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Abstract: Poly(p-phenylenediamine)/montmorillonite (PPDA/MMT) composites were prepared by
the oxidative polymerization of monomers intercalated within the MMT gallery, using ammonium
peroxydisulfate as an oxidant. The intercalation process was evidenced by X-ray powder diffraction.
The FT-IR and Raman spectroscopies revealed that, depending on the initial ratio between monomers
and MMT in the polymerization mixture, the polymer or mainly oligomers are created during
polymerization. The DC conductivity of composites was found to be higher than the conductivity of
pristine polymer, reaching the highest value of 10−6 S cm−1 for the optimal MMT amount used during
polymerization. Impedance spectroscopy was performed over wide frequency and temperature
ranges to study the charge transport mechanism. The data analyzed in the framework of conductivity
formalism suggest different conduction mechanisms for high and low temperature regions.

Keywords: poly(p-phenylenediamine); montmorillonite; conductivity mechanism;
impedance spectroscopy

1. Introduction

Composite materials based on polymers and inorganic materials have attracted in-
creasing attention recently, thanks to the possibility of achieving superior properties by a
combination of physical and chemical properties of the constituting components [1,2]. Such
organic–inorganic composites are often applied as electrode materials in batteries [3,4] and
supercapacitors [5]. Recently, composites composed of conjugated polymers or oligomers
and clay fillers gained significant research interest due to their improved electrical, optical
and mechanical properties, as well as corrosion resistance [6,7]. Montmorillonite (MMT) is
a 2D layered phyllosilicate clay built of two tetrahedral and one octahedral sheet, which
has been widely used in the preparation of nanocomposites due to its low cost, abundance
in nature, zero toxicity, high specific surface area, swelling abilities and ion-exchange
properties [8,9]. Various MMT composites with polyaniline [8,10], polypyrrole [11,12], poly
(3,4-ethylenediaoxythiophene) [13] and polyphenylenediamine [14,15] were prepared by
chemical [8,12] or electrochemical [13] polymerization and have been used as electrode ma-
terial for oxygen reduction [16], anticorrosion coatings [6,11], sensors [17,18], conducting
fillers [19], adsorbents [20] and supercapacitors [7].

In recent years, growing interest in the development of polyphenylenediamine com-
posites can be observed [14,21–25]. Polyphenylenediamine is a conjugated polymer with
a structure closely related to polyaniline; however, it possesses a higher nitrogen content
and better solubility together with good redox properties, salt–base transition and environ-
mental stability [23,26,27]. Nascimento et al. prepared poly(p-phenylenediamine)/MMT
composites via oxidative polymerization and confirmed the successful formation of the
polymer within the MMT gallery by extensive structural characterizations [14]. Ramya
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et al. studied the nonlinear optical properties of chitosan/o- or p-phenylenediamine/MMT
composites by the Z-scan technique with picosecond and femtosecond laser pulses and
revealed properties that make this material suitable for optical limiters [15]. Khelifa et al.
examined the electrochemical properties of poly (o-phenylenediamie)/clay composites
by cyclic voltammetry [28]. However, polyphenylenediamine/clay composites have still
been described in the literature to a limited extent and impedance spectroscopy of them
has not been yet reported. The conductivity of these composites can be contributed by
electronic and ionic contribution, differing in their sensitivity to temperature, humidity and
frequency response. Impedance spectroscopy is an important tool to elucidate the charge
transport mechanism and the type of charge carriers in complex systems. For this, various
formalisms are offered: conductivity, dielectric loss and modulus [29,30]. Knowing the con-
ductivity mechanism is important for the development of the next generation of electronic
devices, electrorheological fluids, as well as anticorrosive coatings, and optimizing their
properties [31].

