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A B S T R A C T

RNA-binding proteins (RBPs) are integral components of cellular machinery, playing crucial roles in 
the regulation of gene expression and maintaining genetic stability. Their interactions with RNA 
molecules govern critical processes such as mRNA splicing, stability, localization, and translation, 
which are essential for proper cellular function. These proteins interact with RNA molecules and 
other proteins to form ribonucleoprotein complexes (RNPs), hence controlling the fate of target 
RNAs. The interaction occurs via RNA recognition motif, the zinc finger domain, the KH domain and 
the double stranded RNA binding motif (all known as RNA-binding domains (RBDs). These domains 
are found within the coding sequences (intron and exon domains), 5’ untranslated regions (5’UTR) 
and 3’ untranslated regions (3’UTR). Dysregulation of RBPs can lead to genomic instability, con
tributing to various pathologies, including cancer neurodegenerative diseases, and metabolic dis
orders. This study comprehensively explores the multifaceted roles of RBPs in genetic stability, 
highlighting their involvement in maintaining genomic integrity through modulation of RNA pro
cessing and their implications in cellular signalling pathways. Furthermore, it discusses how aberrant 
RBP function can precipitate genetic instability and disease progression, emphasizing the therapeutic 
potential of targeting RBPs in restoring cellular homeostasis. Through an analysis of current litera
ture, this study aims to delineate the critical role of RBPs in ensuring genetic stability and their 
promise as targets for innovative therapeutic strategies.
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Introduction

In recent years, the regulation of gene expression at the post-transcriptional level has garnered significant attention due to its 
fundamental role in cellular homeostasis and its implication in a wide range of diseases [1]. This regulation occurs after transcription 
and before translation, influencing how genes are expressed at the RNA level [2]. Central to this regulatory framework are RNA- 
binding proteins (RBPs), which mediate diverse processes such as RNA splicing, transport, localization, translation, and degradation 
[3]. RBPs play crucial roles by interacting with RNA molecules and other proteins to form ribonucleoprotein complexes (RNPs), 
which control the fate of target RNAs [4], and the association of RBPs with RNA transcripts begins during transcription [5-7]. These 
proteins are characterized by their ability to bind RNA molecules through specific RNA-binding domains (RBDs) (such as the RNA 
recognition motif, the zinc finger domain, the KH domain and the double stranded RNA binding motif), which allow them to interact 
with diverse RNA targets, influencing their fate from synthesis to degradation [8,9]. These domains are found within the coding 
sequences (intron and exon domains), 5’ untranslated regions (5’UTR) and 3’ untranslated regions (3’UTR) of RNA [10].

The human genome contains at least 1200 confirmed RBPs (Table 1). Some important examples include serine-arginine rich 
proteins, human antigen R (HuR), heterogeneous nuclear ribonucleoprotein (HnRNP), TAR DNA-binding protein 43 (TDR-43), and 
Fragile X mental retardation protein (FMRP0) [11]. Dysregulation of RBPs has been increasingly associated with pathological 
conditions, particularly neurodegenerative, cancer, cardiovascular, diabetes and genetic disorders [12]. For instance, an aberrant 
RBP activity can lead to the misprocessing of RNA, resulting in the accumulation of disease-driving transcripts, protein misfolding 
and aggregation, phenomena that are often observed in cancers and neurodegenerative disorders like amyotrophic lateral sclerosis 
(ALS), frontotemporal dementia (FTD), and spinal muscular atrophy (SMA). In these diseases, RBPs such as TDP-43, FUS, and LIN28 
have been implicated in promoting oncogenic or neurotoxic effects through mechanisms like abnormal RNA splicing, stabilization of 
oncogenic transcripts, or aggregation of toxic protein species [13-15].

RBPs are also pivotal in maintaining genomic stability. For example, the long noncoding RNA NORAD has been shown to se
quester PUMILIO proteins, thereby regulating their activity and contributing to genomic integrity [16]. Moreover, the interaction 
between RBPs and RNA can be modulated by genetic variations, such as single nucleotide polymorphisms (SNPs), which can affect 
RNA secondary structures and, consequently, RBP binding. This interplay between genetic variations and RBP functionality un
derscores the complexity of gene regulation and its implications for disease susceptibility.

Given the pivotal role of RBPs in disease pathogenesis, therapeutic targeting of RBPs has emerged as a promising strategy. Current 
approaches focus on disrupting RNA-protein interactions, modulating protein-protein complexes, and preventing RBP aggregation to 
restore cellular homeostasis [10]. Direct targeting strategies, including the knockdown or overexpression of specific RBPs, have been 
explored for their potential to modulate splicing decisions, particularly in diseases where splicing dysregulation contributes to disease 
pathology [17]. Additionally, indirect approaches, such as the use of small molecules, antisense oligonucleotides (ASOs), aptamers, 
and synthetic peptides, have shown potential in modulating RBP activity by disrupting their interactions with RNA or other proteins 
[7,18].

Advancements in proteomics and computational biology have facilitated the identification and characterization of novel RBPs, 
expanding our understanding of their diverse functions and interactions. For instance, large-scale studies have revealed that RBPs can 
bind thousands of RNA targets, often with overlapping functions, which complicates the dissection of their specific roles in cellular 
contexts. The development of predictive models for RBP-RNA interactions further enhances our ability to understand the mechanisms 
by which these proteins influence gene expression and stability [19]. This review provides a comprehensive view on the roles of RBPs 
on genetic stability, focusing on RBPs structures, examples, functions, genetic stability and therapeutic strategies.

RBPs structure & function

Structural features
RBPs structural features are diverse and play a critical role in their functionality. A comprehensive understanding of these 

structural features can be categorized into several key aspects: the presence of RNA-binding domains, the role of intrinsically dis
ordered regions (IDRs), and the specific sequence and structural motifs that facilitate RNA binding.

RNA-binding domains
Most of RBPs contain several RNA-binding domains (RBDs), including different types of RNA binding motifs, very often in 

multiple copies, which recognize RNA sequence specifically. The current structural understanding of protein–RNA recognition 
mediated are four RBDs, such as the RNA recognition motif (RRM), K homology (KH) domain, double-stranded RNA-binding motif 
(dsRBM) and zinc finger domain [20,21].

