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Abstract

Introduction: Congenital hypothyroidism affects metabolic and thyroid programming, 
having a deleterious effect on bodyweight regulation promoting metabolic diseases. This 
work aimed to demonstrate the development of type 2 diabetes mellitus (T2D) in animals 
with congenital hypothyroidism, only by the consumption of a mild hypercaloric diet in 
the extrauterine stage.
Methods: Two groups of female Wistar rats (n  = 9): euthyroid and hypothyroid were used. 
Hypothyroidism was induced by a thyroidectomy with parathyroid reimplantation. Male 
offsprings post-weaning were divided into four groups (n  = 10): euthyroid, hypothyroid, 
euthyroid + hypercaloric diet, and hypothyroid + hypercaloric diet. The hypercaloric diet 
consisted of ground commercial feed plus 20% lard and was administered until postnatal 
week 40. Bodyweight and energy intake were monitored weekly. Also, metabolic 
and hormonal markers related to cardiovascular risk, insulin resistance, and glucose 
tolerance were analyzed at week 40. Then, animals were sacrificed to perform the 
morphometric analysis of the pancreas and adipose tissue.
Results: T2D was developed in animals fed a hypercaloric diet denoted by the presence 
of central obesity, hyperphagia, hyperglycemia, dyslipidemia, glucose tolerance, insulin 
resistance and hypertension, as well as changes in the cytoarchitecture of the pancreas 
and adipose tissue related to T2D. The results show that congenital hypothyroid animals 
had an increase in metabolic markers and an elevated cardiovascular risk.
Conclusions: Congenital hypothyroid animals develop T2D, having the highest metabolic 
disturbances and a worsened clinical prognosis than euthyroid animals.

Introduction

Thyroid hormones participate in several processes 
related to growth, development, cell differentiation, and 
metabolism in all cells from embryonic development to 

adulthood (1). The thyroid hormone deficiency during 
the prenatal stage causes congenital hypothyroidism that 
alters thyroid and metabolic programming. This idea is 
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supported by the fetal origin of the metabolic diseases 
hypothesis (2, 3). Thus, metabolic diseases have their origin 
during the early life stages when the fetal physiological 
systems program the metabolism (4), and the extrauterine 
conditions are responsible for modulating the expression 
of the epigenetic changes (5, 6).

Some authors speculate that congenital 
hypothyroidism has an association with type 2 diabetes 
mellitus (T2D) development (7), but until now neither 
in rats nor in humans, this hypothesis has been proved. 
In humans, some meta-analyses reveal an association 
between hypothyroidism, obesity, and dyslipidemia; 
however, it is necessary for more studies because 
multifactorial situations distort the association between 
the variables (8, 9, 10, 11). On the other hand, previously 
in animal models, we reported the increased risk to 
develop T2D in congenital hypothyroid rats because they 
develop metabolic syndrome even when they are fed 
with a standard-balanced diet (12, 13, 14). The mentioned 
studies reveal that congenital hypothyroidism modifies 
the metabolic programming promoting dyslipidemia and 
hyperleptinemia with a change in the thyroid gland’s 
function (12, 15). These conditions could be seen severely 
increased when a hypercaloric diet is administered because 
it induces epigenetic methylation patterns in adipocyte-
associated metabolic dysfunction (16).

For all the above-mentioned, this work aims to 
demonstrate that congenital hypothyroidism modifies 
metabolic programming and promotes T2D development 
when the animals consume a mild obesogenic diet in the 
extrauterine stage also to determine if this perturbation 
worsens the clinical prognosis compared to the euthyroid 
group.

Materials and methods

Experimental design

Eighteen virgin Wistar female rats were conditioned in 
controlled conditions (12 h light:12 h darkness cycle, 
temperature: 21 ± 1 °C) and maintained with food and 
water ad libitum. After a week of conditioning, animals 
were randomly divided into two mothers groups (n = 9): (i) 
euthyroid and (ii) hypothyroid.