In this work, a series of poly(p-phenylenediamine)/montmorillonite (PPDA/MMT)
composites with various monomer to clay ratios has been prepared by in situ chemical
oxidation of monomers within the MMT gallery (Scheme 1). Their structure and mor-
phology were investigated by FT-IR and Raman spectroscopies, X-ray powder diffraction
(XRD) and scanning electron microscopy (SEM). The impedance was measured in a wide
frequency and temperature range and the AC conductivity mechanism was elucidated.
We present here a detail impedance characterization to understand the conduction mecha-
nism at different temperature regions. For the first time, the synergic effect in electrical,
thermal, dielectric, impedance and modulus properties of PPDA/MMT composites has
been investigated.
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2. Materials and Methods
2.1. Preparation of Composites

p-Phenylenediamine dihydrochloride (≥98%) was purchased from Sigma-Aldrich
(Buchs, Switzerland), ammonium peroxydisulfate from Lach:Ner (Neratovice, Czech Re-
public) and montmorillonite (Cloisite-Na+) from Southern Clay Products (Gonzales, TX,
USA). All chemicals were used as received without any further purification.

In a typical process, 3.62 g of p-phenylenediamine dihydrochloride (PDA) was dis-
solved in 50 mL of deionized water. Various amounts of MMT (0 g, 2 g, 5 g, 10 g, 15 g,
25 g, 35 g and 50 g, respectively) were added into the PDA solution, and the mixture was
sonicated for 5 h. The amount of 5.71 g of ammonium peroxydisulfate was dissolved
in 50 mL deionized water and added to the PDA/MMT dispersion under magnetic stir-
ring. The total concentration of monomer and oxidant in each polymerization mixture
was 0.2 M and 0.25 M, respectively. After 1 h of intense stirring, the mixture was left
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undisturbed to polymerize for 24 h. The obtained precipitates were filtered and washed
with deionized water and ethanol to remove by-products. The final products, poly(p-
phenylenediamine)/montmorillonite (PPDA/MMT) composites with different amounts of
MMT, were labeled as PPDA-X, where X accounts for the amount of MMT added to the
reaction mixture.

2.2. Characterization

Morphology of composites was assessed using MAIA3 Tescan scanning electron
microscope (Tescan, Brno, Czech Republic).

Thermogravimetric analysis (TGA) of the composites was performed on a Perkin
Elmer Pyris 1 (Perkin Elmer, Waltham, MA, USA). Thermogravimetric Analyzer in a tem-
perature range 35–800 ◦C at a rate of 10 ◦C min−1 with fixed air flow rate at 25 mL min−1.

FTIR spectra in the wavenumber range from 400 to 4000 cm−1 were obtained on the
composites admixed in KBr pellets using a Thermo Nicolet NEXUS 870 FTIR spectrometer
equipped with a DTGS detector. The instrument was purged with dry air. All spectra were
corrected for the presence of water vapor and carbon dioxide in the optical path.

Raman spectra were measured with a Renishaw InVia Reflex Raman microspectrome-
ter using 514 nm excitation provided by an Ar-ion laser. The scattered light was registered
with a Peltier-cooled CCD detector (576 × 384 pixels) and analyzed by the spectrograph
with holographic grating 2400 lines mm−1.

XRD measurements were performed using a pinhole camera (MolMet, Rigaku, Tokyo,
Japan, upgraded by SAXSLAB/Xenocs) attached to a micro-focused X-ray beam generator
(Rigaku MicroMax 003) operating at 0.6 mA and 50 kV. The camera was equipped with a
vacuum version of the Pilatus 300K detector. The sample to detector distance, which was
calibrated using a silver behenate powder sample, was 0.190 m. The scattering vector q,
defined as q = 4π/λ·sinΘ, where λ is the wavelength and 2Θ is the scattering angle, covered
the range 0.145–1.41 Å−1 (2θ = 2–20◦).