The RRM is the most abundant RBDs in higher vertebrates (about 0.5 %−1 % in human genes), consists of approximately 90 
amino acids and is known for its ability to recognize single-stranded. The 90 amino acids long domain containing two conserved 
sequences of eight and six amino-acids, called RNP1 and RNP2, respectively. RRM adopts a typical β1α1β2β3α2β4 topology that forms 
a four-stranded β-sheet packed against two α-helices. The RNP1 and RNP2 sequences located in the two central β-strands, β3 and β1, 
exposes three conserved aromatic residues on the surface of the β-sheet which form the primary RNA binding surface RNA 
[26,20,27]. Lack of the presence of most, if not all of these aromatic residues, led to the definition of several subclass of RRMs like the 
quasi-RRM (qRRM), the pseudo-RRM (Ψ-RRM) or U2AF Homology Motifs (UHM) [28]. RRMs enable proteins to interact with RNA 
through various mechanisms, including stacking interactions with nucleobases and electrostatic interactions with the RNA backbone. 
The presence of multiple RRMs within a single protein can enhance binding affinity and specificity, allowing for more complex 
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interactions with RNA molecules. This is particularly evident in proteins like TDP-43 and FUS, which contain multiple RRMs that can 
bind to adjacent or separate RNA elements [12,29-31].

Zinc finger (ZnF) is another domain found in RBPs. In a single RBP, this motif can be found alone, as a repeated domain or even in 
combination with other types of RBDs. A classical ZnF is about 30 amino acids long and displays a ββα protein fold in which a β- 
hairpin and an α-helix are pinned together by a Zn2+ ion. These domains are classified depending on the amino acids that interact 
with this ion (e.g., C2H2, CCCH or CCCC) and were initially described as DNA binding motifs. They were found interacting speci
fically with dsDNA bases located in major grooves via side chains of residues present in their α-helix [32]. With regards to RBP. the 
interaction typically involves contacts between amino acid side chains in the α-helical region of the ZnF and the RNA molecule. This 
is similar to how they interact with DNA but adapted for the unique structures of RNA [33,34]. Different types of zinc fingers can 
engage with RNA through various mechanisms. For example, C2H2 zinc fingers may use both backbone interactions and base-specific 
contacts to achieve binding [35].

The hnRNP K homology (KH) domain is approximately 70 amino acids long. It is found in proteins with different functions 
including splicing, transcriptional regulation and translational control. Two versions of the KH fold have been reported, the Types I 
and II found in eukaryotic and prokaryotic proteins, respectively. The Type I has a βααββα topology and is characterized by a β-sheet 
composed of three antiparallel β-strands packed against three α-helices [36,37]. The β1- and β2-strands are parallel to each other and 
the β3-strand is antiparallel to both. In addition, a “GXXG loop” containing the (I/L/V)-I-G-X-X-G-X-X-(I/L/V) conserved motif, 
located between the α1 and α2 helices, and a β2-β3 loop variable in length (3 to over 60 amino acids) and sequence, are also found in 
this motif. The KH Type II fold differs from the Type I by a αββααβ topology and a characteristic β-sheet in which the central strand 
(β2) is parallel to β3 and antiparallel to β1 [36,37]. Although both KH motif folds are known for interacting with RNA or ssDNA 
targets, only few structures of these domains bound to nucleic acid molecules have been deposed in the Protein Data Bank [38,39]
and most of them concern the eukaryotic Type I KH domain.

Contrary to the three families of RBDs described, dsRBMs were first described as recognizing RNA shape rather than RNA se
quence [40]. The dsRBM typically adopts an αβββα fold, which is crucial for its function in binding structured RNA molecules [41]. 
Each dsRBM consists of approximately 65–70 amino acids and can recognize specific features of the dsRNA structure, particularly in 
the minor groove of the RNA helix [42]. The recognition of dsRNA by dsRBMs is largely believed to be shape-dependent, although 
recent findings suggest that sequence-specific recognition may also occur through direct readout mechanisms [43].

Intrinsically disordered regions
In contrast to these structured domains, a significant proportion of RBPs also possess intrinsically disordered regions (IDRs). IDRs 

are segments of proteins that lack a stable three-dimensional structure under physiological conditions [44]. These regions are in
creasingly recognized for their critical roles in the function of RBPs, particularly in mediating interactions with RNA and other 
proteins [45]. IDRs enable RBPs to engage with multiple RNA targets through a flexible binding mechanism. This flexibility allows 
IDRs to adapt their conformation to fit various RNA structures, enhancing the protein's capacity to recognize and bind different RNA 
sequences or structures [46,47].

Many RBPs contain multiple RNA-binding modules connected by IDRs. These linkers can influence the spatial arrangement and 
effective concentration of these modules, thereby affecting the overall binding affinity and specificity for RNA [48]. The dynamic 
nature of IDRs allows for a range of conformations, which can facilitate interactions with non-contiguous binding sites on RNA 
molecules [46]. DRs can also play regulatory roles within RBPs. For example, they can modulate the affinity of the protein for its RNA 
target by undergoing conformational changes upon binding to other proteins or ligands. This autoinhibition mechanism is crucial for 
maintaining proper cellular functions, especially in processes like gene regulation and signaling [49].

Research has identified two primary binding modes utilized by disordered protein regions when interacting with RNA. These 
modes reflect different strategies for recognition and suggest that IDRs may accommodate a broader range of substrates compared to 
structured domains [47]. The charge distribution within IDRs significantly influences their interaction with RNA. For instance, 
negatively charged IDRs can enhance the target search process by accelerating the binding kinetics of RBPs to their RNA targets, due 
to favourable electrostatic interactions [50].