Hypothyroidism was induced surgically by a 
thyroidectomy with parathyroid reimplantation in the 
hypothyroid group as previously described (12, 13, 14, 
17). Seven days post-surgery, three females were placed 
with one male for mating. One day after birth, eight 
pups were randomly assigned to their corresponding 

euthyroid or hypothyroid mother during lactation. Two 
weeks after weaning, male offsprings were divided into the 
following experimental groups (n = 10): (ii) euthyroid, (ii) 
hypothyroid, (iii) euthyroid + hypercaloric diet, and (iv) 
hypothyroid + hypercaloric diet. Then, they were placed 
into individual cages (20 × 30 × 18 cm), with access to water 
and food ad libitum for 40 weeks. The hypercaloric diet was 
prepared by mixing grounded commercial feed (LabDiet, 
5001) with 20% lard. The composition of the diet is shown 
in Table 1.

Bodyweight and energy intake were measured weekly 
until the end of the experiment. The systolic blood pressure 
was measured at week 40 in conscious rats by a non-invasive 
method with a digital plethysmograph coupled to the rat 
tail (Le 5002, Panlab–Harvard apparatus). The number 
of deaths was quantified throughout the experiment to 
obtain the survival percentage.

Determination of glucose tolerance and insulin 
resistance

Tests were performed at the beginning of week 40 as 1 per 
day, after 6 h of fasting. For the insulin resistance test, 
each animal received 0.75 IU/kg of rapid-acting insulin 
intraperitoneally. Meanwhile, for the glucose tolerance 
test, they received 1.8 g/kg of dextrose intraperitonally. 
After that, blood glucose levels were monitored at 0, 30, 60, 
and 120 min using a glucometer (Abbott®).

Metabolic and hormonal parameters

Two days after the glucose homeostasis test, animals were 
fasted for 6 h, and blood samples from the tail vein were 
obtained, centrifuged at 30,000 g for 20 min to obtain 
serum, which was individually kept at −20°C until assay. 
Metabolic parameters such as glucose, triglycerides, 
cholesterol, HDL-c (high-density lipoprotein), LDL-c 
(low-density lipoprotein), VLDL-c (very low-density 
lipoprotein) were measured using RANDOX® kits. Besides, 

Table 1 Composition of the purine diet and the hypercaloric 
diet added with 20% lard.

Component of the diet Purine diet Hypercaloric diet (%)

Proteins 24.1 19.28
Carbohydrates 57.94 46.35
Lipids 5 24
Crude fiber 5.2 4.16
Minerals 6.9 5.52
Sodium 0.39 0.31
Energy supply (kJ/g) 16.73 20.92
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the Castelli index I and II was obtained using the following 
calculations (18):

Castelli index I
Total cholesterol

HDL

Castelli index II
LDl-c

HDL

=

=
--c

Hormonal profile was assessed using ELISA commercial kits 
for insulin (LINCO®), T3 (DIAGMEX®), T4 (DIAGMEX®), and 
leptin (Millipore®). Also, the insulin sensitivity index (ISI) 
(19) and homeostatic model assessment of insulin resistance 
(HOMA-IR) were calculated as previously described (20, 21):

ISI
fasting glucose fasting insulin

=
´
1

HOMA-IR
fasting glucose fasting

=
´ insulin

22 5.

The values obtained in the determinations were compared 
with cut-off values for metabolic syndrome, insulin 
resistance, and T2DM as previously reported (22, 23).

Histological analysis

At the end of week 40, the animals were sacrificed with 
monosodic pentobarbital (35 mg/kg intraperitoneally), 
and the adipose tissue was dissected and weighted to 
determine adiposity percentage. A portion of the pancreas 
and visceral adipose tissue was fixed in a 10% buffered 
formalin for 48 h and was embedded in paraffin. Five-
micrometer section slices for the pancreas and 20 µm 
for visceral adipose tissue were obtained with a standard 
microtome (LEICA RM 2145). The slices were stained with 
hematoxylin–eosin, and the photomicrographs acquired 
with the Nikon-50i microscope were analyzed with ImageJ 
software that quantified the Langerhans islets per 1 cm2 
and counted the cellularity of each one. Also, it quantified 
adipocytes per+ 1 cm2 and its diameter.

Statistical analysis

All the variables except the adiposity levels and survival 
percentage are presented as the mean ± s.e.m., and they 
were evaluated by repeated-measure two-way ANOVA and 
Student-Newman-Keuls post hoc test. It considered the diet 
and thyroid state as factors. The adiposity levels represent 
the median ± interquartile spaces. The adiposity levels 
and area under the curve (AUC) were evaluated by the  

Kruskal–Wallis test. Finally, the survival percentage was 
measured by test Log-Rank (Mantel-Cox). P < 0.05 was 
considered statistically significant.