The DC conductivity values were obtained on compressed pellets (diameter 13 mm
and thickness 1.0 ± 0.2 mm) using van der Pauw method. A Keithley 230 Programmable
Voltage Source in serial connection with a Keithley 196 System DMM was used as a
current source. The potential difference was measured using a Keithley 617 Programmable
electrometer or Keithley 181 nanovoltmeter, respectively, depending on the resistance of the
sample. The DC conductivity measurements were carried out at stable ambient conditions
at temperature 23 ± 1 ◦C and relative humidity 35 ± 5%. The frequency and temperature
dependences of the impedance were measured in a quasi-steady-state regime using an
Alpha-A Analyzer (Novocontrol Technologies, Montabaur, Germany) under applied AC
voltage 1 Vrms in the frequency range 107 to 10−2 Hz and temperature range 115 to 435 K
with 20 K step in nitrogen atmosphere. For clarity, only curves for selected representative
temperatures are shown in the figures. The pellets were placed in the sample holder
between the gold-plated brass disk electrodes 13 mm in diameter.

3. Results and Discussion

In the first step of preparation, the p-phenylenediamine was intercalated into the MMT
gallery, replacing Na+ cations of Na+-MMT with p-phenylenediamine cations. After the
oxidative polymerization with APS, the amount of MMT in the resulting composites, listed
in Table 1, was evaluated from TGA analysis (Figure 1). The results clearly demonstrate
that even with a significant excess of monomers in the polymerization mixture, just around
7–8 wt% of PDA (Table 1) was intercalated into MMT and the rest remained in the sur-
rounding aqueous medium and was removed later as a by-product during the purification
procedure. This can be explained by the limited amount of PPDA that can be formed within
the MMT gallery, based on limitations imposed by cation exchange in MMT. Additionally,
when an excess of PDA was used, the MMT surface became coated with PPDA film, and
the amount of PPDA in the composite reached 18–19 wt% (Table 1). These results are
also in good agreement with the previously demonstrated synthesis of polyaniline/MMT
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composites [8]. The amount of MMT in the composites reached a plateau of ~93 wt% when
less than ~25 wt% of PDA was used in the polymerization mixture; however, the properties
and nature of such composites differ and are discussed below.

The morphology of both pristine components, MMT and PPDA, and their composites
was investigated by SEM (Figure 2). Pristine MMT consists of flake-like particles of irregular
shape (Figure 2a), while PPDA possesses globular morphology (Figure 2b), as already
described in the literature [24]. After composite preparation, the morphology of MMT did
not show considerable changes even at an excess of monomers (Figure 2c,d). No globular
particles of PDPA were observed either. This confirms that the PPDA/MMT composites
contain only PDPA embedded within the MMT galleries, or as a thin film covering MMT
flakes, which cannot be seen in SEM. Free PPDA precipitate was evidently removed during
the washing procedure.
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Table 1. The montmorillonite content and DC conductivity of PPDA/MMT composites.

Sample Code

PDA Content
in

Polymerization
Mixture,

wt%

MMT Content
in

Polymerization
Mixture, wt%

PPDA
Content in

Composites,
wt%

MMT Content
in

Composites,
wt%

Conductivity,
S cm−1

(Measured by
Van der Pauw

Method)

Activation Energy (Ea) (eV)

Evaluated
from M” vs. f

Evaluated from DC
Conductivity vs. 1/T

High
Temperature

Region

Low
Temperature

Region

PPDA 100 0 100 0 7 × 10−11 0.57 0.64 0.02

PPDA-2 64 36 19 81 3 × 10−11 - - -

PPDA-5 42 58 18 82 1 × 10−11 0.69 0.58 0.05

PPDA-10 26 74 8 92 2.5 × 10−8 - - -

PPDA-15 19 81 8 92 3.4 × 10−8 - - -

PPDA-25 13 87 7 93 2.2 × 10−7 - - -

PPDA-35 9 91 6 94 1 × 10−6 0.44 0.34 0.06

PPDA-50 7 93 7 93 9.2 × 10−7 0.54 0.42 0.12

The DC conductivity (Table 1) of all composites was found to be higher than for pristine
PPDA (7× 10−11 S cm−1), reaching ~10−6 S cm−1, the value close to pure MMT, refs. [32,33]
for PPDA-35, where a higher amount of MMT was used in the polymerization mixture.