Fig. 1. Structure of various RBDs. a. Ribbon structure of RRM (PDB: 2CQI; [22]). b. Cartoon representation of the Cys2His2 zinc finger motif (PDB: 1A1L). The zinc ion 
(green) is coordinated by two histidine and two cysteine amino acid residues [23] c. Crystal Structure of KH domain (PDB: 1ZZI; [24]). d. NMR structure of isolated dsRBD 
in complex with the AAGU tetraloop (PDB: 2LBS; [25]).
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Specific sequence and structural motifs
Moreover, the specific sequence and structural motifs recognized by RBPs are critical for their binding specificity. Studies have 

shown that RBPs often exhibit preferences for particular RNA sequences and secondary structures, such as hairpin loops and bulges 
[51,52]. For instance, proteins with KH domains tend to favor large hairpin loops, indicating a structural preference that guides their 
binding interactions [51]. Furthermore, the sequence context of RNA can significantly influence RBP binding, with certain RBPs 
showing a strong preference for specific nucleotide arrangements [52,53]. This specificity is essential for the precise regulation of 
gene expression, as it determines which RNA molecules are targeted by RBPs in a cellular context.

Functions

The RBPs facilitate critical steps in RNA metabolism, including splicing, transport, stability, translation, and degradation (Fig. 2), 
thereby playing a pivotal role in determining the fate of RNA molecules within the cell [1,54,55,20,56].

One of the primary functions of RBPs is to regulate mRNA stability and translation. For instance, PUF family proteins bind 
specifically to the 3' untranslated region (3' UTR) of target mRNAs, influencing their stability and translational efficiency [56,57]. 
This sequence-specific binding allows RBPs to modulate the expression of genes in response to various cellular signals, thereby 
participating in the regulation of metabolic pathways and developmental processes [56,58]. Additionally, RBPs are involved in the 
nonsense-mediated decay (NMD) pathway, which is crucial for eliminating faulty mRNAs, thus maintaining cellular RNA quality 
[59,54,55].

Moreover, RBPs play a significant role in RNA splicing, a process that is essential for the maturation of precursor mRNA into 
functional mRNA. They interact with spliceosomal components to facilitate the removal of introns and the joining of exons [1,20]. 
This splicing regulation is particularly important in generating protein diversity through alternative splicing, which allows a single 
gene to produce multiple protein isoforms [60]. Furthermore, RBPs are implicated in the transport of mRNAs from the nucleus to the 
cytoplasm, ensuring that mRNAs are properly localized for translation [54,55].

In addition to their roles in mRNA metabolism, RBPs also interact with non-coding RNAs, such as microRNAs (miRNAs), to 
regulate gene expression. This interaction can lead to the degradation of target mRNAs or inhibition of their translation, further 
emphasizing the multifaceted regulatory roles of RBPs in cellular homeostasis [61]. The importance of RBPs is underscored by their 
involvement in various diseases, including cancer, where dysregulation of RBP activity can lead to aberrant gene expression profiles 
[60,62].

Fig. 2. Schematic diagram summarizing the various roles of RBPs. 

A.T. Aborode, O.A. Abass, S. Nasiru et al.                                                                                                             Global Medical Genetics 12 (2025) 100032

9



Classes of RBPs

Several RBPs has been reported from various studies to interact with RNA through various mechanisms and domains. In the 
human genome there are at least 1200 verified RBPs as well as several newly discovered ones [10,63]. Some examples of RBPs that 
has been reported so far are presented in Table 1.

RBPS in genetic stability

The survival of cells is one of the fundamental problems linked to genome stability and integrity, and RBPs have been shown to 
maintaining genetic stability through their multifaceted roles in DNA Damage Response and Repair (DDR), RNA surveillance and 
quality control and chromatin architecture.

DDR and repair
The DDR is a critical cellular mechanism that detects and repairs DNA damage, ensuring genomic integrity and preventing 

diseases. This response involves a complex network of signalling pathways that coordinate the detection of damage, activation of 
repair mechanisms, and regulation of cell cycle progression [64]. Several studies demonstrated DNA double-strand breaks (DSBs) as a 
severe genomic lesion that arises from various sources and leads to breaks that may occur due to exposure to genotoxic or chemical 
agents such as methyl methane sulfonate. DSBs are programmed events in meiosis and antibody diversification processes. Whether 
the breaks are either accidental or deliberate, they significantly impact genome stability and cellular function, necessitating efficient 
repair mechanisms to maintain genomic integrity. Interestingly, DSBs are not always accidental; they can also be deliberately 
generated during certain biological processes [65-68].

RBPs play a significant role in recognizing and repairing DNA damage, contributing to the maintenance of genomic stability. 
These proteins are involved in various aspects of the DDR, including the detection of DNA lesions, recruitment of repair factors, and 
regulation of gene expression related to repair processes [69,70]. One of the key RBPs involved in the DDR is FUS (Fused in Sarcoma). 
FUS has been shown to localize to sites of DNA damage and is essential for the recruitment of other repair proteins, such as poly(ADP- 
ribose) polymerase-1 (PARP1), which is critical for the repair of DNA-DSBs [71,72]. FUS interacts with PARP and is involved in the 
formation of compartments enriched in damaged DNA, highlighting its role in the early stages of the DNA repair process [73].

Another RBP complex known as heterogeneous nuclear ribonucleoproteins (hnRNPs) has been identified to play an important role 
in DDR. hnRNP A1-U, a highly expressed cellular protein that is a subtype of hnRNPs, has been shown to be involved in cell 
proliferation, mRNA translation, cell cycle, and splicing [74,75]. Notably, hnRNPUL 1 and 2 protein families have been observed to 
associate with the MRE11-RAD50-NBS1 (MRN) complex, which is responsible for DNA-DSB sensor complex detection [76]. Re
markably, this RBPs contribute to DNA repair via other methods as moderators or executors of DNA repair or DNA lesions sensor in a 
role extrinsic to splicing, which are well established [77]. Mastrocola et al., [71] reported another significant RBP protein, FUS, a 
multifunctional RNA/DNA-binding protein that is involved in translation, mRNA transport, and splicing involved in DNA repair. This 
protein is less effective in repairing DSBs due to the disruption of the first stage of DDR induction.

RBMX is another RBP that has been identified as a crucial component of the DDR. It is involved in homologous recombination 
repair and is essential for the stabilization of repair complexes at sites of DNA damage. RBMX functions independently of ATM 
signalling and is essential for the recruitment of repair factors to DSBs [20,78]. Additionally, RBMX has been shown to interact with 
various other RBPs, indicating a network of interactions that facilitate the DDR [79]. NONO is also noteworthy in the context of DNA 
repair and this RBP is involved in the regulation of homologous recombination and the stabilization of mRNAs related to the DNA 
damage response. NONO's recruitment to damage sites is influenced by PARP activation, which underscores the interconnectedness 
of RNA metabolism and DNA repair mechanisms [80,81].

