK signal-

ling, the conditions for occurrence of periodic dynamics in various models of MAPK signal-

ling need to be checked and explained. Using reaction networks theory as presented in this

work has the advantage of having systematic tools for explaining the oscillations as being

caused by a core subnetwork possessing a proper combination of positive and negative feed-

back. Such subnetwork is rather straightforward to identify within possibly much larger net-

work, provided that mass action/power law kinetics apply.

As a final remark, let us note that the stoichiometric constraints embodied in the collection

of elementary subnetworks Ej can be conveniently used in determining a subset of the rate

coefficients and/or steady state values provided that another subset is known from measure-

ments or otherwise by using linear optimization targeted at the Hopf oscillatory instability

applied to the convex cone. Our recent results provided unknown rate coefficients in the

mechanism of catalase-glucose-oxidase oscillator that yield dynamics consistent with the

observed oscillations and hold promise for other enzyme systems such as the MAPK.

Appendix

Part1—Equations for kinetic parametrization

Steady states of Eqs (12)–(17) together with the conservation Eqs (18) and (19) are given by

the following expressions. There are three independent solutions
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xðmÞj ; m 2 ½ðiÞ; ðiiÞ; ðiiiÞ�; j ¼ 1; � � � ; 6�,

xðmÞ1 ¼ k6xðmÞ6 =k7; ð31Þ

xðmÞ2 ¼
z5½x

ðmÞ
6 �

2

z6

þ
z7xðmÞ6

k4k5k7

� Atot
k2

k5

þ 1

� �

þ Btot; ð32Þ

xðmÞ3 ¼ ðAtotk2 � k2xðmÞ6 ðk6=k7 þ 1ÞÞ=k5; ð33Þ

xðmÞ4 ¼ Atot � ðk6=k7 þ 1ÞxðmÞ6 ; ð34Þ

xðmÞ5 ¼ � z5½x
ðmÞ
6 �

2
� Atotk2k3k6k7xðmÞ6

� �
=z6; ð35Þ

xðiÞ6 ¼ � b4; ð36Þ

xðiiÞ6 ¼ � ðb3 þ b2Þ; ð37Þ

xðiiiÞ6 ¼ � ðb3 � b2Þ; ð38Þ

where the coefficients bj are defined as

b1 ¼

(
3

2
a1a2 � a3

2
þ a3

� �2

þ ða1 � a2
2
Þ

3

" #
1

2

� a3
2
þ

3

2
a1a2 þ a3

)
1

3
;

ð39Þ

b2 ¼ iðb1 þ ða1 � a2
2
Þ=b1Þ

ffiffiffi
3
p

=2; ð40Þ

b3 ¼ a2 þ b1=2 � ða1 � a2
2
Þ=ð2b1Þ; ð41Þ

b4 ¼ a2 � b1 þ ða1 � a2
2
Þ=b1: ð42Þ

Here b2 contains the imaginary unit i ¼
ffiffiffiffiffiffiffi
� 1
p

and the coefficients aj read

a1 ¼ z3=ð3z2Þ; ð43Þ

a2 ¼ z1=ð3z2Þ; ð44Þ

a3 ¼ z4=ð2z2Þ; ð45Þ
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with zj being functions of the kinetic parameters:

z1 ¼ k1k2k4k6k2
7
þ k1k2k4k2

6
k7 þ k1k4k5k6k2

7
þ

k1k4k5k2
6
k7 � Atotk1k2k3k2

6
k7;

ð46Þ

z2 ¼ k1k2k3k3
6
þ k1k2k3k7k2

6
; ð47Þ

z3 ¼ k2k4k5k3
7
þ k2k4k5k6k2

7
� Atotk1k2k4k6k2

7
�

Atotk1k4k5k6k2
7
þ Btotk1k4k5k6k2

7
;

ð48Þ

z4 ¼ Atotk2k4k5k3
7
; ð49Þ

z5 ¼ k2k3k6ðk6 þ k7Þ; ð50Þ

z6 ¼ k4k5k2
7
; ð51Þ

z7 ¼ k2k4k6 þ k2k4k7 þ k4k5k6 þ k4k5k7�

Atotk2k3k6:
ð52Þ

Part2—Hopf bifurcation condition in convex parametrization

The equality part of the Condition (30) for a specific choice of parameters h1 = h2 = h3 = 10,

h4 = h5 = 1 and α2 = α3 = 1 reads

83109575

648
a1;c þ

8127230

243
a1;ch6 þ

38535875

216
a2

1;c þ
74379835

1296
a2

1;ch6 þ
334417

81
a2

1;ch
2

6
þ

1923125

36
a3

1;c þ
809375

36
a3

1;ch6 þ
1300475

432
a3

1;ch
2

6
þ

3500

27
a3

1;ch
3

6
�

9738025

243
¼ 0 :

ð53Þ

The Hopf bifurcation from a stable steady state occurs for a given h6 as α1 passes from right to

left through the critical value α1,c.
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