3.1. X-ray Diffraction Analysis

XRD patterns of pristine MMT and PPDA and their composites with different amounts
of MMT are presented in Figure 3. For pristine MMT, a well-defined (001) Bragg reflection
at 2θ = 8.41◦ was observed, corresponding to a basal spacing d of 10.5 Å. For the composites,
the reflection peaks of the (001) plane were displaced towards the lower 2θ values, which
denotes the basal spacing expansion with respect to the pure MMT. The biggest change in
basal spacing was observed for samples containing the lowest amount of MMT (PPDA-2
and PPDA-5), for which d = 12.5 Å. The basal spacing expresses the sum of the thickness
of one aluminosilicate layer and interlayer spacing, which can be affected by the size
and orientation of interlayer ions. Assuming the thickness of the aluminosilicate layer of
9.8 Å [34], the interlayer spacing for PPDA-2 and PPDA-5 composites expanded from 0.7
Å (for pure MMT) to 2.7 Å. This is a consequence of the intercalation process of PPDA
chains in between the clay layers. The (001) reflections were in these cases sharp and
narrow, indicating that the distribution of PPDA chains in the MMT galleries was uniform.
A smaller increase in basal spacing was observed for samples containing a bigger amount
of clay, reaching d = 11.7 Å for the PPDA-50 sample. Moreover, the (001) diffraction peaks
became much broader and less intense, which may suggest an inhomogeneous distribution
of the polymer chains in the interlayers of MMT and possible partial exfoliation of MMT.
These results suggest that the swelling of the MMT is related to the amount of PDA able to
penetrate into MMT layers. A small signal around 2θ = 8.7◦, visible in composite patterns,
probably came from a small amount of MMT that was not intercalated during the synthesis
of PPDA. The shift from 8.41◦ to 8.7◦ can be related to a decrease in basal spacing d, caused
by the leaching of the interlayer cations [35]. The lack of this peak in the PPDA-50 pattern
also suggests the possible partial exfoliation of MMT.
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3.2. Infrared and Raman Spectroscopies

The FTIR spectra of the PPDA/MMT composites (Figure 4) mainly display the features
of the MMT component: 1440 cm−1 (CO3 stretching of calcite impurity), 1035 cm−1 (Si–
O stretching) with shoulders at 1120 cm−1 (Si–O stretching) and 915 cm−1 (Al–Al–OH
bending), 520 cm−1 (Al–O–Si bending) with a shoulder at 625 cm−1, 465 cm−1 (Si–O–Si
bending) and 1635 cm−1 (bending vibrations of water molecules hydrogen bonded to MMT
or residual moisture in KBr) [36]. The bands associated with the PPDA component are well
resolved only in the spectrum of the composite with the lowest amount of MMT (PPDA-5),
and therefore the molecular structure of the PDA oxidation products will be discussed in
detail based on Raman spectroscopy. However, let us mention the peak at 1656 cm−1 in
the spectrum of PPDA-50. We suspect this band can be related to C=O stretching of the
benzoquinone structure [37–39].