Moreover, hnRNP K and hnRNP A0 have been reported to play roles in the transcriptional response to DNA damage. hnRNP K is 
induced following DNA damage and collaborates with p53 to promote the expression of genes involved in the repair process [78], 
while hnRNP A0 stabilizes Gadd45α mRNA, which is crucial for the DNA damage response [78]. Finally, SFPQ (also known as PSF) 
has emerged as a critical RBP in the DDR. It has been shown to interact with RAD51D, a protein essential for homologous re
combination, thereby linking RNA processing to DNA repair pathways [82]. SFPQ's involvement in the DDR highlights the im
portance of splicing factors in maintaining genomic integrity.

RNA surveillance and quality control
RNA surveillance and quality control are critical processes that ensure the fidelity of gene expression in both prokaryotic and 

eukaryotic cells. These mechanisms are designed to detect and eliminate faulty RNA molecules, thereby preventing the synthesis of 
dysfunctional proteins that could disrupt cellular functions [83]. In eukaryotes, several RNA surveillance pathways have been 
identified, including nonsense-mediated decay (NMD), no-go decay (NGD), and non-stop decay (NSD). These pathways are essential 
for maintaining mRNA quality by targeting defective transcripts for degradation.

NMD specifically recognizes mRNAs containing premature termination codons (PTCs) and facilitates their degradation, thus 
preventing the accumulation of truncated proteins that could be harmful to the cell [84-87]. Additionally, the ribosome-associated 
quality control (RQC) system plays a pivotal role in monitoring translation, detecting stalled ribosomes, and targeting both the 
defective mRNA and nascent polypeptides for degradation [88,89]. The interplay between transcription and translation also influ
ences RNA quality control. In eukaryotic cells, the translation process itself can trigger mRNA decay pathways, as seen in the co- 
translational surveillance mechanisms that monitor mRNA integrity during translation [86,90]. One of the key RBPs involved in NMD 
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is UPF1, an ATP-dependent RNA helicase that is central to the NMD pathway. UPF1 is responsible for recognizing mRNAs with PTCs 
and facilitating their degradation. It interacts with other essential factors, such as UPF2 and UPF3, which are necessary for the 
assembly of the NMD complex [91,92]. UPF1's helicase activity is critical for unwinding RNA structures, allowing for the recruitment 
of decay machinery [93,94]. The interaction between UPF1 and other RBPs is also significant; for instance, the polypyrimidine tract- 
binding protein (PTBP1) can protect certain mRNAs from NMD by preventing UPF1 from binding to them, thereby regulating the 
stability of these transcripts [95,96]. Research has shown that various RBPs can modulate the efficiency of NMD. For example, SRSF3 
has been identified as a splicing factor that regulates its own expression through a "poison cassette exon," which leads to NMD when 
included in the transcript [97]. Similarly, TDP-43, an RBP associated with neurodegenerative diseases, has been implicated in the 
regulation of cryptic splicing events that can influence NMD outcomes [98,99].

No-go decay (NGD) is vital for maintaining cellular homeostasis by preventing the accumulation of defective mRNAs that could 
lead to the synthesis of nonfunctional or harmful proteins. NGD is initiated when a ribosome is stalled during elongation due to 
various factors, such as stable RNA secondary structures, rare codons, or premature stop codons [100-102]. The core components 
involved in NGD include the proteins Dom34 and Hbs1, which are essential for recognizing stalled ribosomes and facilitating their 
disassembly. Upon ribosome stalling, Dom34 and Hbs1 promote the release of the ribosomal subunits and the drop-off of peptidyl- 
tRNA, effectively initiating the decay of the aberrant mRNA [101]. This mechanism not only helps in the degradation of faulty 
mRNAs but also plays a role in recycling ribosomal components for future rounds of translation [101,102]. RBPs such as Hbs1 and 
Dom34 are crucial for detecting stalled ribosomes on mRNAs that impede translation elongation. When ribosomes encounter pro
blematic sequences that hinder their movement, these RBPs are recruited to the ribosomal complex. They promote the disassembly of 
the ribosome and facilitate the degradation of the defective mRNA by the exosome complex, which is responsible for RNA decay 
[103,104]. The interaction of RBPs with the ribosome is vital for the efficient recognition of stalled translation and subsequent mRNA 
degradation [105].

Non-stop decay (NSD) specifically targets mRNAs lacking a termination codon, thereby preventing the accumulation of poten
tially harmful, continuously translated proteins. This process is particularly important in maintaining cellular homeostasis and en
suring the fidelity of gene expression. The mechanism of NSD involves the recognition of ribosomes that have stalled during 
translation due to the absence of a stop codon [101,106]. The endonucleolytic cleavage of the mRNA occurs near the stalled ribo
some, allowing for the rapid degradation of the transcript by the exosome complex, which is responsible for 3′ to 5′ degradation of 
RNA [107]. The exosome complex, a multi-subunit ribonuclease, is integral to the NSD process. It works in conjunction with the 
TRAMP complex, which adds poly(A) tails to the aberrant mRNAs, facilitating their recognition and degradation by the exosome 
[108,109]. The TRAMP complex enhances the specificity and efficiency of RNA degradation, ensuring that only defective transcripts 
are targeted while preserving functional RNAs [109]. Moreover, NSD has implications beyond simple RNA degradation; it also plays a 
role in regulating gene expression and maintaining the integrity of the transcriptome. By eliminating faulty mRNAs, NSD contributes 
to the overall quality control of RNA metabolism, which is essential for proper cellular function and response to environmental 
changes [110,111,108]. RBPs also play a role in NSD, which targets mRNAs lacking a stop codon. In this process, RBPs such as the 
Lsm1–7-Pat1 complex are involved in recognizing the poly(A) tail of mRNAs, which is a signal for degradation. The Lsm complex 
binds to the 3' end of the mRNA, facilitating its decay through the exosome pathway [112,113]. Additionally, RBPs like Nab2 have 
been shown to interact with exosome cofactors, enhancing the specificity and efficiency of RNA degradation [114]. This highlights 
the importance of RBPs in linking RNA decay pathways with the cellular machinery responsible for mRNA turnover.