Results

The composition of the standard and the hypercaloric diet 
added with 20% lard is shown in Table 1. It is noted that 
the hypercaloric diet provides a higher energy content, 
mostly given by lipid content.

Figure 1 presents the results of the bodyweight (panel A), 
energy intake (panel B), as well as representative photographs 
of the animals at the end of the treatment (panels C–F). 
The hypothyroid animals fed with a chow standard diet 
presented lower bodyweight and energy intake compared 
with the other groups. Euthyroid animals fed a 40-week 
hypercaloric diet had a mild increase in their bodyweight 
with a mild reduction in their energy intake. Meanwhile, the 
congenital hypothyroid animals with the hypercaloric diet 
had a marked increase in their bodyweight since week 34 of 
treatment with an increase in their energy intake, presenting 
central obesity. Finally, panel G shows the animals' survival 
percentage during the experiment. The euthyroid animals 
fed chow and a hypercaloric diet had a 0% mortality rate. 
However, the hypothyroid group had a 2.94% mortality, 
and the hypothyroid fed with a hypercaloric diet group had 
27.15% mortality. The necropsy analysis showed that most 
of the congenital hypothyroid animals that died presented 
fulminant acute myocardial infarction.

Table 2 shows that congenital hypothyroidism 
develops metabolic syndrome by the presence of 
hyperglycemia, hypertriglyceridemia, hypercholesterolemia, 
hyperleptinemia, hyperinsulinemia, and insulin resistance 
with an increase in cardiovascular risk without systolic 
pressure alteration, compared with euthyroid animals. 
Meanwhile, the hypercaloric diet causes hypertension and 
it enhances all these markers. These results were associated 
with T2D development. Also, the congenital hypothyroid 
animals fed a high-fat diet presented the highest levels in all 
metabolic and hormonal markers with the highest elevated 
cardiovascular risk. Congenital hypothyroidism caused a 
reduction in the levels of T3 and T4, while the hypercaloric 
diet did not modify the levels of thyroid hormones. Also, 
in previous studies, we have reported the status of thyroid 
function at various stages of development using the same 
experimental model as the one used for the present work. The 
results obtained show that thyroid function in congenital 
hypothyroid pups remains low throughout development  
(12, 13, 14).
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Figure 1
Bodyweight (A) and energy intake (B) during 42 weeks after weaning. The bar graphs represent the area under the curve for each of the treatments. Data 
represent the mean ± s.e.m. *P < 0.05 vs the euthyroid group. RM-two-way ANOVA and Student–Newman–Keuls post hoc. The AUC was evaluated by the 
Kruskal–Wallis test (P < 0.05; a ≠ b ≠ c) equal letters indicate that there is no difference between groups, and different letters indicate statistical 
difference. Graph G represents the survival percentage during the treatment, *P < 0.05 log-rank (Mantel-Cox) test. The photographs are representative of 
the euthyroid (C), hypothyroid (D), euthyroid + hypercaloric diet (E), and hypothyroid + hypercaloric diet (F) at the end of week 40.
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The functional test of the endocrine pancreas is shown 
in Fig. 2, hypothyroid animals fed a chow diet presented 
insulin resistances without changes in the glucose 
tolerance and the endocrine pancreas morphometrical 
study. However, animals fed a hypercaloric diet had insulin 
resistance, glucose tolerance, reduction in the number of 

Langerhans islets, and an increase of its cellularity; moreover, 
the most affected was the congenital hypothyroid group.

The adiposity levels and the morphological analysis 
of the adipose tissue are shown in Fig. 3. Congenital 
hypothyroidism generated lower adiposity levels, and the 
adipose tissue presented a greater number of adipocytes 

Table 2 Metabolic, hormonal, insulin resistance, and cardiovascular risk markers.