For the Raman spectroscopy (Figure 5), excitation at 514 nm was chosen to minimize
the background caused by MMT fluorescence. The spectrum of the neat PPDA resembles
the PANI-like structure reported many times in previous literature. The main bands are
observed at 1595 cm−1 (C=C stretching in a quinonoid ring), 1530 cm−1 (N–H stretch-
ing), 1330 cm−1 (C~N+• stretching vibration related to a delocalized polaron structure),
1180 cm−1 (C–H deformation), 570 cm−1, 500 cm−1, 455 cm−1 and 410 cm−1 (ring defor-
mations) [8,23,40,41]. The spectra of all composites mainly show peaks related to MMT,
but there are also some peaks, visible particularly in the PPDA-50 composite with the
highest amount of MMT, which occur neither in PPDA nor in MMT. Namely, the relatively
strong and sharp peak at 1686 cm−1 observed for the PPDA-50 composite has not yet been
observed for any PANI of PPDA-related material. This band can be related to the NH2
end-groups [42]. The strong peak at 1637 cm−1 dominates the spectrum. It was formerly
assigned to ring stretching in phenazine-like [43] or oxazine-like structures [44]; however,
in detailed spectroscopy studies of phenazine structures [43,45], this peak was only ob-
served in neutral N-phenyl phenazine. However, due to the expected high local acidity in
the MMT interlayer area, N-phenyl phenazine should occur there only in protonated form.
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The strong peak at 1637 cm−1 could also originate in NH deformation vibrations [46] or
benzenoid ring stretching [47,48], which seems to be a more likely assignment. The band
at 1515 cm−1 is assigned to the N–H deformation of the PANI-like structure [49–52]. The
bands at 1485 and 1457 cm−1 belong to C=N stretching in quinonoid units [53], and N=N
stretching in an azobenzene structure can contribute to the latter [54]. The bands at 1393,
1370 and 1345 cm−1 can be attributed to C~N+• stretching in polaron structures with
varying delocalization lengths [40,55]. The bands at 1265 and 1200 cm−1 belong to C–H
deformation in quinonoid and benzenoid rings, respectively. The band at 455 cm−1 is
due to out-of-plane ring deformations [40]. In conclusion, a generally PANI-like structure
was observed in the PPDA-50 composite, but given the strong signal of NH2 groups and
the contribution of highly localized polarons, the material intercalated in MMT seems to
be of oligomer nature. The Raman spectra of PPDA-35 and PPDA-5 composites reflect
both features of the oligomer observed in PPDA-50 and of the PPDA polymer, with the
intensity of the above discussed peaks at 1393, 1370, 1686 and 1637 cm−1 increasing with
the MMT content.
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3.3. Impedance Spectroscopy

The real part (ε′) and imaginary part (ε”) of complex permittivity ε* (ε* = ε′ − jε”)
measured as a function of frequency (10−2 Hz to 107 Hz) at different temperatures (113 K≤
T ≤ 433 K) are shown in Figures 6 and 7. When interpreting these data, we should consider
conductivity being contributed by both the electronic and ionic parts. At lower frequencies,
an increase in the dielectric constant with decreasing frequency is typical for electrode
polarization due to the presence of mobile ions. In lower frequency regions, different values
of slopes in ε” vs. f curves imply ion transport if slope~ −1, whereas slope > −1 means
the polarization effect. The decreasing value of slope at a higher frequency represents the
caged movement of ions, i.e., ion–ion interactions and short time regime correlations [56].
The Maxwell–Wagner model can be utilized to understand the dielectric response of these
materials [57]. These polarizations are also temperature-dependent, as shown in Figure 7.
As the temperature increases, ion dissociation takes place, which ultimately results in an
increase in dielectric polarization. Moreover, interfacial polarization also occurs because of
the buildup of charges at the grain boundaries. At a lower temperature, dissociated ions are
not available, and a small value of permittivity is assigned to polarons dominant in PPDA,
which are almost in frozen condition. With the gradual increase in temperature, these
polarons inside grains separated by grain boundaries result in the Maxwell–Wagner effect
at lower frequencies. In the case of PPDA-5, the value of ε′ and ε” is small due to the smaller
content of MMT, which is directly proportional to water content since water molecules
are captured in between MMT layers and form ionic dipoles [57]. This is also evidenced
in Figure 6c,d, where the ε′ value decreases after exceeding 353 K since water starts to
evaporate [58]. The variation in the dissipation factor (tan δ = ε”/ε′) with temperature at
different frequencies decreases with increasing frequency at all temperatures, which is in a
good agreement with Koop’s phenomenological model [59]. The composites PPDA-35 and
PPDA-50 attain a low value of tan δ, which is due to the partial exfoliation of the MMT
gallery as evidenced by XRD.
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Figure 7. Variations in imaginary part of permittivity with frequency at different temperatures for
(a) PPDA and PPDA/MMT composites: (b) PPDA-5, (c) PPDA-35 and (d) PPDA-50.