Maintenance of telomeres
Telomeres, the protective caps at the ends of chromosomes, are critical for maintaining genomic stability and preventing cellular 

senescence [115]. The regulation of telomere length and function is a complex process involving various RBPs, notably telomeric 
repeat-containing RNA (TERRA) and heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1). These molecules play pivotal roles in 
telomere biology, influencing cellular aging and the integrity of the genome.

The role of TERRA in cellular senescence is underscored by its ability to induce premature senescence when overexpressed [116]. 
This is particularly significant in cancer biology, where TERRA levels can be dysregulated, leading to genomic instability and tumor 
progression [117]. Furthermore, TERRA's interaction with RBPs like hnRNP A1 has been shown to modulate telomerase activity, 
suggesting that TERRA acts as a natural inhibitor of telomerase, thereby contributing to the maintenance of telomere length and 
stability [118]. The interplay between TERRA and RBPs is essential for maintaining telomere integrity, as disruptions in this balance 
can lead to increased susceptibility to DNA damage and cellular aging [14]. In addition to TERRA, other RBPs such as SFPQ and 
NONO have been identified as important players in telomere stability. These proteins help suppress RNA:DNA hybrid-related telo
mere instability, further emphasizing the critical role of RBPs in telomere biology [119]. The regulation of TERRA and its associated 
RBPs is complex and context-dependent, influenced by factors such as cellular stress and the cell cycle [120]. For instance, TERRA 
expression is regulated in a cell-cycle-dependent manner, with implications for telomere replication and stability during cell division 
[121].

Across different species, the phenomenon of cellular senescence has been linked to organismal aging due to the underlying 
mechanisms that are thought to induce a permanent cessation of proliferation in cell populations, contributing to the aging process 
and other physiological changes. Grimes, Chandra [122]. Disrupted telomeres caused by telomere uncapping could promote cellular 
senescence indirectly and degradation of unprotected telomeres, resulting in a weaker DDR. Ghadaouia et al., [123,124]. Telomere 
erosion or shortening uses the breakage-fusion-bridge mechanism leading to genomic instability, and the shortening of telomere 
during cell division triggers the activation of the DNA repair mechanisms. This repair mechanism results in sister chromatid fusion via 
DNA replication, leading to chromosomal integrity compromise as well as cellular dysfunction [125]. Furthermore, the chromatid 
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daughter cells inherit altered genetic material due to breakage of fused chromosomes during mitosis, resulting in genomic instability 
due to the repeated multiple cell divisions caused by the continuous breakage-fusion-bridge cycle [126]. According to Ghadaouia 
et al. [123], genomic instability and secondary DNA break production occur when telomeres lose protection due to chromosomal end 
fusion prompting a robust DDR; therefore, the additional damage to DNA triggered by the chromosomal end fusion leads to cellular 
senescence and a permanent cell growth cessation. Notably, cellular senescence along with organismal aging has been linked to the 
gradual shortening of telomere length [127].

RBPs and diseases

RBPs has been known to play crucial roles in various cellular processes, including RNA splicing, transport, stability, and trans
lation. Dysregulation or mutations in these proteins have been implicated in a wide range of diseases, particularly neurodegenerative 
disorders, cancers, diabetes, cardiovascular and genetic conditions.

Neurodegenerative diseases

One of the most significant associations of RBPs is with neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) 
and frontotemporal dementia (FTD). Mutations in RBPs like TDP-43 and FUS (normally localized in the nucleus, where they par
ticipate in RNA processing, splicing, and transport) have been linked to these conditions, where abnormal aggregation of these 
proteins in the cytoplasm is a hallmark of the diseases [128,13,15]. The aggregation of TDP-43, characterized by hyperpho
sphorylation and ubiquitination, forms insoluble inclusions that disrupt cellular functions [129,130]. Similarly, FUS mislocalization 
from the nucleus to the cytoplasm is also observed, contributing to neurodegeneration [131,132]. The aggregation of these proteins is 
thought to be driven by several factors, including mutations in the genes encoding them, such as TARDBP (which encodes TDP-43) 
and FUS, as well as the presence of hexanucleotide repeat expansions in the C9orf72 gene [133-135]. Similarly, the prion-like 
domains in hnRNPA2B1 and hnRNPA1 have been shown to cause multisystem proteinopathy and ALS through altered dynamics of 
RNA granule assembly [128].

The toxic effects of these aggregates are multifaceted. They can sequester essential cellular components, disrupt nucleocyto
plasmic transport, and impair RNA metabolism, leading to cellular stress and ultimately neuronal death [130,135]. The presence of 
these aggregates is not only a hallmark of ALS and FTD but also correlates with disease severity and progression [136,137]. Fur
thermore, the G4C2 repeat expansions in C9orf72 lead to the production of toxic dipeptide repeat proteins, which further exacerbate 
cellular toxicity and contribute to the pathophysiology of both diseases [133,134,138].

Given the critical role of RBPs in ALS and FTD, targeting their aggregation and restoring their normal function presents a pro
mising therapeutic strategy. Several approaches are currently being explored: 1. Gene Therapy: Techniques such as CRISPR-Cas9 are 
being investigated to correct mutations in the C9orf72 gene or to eliminate the toxic repeat expansions [139]. This approach aims to 
restore normal protein function and prevent the formation of toxic aggregates. 2. Small Molecule Inhibitors: Compounds that can 
stabilize RBPs or prevent their aggregation are under investigation. For instance, targeting the pathways involved in the post- 
translational modifications of TDP-43 and FUS may help mitigate their toxic effects [130,140]. 3. RNA-based Therapeutics: Antisense 
oligonucleotides (ASOs) that specifically target the RNA products of the C9orf72 gene are being developed to reduce the levels of 
toxic dipeptide repeat proteins [134,138]. This strategy aims to decrease the overall burden of toxic proteins in affected neurons. 4. 
Modulation of Cellular Stress Responses: Enhancing the cellular mechanisms that manage protein homeostasis, such as the ubiquitin- 
proteasome system and autophagy, may help clear aggregates and restore normal cellular function [130,140].