Euthyroid Hypothyroid
Euthyroid + hypercaloric 

diet
Hypothyroid + hypercaloric 

diet

Glucose (mg/dL) 108.09 ± 4.37a 144.21 ± 3.26b 199.41 ± 2.04b 235.15 ± 3.63c

Triglycerides (mg/dL) 128.43 ± 6.08a 215.16 ± 13.36b 282.45 ± 10.09b 325. 01 ± 28.02b

Cholesterol (mg/dL) 135. 43 ± 2.40a 178.15 ± 7.64b 193.32 ± 4.12b 218.13 ± 8.17c

HDL-c (mg/dL) 32.09 ± 2.87a 42.96 ± 1.54a 41.60 ± 0.21b 51.37 ± 0.80b

LDL-c (mg/dL) 52.71 ± 1.09a 70.82 ± 3.21b 77.40 ± 0.71c 84.70 ± 1.59d

VLDL-c (mg/dL) 32.06 ± 4.12a 43.07 ± 3.13a 47.07 ± 1.64b 51.51 ± 2.34b

NEFA (mmol/L) 0.390 ± 0.01a 0.386 ± 0.04b 0.558 ± 0.15b 0.334 ± 0.04a

Castelli I index 1.95 ± 0.93a 5.20 ± 0.86b 7.18 ± 0.28c 11.87 ± 0.67d

Castelli II index 0.49 ± 0.06ª 2.73 ± 0.87b 4.87 ± 0.28c 7.76 ± 0.21d

T3 pups day 21 (ng/dL) 121.85 ± 0.11a 95.36 ± 0.09b – –
T4 pups day 21 (µg/dL) 10.32 ± 0.13a 8.12 ± 0.18b – –
T3 (ng/dL) 104.34 ± 5.37a 83.78 ± 3.89b 106.46 ± 1.68a 80.34 ± 2.87b

T4 (µg/dL) 9.20 ± 0.14a 7.50 ± 0.08b 9.06 ± 0.20a 7.36 ± 0.29b

Leptin (ng/dL) 2.27 ± 0.02a 3.17 ± 0.05b 4.28 ± 0.02a 5.56 ± 0.03b

Insulin (ng/dL) 0.84 ± 0.02a 2.07 ± 0.01b 3.89 ± 0.05a 4.13 ± 0.07b

HOMA-IR 1.67 ± 0.2a 3.08 ± 0.12b 4.77 ± 0.32c 6.06 ± 0.12d

ISI 0.0095 ± 0.0001ª 0.0028 ± 0.0002b 0.0013 ± 0.0001c 0.0011 ± 0.0004d

Systolic blood pressure 
(mmHg)

118.76 ± 5.43a 123.75 ± 8.45a 144.98 ± 7.95b 186.98 ± 5.56c

Data represent the mean ± s.e.m. Two-way ANOVA and Student–Newman–Keuls post hoc; a≠b≠c≠d, P < 0.05, equal letters indicate that there is no 
difference between groups, and different letters indicate the statistical difference.

Figure 2
Insulin resistance (A) and glucose tolerance (B) at week 40, the bar graphs represent the AUC. Photomicrography of pancreas stained with hematoxylin–
eosin from euthyroid (C), hypothyroid (D), euthyroid + hypercaloric diet (E), and hypothyroid + hypercaloric diet (F) 40×. The horizontal line represents 50 
µm. The presence of pancreatic acini (PA) and islets of Langerhans (IL) are observed. In addition, the quantification of the number of islets (G) and 
cellularity in the islets (H) is presented. Data represent the mean ± s.e. (n  = 7); a ≠ b ≠ c ≠ d P < 0.05, equal letters indicate that there is no difference 
between groups, and different letters indicate the statistical difference. RM two-ANOVA and Student–Newman–Keuls post hoc to insulin resistance, 
glucose tolerance, number of islets, and cellularity in islets. The AUC by Mann–Whitney U-test.
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per cm2 and greater diameter compared to the euthyroid 
control group. When administering a hypercaloric diet, 
the adiposity levels increased and the morphological 
analysis showed a reduction in the number of adipocytes 
per cm2 with a considerable increase in the cell diameter, 
the changes were exacerbated in hypothyroid animals.

Discussion

 Thyroid hormone (T3) is one of the responsible hormones 
for bodyweight regulation because it modulates long-
term bodyweight programs related to the leptin and 
insulin pathways (15, 24, 25). Rats fed a hypercaloric diet 
for 40 weeks had the highest hyperleptinemia levels with 
physiological leptin resistance. But usually, the leptin 
resistance can only be demonstrated by a molecular 
evaluation of hypothalamic SOCS3 overexpression because 
energy intake does not change (14, 15). The results obtained 
show that a mild disturbance in the lipid contents of the 
diet produces metabolic damage, causing dyslipidemia, 
hyperleptinemia, and alterations in cardiovascular risk 
markers as Castelli index I and II. All of them indicated a 
cardiovascular and atherogenic risk increase.