To better discuss relaxation processes of the impedance spectra and suppress the
electrode polarization effects, the complex dielectric modulus was obtained from the real
and imaginary part of the permittivity.

M∗ =
1
ε∗

=
1

(ε− jε′′ )
= M′ + jM′′ =

ε′

(ε′)2 + (ε′′ )2 + j
ε′′

(ε′)2 + (ε′′ )2 (1)

where M′ and M” are the real part and imaginary part of the complex dielectric modulus
(M*), respectively [60]. Figure 8 shows the frequency dependence of the imaginary part of
the modulus at different temperatures. In fact, the low frequency peak corresponds to the
long-range migration of ions, whereas the high frequency peak represents spatially confined
ions within potential wells and localized short distance motion within the domains [56].

The values of relaxation time τ = 1
wmax

corresponding to the frequency of the low-
frequency maximum fmax of the M” frequency spectrum are plotted in Figure 9 as a function
of temperature. This follows an Arrhenius law with the activation energy Ea being 0.56,
0.69, 0.44 and 0.53 eV for pristine poly(p-phenylenediamine), PPDA-5, PPDA-35 and
PPDA-50, respectively.
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The frequency dependences of the real part of conductivity at different temperatures
are shown in Figure 10 for the polymer and composites and Figure 11 for montmorillonite.
The real part of the conductivity obeys a power law known as Jonscher’s law given by
Equation (2) within the considered frequency and temperature ranges:

σ′ = σdc + Aws (2)
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where σdc is the DC conductivity obtained by extrapolating σ′ to the low frequency limit.
The term Aws is the dispersive component of AC conductivity, which represents the
degree of interaction between mobile ions and the lattices. Here, A is the pre-exponential
factor describing the strength of the polarizability, and s, which is a power law exponent,
within 0 < s < 1, is a measure of the correlation degree. The behavior of s on temperature
provides an insight into the conduction mechanism. The power law dependences point
to inhomogeneity in the composites and that the ion transport plays the crucial role. At
room temperature and lower frequencies, the composites PPDA-35 and PPDA-50 show
a higher value of conductivity than pristine materials. The same is observed in the case
of DC conductivity measured with the four-probe van der Pauw method (Table 1). This
increase in conductivity is related to the intercalation of PPDA chains between the layers of
MMT, which leads to higher ordering in polymer chains causing more a compact structure
compared to pristine PPDA. The higher DC conductivity values obtained from the DC four-
probe method compared to impedance spectroscopy can be explained by the elimination of
the contact resistance in the former case. Figure 12 shows the Arrhenius plots of σdc against
1/T for all the samples according to Equation (3):

σdc = σ0 exp (− Edc
kBT

) (3)

The calculated values of activation energy (Edc) are listed in Table 1. It is seen that
different activation energies exist at high and low temperatures, which indicates the
dissociation of ions with an increase in temperature, hence increasing the conductivity at
high temperatures, but at a low temperature, the ions do not have enough energy to hop to
neighboring sites and remain caged. For the sample PPDA-35 and PPDA-50, the change
in the slope of the curve occurs at 200 K, which is attributed to the motion of the water–
polymer complex in the amorphous region [61], whereas for pristine PPDA and PPDA-5
it is at 273 K, revealing the existence of phase transition that might be associated with
alternation in local structures. The lowest activation energy is found for the sample PPDA-
35, which means less energy is required to migrate the ions from the binding coordinating
site to another site. The decrease in conductivity for PPDA-35 and PPDA-50 above 353 K
is again associated with the evaporation of intercalated water. For the low temperature
region where the mobile charge carriers are mainly polarons but not ions, the activation
energies are sufficiently low and following the opposite trend compared to that in the
higher temperature region. Pristine PPDA has the lowest and the composites with more
MMT content have higher values of activation energy since the movements of polarons
inherited in the polymer are hindered with the addition of MMT, and DC conductivity
is thus not only a function of temperature as expressed by the Arrhenius equation [62].
Additionally, pristine PPDA shows intermediate activation energy, which is attributed to
the contribution of polymer segmental motion.