Cancer

Cancer is another area where RBPs have emerged as significant players. Dysregulation of RBPs can lead to aberrant splicing and 
expression of oncogenes and tumour suppressors, contributing to tumorigenesis [8,141]. One of the primary mechanisms by which 
RBPs contribute to tumorigenesis is through the stabilization of mRNA. For instance, HuR, an RBP, is known to bind to AU-rich 
elements in the 3' untranslated regions of target mRNAs, enhancing their stability and promoting the expression of oncogenes [142]. 
Similarly, the RBP LIN28 has been implicated in the regulation of let-7 microRNAs, which are tumour suppressors; aberrant ex
pression of LIN28 leads to increased levels of oncogenic targets, thereby facilitating cancer progression [14]. Furthermore, RBPs such 
as CELF2 have been shown to stabilize specific mRNAs, thereby inhibiting ovarian cancer progression [143].

Alternative splicing is another critical process influenced by RBPs that can lead to tumorigenesis. RBPs such as DAP3 have been 
shown to regulate splicing networks, resulting in widespread changes in splicing patterns that can contribute to the cancer phenotype 
[144]. The dysregulation of splicing factors can lead to the production of oncogenic isoforms of proteins, further driving tumor
igenesis [14]. For example, the RBP HNRNPK has been associated with promoting cancer cell proliferation and migration through its 
role in splicing regulation [7]. Moreover, RBPs are involved in the evasion of immune responses, which is a hallmark of cancer. They 
can modulate the expression of immune-related genes, thereby influencing the tumor microenvironment and immune evasion 
strategies [145]. For instance, the HuR has been implicated in the regulation of cytokine mRNAs, which can affect immune cell 
function and contribute to tumor immune evasion [146].

In terms of their potential as biomarkers and therapeutic targets, several RBPs have been identified as promising candidates. For 
example, the expression levels of RBPs like HuR and LIN28 have been correlated with poor prognosis in various cancers, making them 
potential biomarkers for disease progression [29,30,147]. Additionally, therapeutic strategies targeting RBPs are being explored, such as 
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the use of small molecules or RNA-based therapies to inhibit the function of oncogenic RBPs [148]. The development of RNA-PROTACs, 
which are designed to degrade specific RBPs, represents a novel approach to targeting these proteins in cancer therapy [148].

Cardiovascular disease

The cardiovascular system also exhibits a notable association with RBPs, where they regulate gene expression related to cardiac 
function and disease. For example, the RNA-binding protein Quaking has been shown to influence alternative splicing events critical 
for cardiac myocyte function [141]. Dysregulation of RBPs in the heart can lead to conditions such as cardiac fibrosis and ar
rhythmias, highlighting their importance in cardiovascular health [149]. Among the various RBPs implicated in these processes, 
RBFOX, CELF, RBM20, and RBM24 are notable for their contributions to cardiac functionality and pathology.

RBFOX proteins, particularly RBFOX2, are essential for proper heart development, as they regulate alternative splicing of pre- 
mRNAs involved in cardiac myocyte differentiation. Mutations in RBFOX2 have been linked to congenital heart defects, underscoring 
its significance in cardiac morphogenesis [150]. Similarly, RBM20 has been identified as a key splicing factor that regulates the 
alternative splicing of the Titin gene, which is crucial for cardiac muscle function. Loss-of-function mutations in RBM20 are asso
ciated with dilated cardiomyopathy (DCM), highlighting its role in maintaining cardiac structure and function [151]. The CELF 
family of RBPs, particularly CELF1 and CELF4, also plays a pivotal role in cardiac development and disease. These proteins are 
involved in the regulation of alternative splicing during embryonic development and have been shown to influence the expression of 
foetal-specific isoforms in heart failure [152]. The interplay between CELF proteins and other splicing factors is critical for the proper 
transition from foetal to adult cardiac isoforms, which is vital for normal heart function [14].

RBM24 is another RBP that has garnered attention for its role in cardiac development. It is involved in the regulation of alter
native splicing during the differentiation of embryonic stem cells into cardiac lineages. Studies have demonstrated that RBM24 
knockout leads to disrupted splicing and contributes to the development of cardiomyopathies [153,154]. This suggests that RBM24 is 
not only important for normal heart development but also for preventing pathological conditions. Moreover, the regulation of al
ternative splicing by RBPs is influenced by miRNAs, which can modulate the expression of splicing factors. For instance, miRNAs 
have been shown to coordinate the expression of CELF proteins during postnatal heart development, indicating a complex regulatory 
network that governs splicing transitions in the heart [155]. This interplay between RBPs and miRNAs is crucial for maintaining 
cardiac homeostasis and responding to stress conditions, such as hypertrophy and heart failure [156].

Diabetes

RBPs such as HuR, HNRNPD, and CELF1 have been shown to be significantly involved in the pathophysiology of diabetes. HuR 
levels are significantly lower in cardiac endothelial cells (CECs) of diabetic mice and patients with diabetes compared to controls 
[157]. HuR protein was found to increase in kidneys from OVE26 mice, a type 1 diabetic mouse model [158]. Decreased HuR 
contributes to the development of coronary microvascular dysfunction in diabetes through downregulation of gap junction protein 
Cx40 in CECs [157]. Inhibiting HuR attenuates the severity of structural abnormalities in diabetic nephropathy, such as glomerular 
hypertrophy, collagen type IV expression, and mesangial expansion [158].

Also is the HNRNPD (heterogeneous nuclear ribonucleoprotein D), which plays a significant role in the determination of beta cell 
identity in response to cellular stress. In diabetes, changes in HNRNPD expression are linked to increased rates of beta cell apoptosis. 
Specifically, reduced HNRNPD expression is associated with the survival of pancreatic beta cells, while its overexpression can lead to 
apoptosis by decreasing the levels of anti-apoptotic proteins such as BCL2 and MCL1 [159,160]. In children with Type 1 Diabetes 
(T1DM), studies have shown that HNRNPD expression is downregulated in the blood, suggesting a potential association with disease 
progression. This downregulation may contribute to the vulnerability of beta cells under stress conditions, further implicating 
HNRNPD in the pathophysiology of T1DM [160,161].