The hypercaloric diet alters glycemic regulation, 
causing hyperglycemia, hyperinsulinemia, high levels of 
HOMA-IR index, insulin resistance, and glucose tolerance. 

Also, the histological analysis of the pancreas revealed 
cytomorphological alterations related to the diabetic 
state (a decrease in the number of Langerhans islets with 
an increase in its cellularity). Hypercaloric diet caused 
hyperglycemia and hyperleptinemia that stimulated 
β-cell proliferation (26), this compensatory mechanism 
underwent structural modifications in β-cell in response to 
the circulating hyperglycemia, increasing insulin secretion. 
This feedback loop caused cellular hyperplasia (27). When 
hyperglycemia, hyperinsulinemia, and circulating free-
fatty acids persist for a long period, it enhances the oxidative 
stress process and cell death in the pancreatic β-cells. If the 
pancreatic tissue lost its physiological function, it generates 
glucose intolerance, insulin resistance, and finally, the 
pancreatic dysfunction that causes T2D (28, 29).

In addition, pancreas functioning is modulated by T3 
action (30). During the intrauterine stage, it modulates 
pancreas growth and maturation (31) and inhibits β-cell 
proliferation in a dose-dependent manner (26). Thus, 
when congenital hypothyroidism is presented, it alters 
the intrauterine pancreas programming having long-term 
consequences when animals are fed with a hypercaloric 
diet (24).

Adipose tissue is one of the main targets for thyroid 
hormone action, playing a central role in bodyweight, 
glucose regulation, and the storing of energetic 

Figure 3
Adipose tissue photomicrography from euthyroid (A), hypothyroid (B), euthyroid + hypercaloric diet (C), and hypothyroid + hypercaloric diet (D) rats 40×, 
stained with hematoxylin–eosin. The horizontal line represents 50 µm. The rounded shape of the adipocytes can be observed with the presence of a 
peripheral nucleus. The graphs represent the adipose tissue/body weight percentage (E), adipocyte numbers (F), and the adipocyte diameter (G); a ≠ b ≠ 
c ≠ d P < 0.05, equal letters indicate that there is no difference between groups, and different letters indicate statistical difference. RM two-ANOVA and 
Student–Newman–Keuls post hoc.
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metabolites (32, 33). T3 regulates adipogenesis and related 
processes such as lipogenesis and lipolysis (34). Congenital 
hypothyroidism compromises the correct adipose tissue 
programming affecting its functioning under normal 
physiological conditions (35, 36).

As expected, the adiposity percentage increased in 
animals fed a hypercaloric diet, changing the size of the 
adipocytes. Although, the total adipocytes presented in 
the adipose tissue are determined in the early life stages, 
and they remain constant throughout the development. 
In experimental models, it has been shown that adult rats 
do not lose adipocytes when they are starving or acquire 
new adipocytes in a period of rapid gain in bodyweight 
(37). The increase in the size of adipocytes rises adipokines 
secretion such as leptin and adiponectin modifying the 
long-term bodyweight regulation pathways as ObRb-STAT3 
leptin signaling (38). In addition to higher expression 
and secretion of inflammatory cytokines causing a 
chronic inflammation state that constitutes an important 
mechanism for the development of insulin resistance, 
dyslipidemia, and cardiovascular complications observed 
in the context of obesity (39).

This could explain the increase in the incidence of T2D 
in developing countries like Mexico with a high poverty 
and marginalization rate, in which the metabolism of the 
people is adapted to ‘thrifty genotype’ (2) and there is a 
willingness to consume foods with a high energy value. 
Also, nowadays in Mexico, the National Health System only 
screens for congenital hypothyroidism in neonates, but we 
believe that it is crucial to have a thyroid state screening 
before or during pregnancy to avoid erroneous metabolic 
and thyroid gland programming and the development of 
cardiometabolic diseases in adulthood.

The results presented allow us to conclude that the 
alterations produced by congenital hypothyroidism led 
to permanent alterations in the metabolic programming 
causing dysfunctions in the functioning of the pancreas 
and adipose tissue, and when the congenital hypothyroid 
animals are fed a hypercaloric diet, they develop T2D earlier 
and with worsening prognosis than euthyroid animals, 
having a lower survival rate under the same conditions.
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