From Figure 12, it is clearly seen that two different activation energies exist at differ-
ent temperature regions. This suggests that two conduction mechanisms prevail, one at
lower temperature (polaronic) and another at high temperature (ionic). The temperature
dependences of s values obtained from the linear fit of the σac frequency dependencies at
the linear region are plotted in Figure 13 for the lower temperature region. To study the
conduction mechanism at lower temperatures, various models have been proposed in the
literature to explain the predominant conduction mechanisms according to the shape of the
temperature dependence of exponent s. For the case of s increasing with increasing temper-
ature, a small polaron conduction mechanism has been suggested, whereas if s decreases
with increasing temperature then the mechanism is called correlated barrier hopping. If
s is independent with temperature, then quantum mechanical tunneling is expected [63].
In our case, the exponent s decreases as the temperature increases, which is attributed to



Polymers 2021, 13, 3132 12 of 17

correlated barrier hopping (CBH) of polarons. The frequency dependence according to the
CBH model can be expressed by Equation (2), with s given by Equation (4) [64].

s = 1− 6kBT[
WM − kBTln

(
1

ωτ0

)] (4)

where WM is the polaron binding energy, τ0 is the characteristic relaxation time and kB is
the Boltzmann’s constant. For large WM/KBT, Equation (4) can be deduced as:

WM =
6kBT
1− s

(5)

The values of WM calculated at the low temperature region are shown in the inset
of Figure 13 using the experimental values of s. The values obtained indicate that single
polarons are the major charge carriers but not bipolarons since for bipolaronic transport
values of WM must be almost four times higher [64]. It is seen that at the lowest measured
temperature, these single polarons have a higher binding energy for pristine PPDA and
PPDA-5 than in the composites PPDA-35 and PPDA-50, but after the gradual increase in
temperature similar values are attained.
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As seen in Figure 11, the dependence of the real part of conductivity shows the plateau
that allows the determination of DC conductivity of ~10−6 S/cm, which is in a good
agreement with values reported in the literature [32,33]. The conductivity decreases above
353 K due to the evaporation of intercalated water. This is similar to the behavior described
above for the composites with a higher content of MMT. The conductivity decreases
drastically after heating to 433 K, referring to the humidity dependence of montmorillonite
and ions playing a dominant role in the conduction mechanism [65,66].
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4. Conclusions

PPDA/MMT composites were successfully synthesized by a two-step procedure,
viz., the intercalation of monomers, followed by oxidative polymerization. Even though,
contrary to the initial expectations, the introduction of various amounts of MMT into the
polymerization mixture led to similar amounts of the MMT in obtained composites, the
variation in the initial monomer-to-MMT ratio allowed us to obtain series of composites
with diverse conductivity. Spectroscopy characterization revealed that such composites
differ in the polymeric or oligomeric nature of the organic part. Both AC and DC conduc-
tivities of composites were found to be higher than the corresponding polymer. Impedance
spectroscopy studied over a wide range of frequency and temperature points to the change
in the conduction mechanism from polaronic conduction arising from the polymer in
low temperatures to ionic conduction in higher temperatures inherited in MMT. Such
composites can be applied as anticorrosion coatings, sensors, electromagnetic shielding or
in electrorheology.
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