Another RNA-binding protein, CELF1 (also known as CUGBP1), has been implicated in the pathogenesis of diabetes through its 
roles in alternative splicing, mRNA stability, and translation regulation. In T1DM, CELF1 protein levels are elevated in skeletal muscle 
and heart of type 1 diabetic mice and increased CELF1 levels correlate with abnormal alternative splicing patterns of its target genes 
involved in metabolism (Nutter et al., 2018). CELF1 target RNAs are aberrantly spliced in the type 1 diabetic heart, leading to 
abnormal gene expression [162]. For T2DM, CELF1 regulates alternative splicing of the insulin receptor, contributing to insulin 
resistance, CELF1 is expressed in pancreatic islets and its elevated levels in diabetic mice suppress insulin secretion in response to 
glucose and GLP-1 and targeting CELF1 may hold promise as a therapeutic approach for T2DM [163]. In the case of diabetic 
cardiomyopathy, CELF1 overexpressing mice develop dilated cardiomyopathy and heart failure, displaying reactivation of embryonic 
splicing patterns similar to changes observed in diabetic hearts [164,165]. Increased CELF1 protein levels in diabetic heart may 
contribute to diabetic cardiomyopathy [164].

Another RBP associated with diabetes is the IGF2BP2. Genome-wide association studies (GWAS) have identified that variants in 
the IGF2BP2 gene are associated with an increased risk of developing T2DM in several populations, Czech and Swedish [166], 
Iranians [167], Chinese [168]. The IGF2BP2 rs1470579C allele and rs4402960 T allele were found to be more frequent in T2D 
patients compared to healthy controls [169]. IGF2BP2 regulates insulin-like growth factor 2 (IGF2) translation by binding to the 5' 
UTR of IGF2 mRNA. IGF2 plays an important role in growth and insulin signalling pathways [168]. Variants in IGF2BP2 affect first- 
phase glucose-stimulated insulin secretion and the disposition index [168]. The rs4402960 variant attenuates the first phase of 
glucose-stimulated insulin secretion [169]. A nominally significant interaction was observed between the IGF2BP2 variant and 
prenatal exposure to famine on glucose levels during oral glucose tolerance test (OGTT). The presence of both the IGF2BP2 risk allele 
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and exposure to famine was associated with lower glucose AUC during OGTT, which seems counterintuitive considering their in
dividual associations with increased T2DM risk [170].

Genetic disorders

In addition to forementioned diseases, RBPs are also implicated in genetic disorders. For example, mutations in the A2BP1 gene, 
which encodes an RNA-binding protein, have been associated with mental retardation, epilepsy, and autism. Furthermore, the role of 
RBPs in myotonic dystrophy is notable, where proteins like Muscleblind are recruited to CUG repeat expansions, leading to disrupted 
RNA processing and contributing to the disease phenotype [171,172]. The involvement of RBPs in fragile X-associated tremor/ataxia 
syndrome (FXTAS) further exemplifies their critical role in neurodegeneration, where RBPs like hnRNP A2/B1 mitigate neurode
generation in models of the disease [173].

RBPs target

RBP targeting strategies focus on disrupting or modulating several key interactions and pathways, thereby restoring cellular 
homeostasis or countering pathogenic mechanisms. These targeting strategies include RNA-protein interactions, protein-protein 
interactions, affected cell pathways and protein aggregation (Fig. 3).

RNA-protein interactions
RBPs function primarily through their interaction with RNA molecules, making RNA-protein interactions a vital target for 

therapeutic intervention. By interfering with these interactions, it is possible to modulate the RNA-binding activity of the protein, 
thereby influencing the stability, localization, or translation of its target mRNAs. This approach is particularly relevant in diseases 
where RBPs bind and stabilize oncogenic or pathogenic transcripts. Disrupting RNA-protein interactions could thus reduce the ex
pression of disease-driving genes [174,175].

Protein-protein interactions
Beyond binding RNA, RBPs frequently interact with other proteins, forming complexes that are necessary for their full func

tionality. Disrupting these protein-protein interactions can impair the activity of RBPs and the larger ribonucleoprotein complexes 

Fig. 3. Schematic diagram illustrating strategies for targeting RBPs, encompassing potential RNA-protein interactions, protein-protein interactions, protein ag
gregation, and associated cellular pathways.
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(RNPs) in which they operate. For example, inhibiting the interaction of RBPs with co-factors essential for mRNA splicing, trans
lation, or degradation can lead to therapeutic outcomes by blocking aberrant processing events in diseases such as cancer or neu
rodegenerative disorders [5,6,176].

Affected cell pathways
RBPs are central players in cellular signalling pathways and metabolic networks. Their dysregulation can lead to widespread 

disturbances in gene expression and cellular physiology. By targeting RBPs, therapeutic strategies aim to restore proper cellular 
homeostasis and rescue the normal functioning of critical pathways. This approach is often applied in diseases like cancer, where 
RBPs are overexpressed and promote tumorigenesis by dysregulating multiple mRNA targets involved in proliferation and apoptosis. 
Therapeutic modulation of RBPs can lead to the restoration of proper cell cycle control and apoptosis [177,178].

Protein aggregation
A significant challenge in targeting RBPs is their propensity to aggregate, particularly in neurodegenerative diseases like 

amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Certain RBPs, such as TDP-43 and FUS, misfold and ag
gregate in neuronal cells, leading to cellular toxicity. Strategies aimed at preventing or reversing protein aggregation have become a 
crucial aspect of RBP-targeted therapies. Small molecules, peptides, or oligonucleotides are being explored for their potential to 
disrupt these aggregates and restore RBP solubility and function, offering a promising avenue for treating aggregation-related dis
eases [179,180].

RBPs therapeutic strategies

Therapeutic strategies for targeting RBPs can be broadly categorized into direct and indirect approaches (Fig. 4), each offering 
unique mechanisms of intervention.

Direct targeting strategies
Direct approaches focus on modulating the expression or function of RBPs through overexpression or knockdown [18]. Over

expression of RBPs can enhance their activity, leading to increased binding to target RNAs. This often results in altered splicing 
patterns, which can have significant implications for cellular functions and disease states. For instance, RBPs that act as splicing 

Fig. 4. The therapeutic strategies for targeting RBPs. This figure illustrates the therapeutic approaches used to target RNA-binding proteins (RBPs), categorized into 
direct and indirect strategies. Direct strategies involve either enhancing or suppressing RBP levels. Overexpression of RBPs, such as increasing HuR expression, can 
stabilize tumor suppressor mRNAs, aiding in cancer therapy. On the other hand, knockdown approaches, like the use of shRNA or siRNA, can reduce the levels of RBPs 
such as TDP-43, which is implicated in neurodegenerative diseases like ALS. Indirect strategies include targeting RBPs with small molecules, oligonucleotides, or novel 
techniques. For instance, small molecules like Ribavirin inhibit eIF4E by disrupting its interaction with the mRNA cap, reducing its pro-cancerous activity. 
Oligonucleotide-based strategies involve anti-sense oligonucleotides (ASOs), such as those targeting nucleolin to inhibit its activity, and siRNA, like HuR siRNA, which 
silences oncogenic RBPs to suppress tumor growth. Another approach, aptamers, includes examples like AS1411, which binds to nucleolin and disrupts its cancer- 
promoting functions. Emerging strategies such as circular RNAs, exemplified by Circ-1073, act as decoys to sequester RBPs like HuR, preventing their interaction with 
target mRNAs. Additionally, CRISPR-based techniques like CRISPR-Cas13 are being developed to directly degrade RBP mRNAs, such as EIF4E, while CRISPR-Cas9 is 
used for gene knockout of RBPs like FUS in ALS research. Together, these approaches aim to modulate RBP activity and their downstream effects, providing promising 
therapeutic options for cancer, neurodegeneration, and other diseases.
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activators may promote exon inclusion, thereby influencing the diversity of protein isoforms produced from a single gene [18,181]. 
This approach is particularly relevant in diseases such as myotonic dystrophy or fragile X syndrome, where overexpression of RBPs 
like CELF or FMRP respectively, may compensate for functional deficits [182,183]. This strategy leverages viral vectors or plasmid- 
based delivery systems to achieve the desired upregulation of target RBPs [184]. Conversely, knocking down RBPs using techniques 
such as RNA interference (RNAi) reduces their expression levels [18]. This can disrupt normal splicing processes and lead to the 
exclusion of certain exons or the use of alternative splice sites, potentially contributing to disease mechanisms, especially in cancers 
[185]. For instance, the knockdown of overexpressed RBPs like LIN28 or hnRNPs has shown therapeutic potential by inhibiting 
tumour progression. The knockdown of RBPs can be achieved through various delivery systems, including short interfering RNA 
(siRNA) or antisense oligonucleotides (ASOs), which target specific mRNAs encoding the RBPs for degradation [185].

Indirect targeting strategies
Indirect approaches target RBPs by modulating their interactions with RNA or proteins, or by leveraging molecular tools to alter 

their activity or stability [7,17]. Several strategies have been explored: 

i. Circular RNA: Circular RNAs (circRNAs) act as molecular decoys for RBPs by sequestering them and preventing their interaction 
with endogenous RNA targets. This approach has been proposed for RBPs involved in pathological RNA splicing or translation, 
where circRNAs could alleviate disease phenotypes by reducing the availability of pathogenic RBPs. For example, circRNAs could 
target RBPs like PTB to influence splicing decisions in diseases such as cancer and neurodegenerative disorders [186-188].

ii. Small Interfering RNA (siRNA): siRNA-based therapeutics provide a mechanism for targeting RBPs indirectly by promoting the 
degradation of their specific mRNA substrates. siRNA molecules have been employed to silence genes encoding RBPs, reducing 
their cellular abundance and consequently their pathological effects [189]. This approach has been successfully applied in models 
of ALS, where siRNAs targeting TDP-43 mRNA have shown neuroprotective effects by reducing the accumulation of toxic protein 
aggregates [190].

iii. Synthetic Peptides: Synthetic peptides can be designed to interfere with RBP functions by mimicking or disrupting protein-protein 
or RNA-protein interactions. These peptides can selectively bind RBPs and inhibit their ability to associate with RNA or other 
proteins, thus altering downstream cellular processes [20]. This approach has been used to target RBPs involved in ALS and spinal 
muscular atrophy (SMA), where protein aggregation and abnormal RBP interactions exacerbate disease progression [191].

iv. Oligonucleotide-Based Therapies: Oligonucleotides, such as antisense oligonucleotides (ASOs), can be designed to bind to specific 
RNA sequences and modulate RBP binding or RNA splicing. ASOs targeting SRSF1 and CELF1 have been explored for their ability 
to correct aberrant splicing patterns in myotonic dystrophy and spinal muscular atrophy [192,193]. Additionally, oligonucleo
tide-based therapies can influence the post-transcriptional fate of mRNAs by altering RBP recognition sites, thus restoring normal 
gene expression profiles [194].

v. Aptamers: Aptamers are short, single-stranded nucleic acids that fold into specific three-dimensional structures capable of binding 
to proteins with high specificity. Aptamers targeting RBPs can be designed to inhibit their function by competitively binding to 
RNA-binding domains or modulating protein conformations [195]. This strategy has been employed in preclinical models of 
cancer, where aptamers targeting HuR and LIN28 have shown promise in reducing tumour growth by inhibiting their oncogenic 
functions [196,197].

vi. Small Molecules: Small-molecule inhibitors of RBPs have garnered significant attention due to their potential for oral bioavail
ability and tissue penetration. High-throughput screening approaches have identified small molecules capable of disrupting RBP- 
RNA interactions, thus altering gene expression. In particular, small molecules targeting RBPs such as FUS and TARDBP (TDP-43) 
have shown promise in treating neurodegenerative diseases by reducing the aggregation of these RBPs [198,199].

Future research

Advances in research tools are crucial for furthering our understanding of RBPs and their implications on genetic stability and 
diseases. Techniques such as RNA interactome in regulating gene expression at the post-transcriptional level by controlling the fate of 
RNA in processes such as mRNA localization, translation, splicing and stability [200-202] and molecular dynamics simulations for 
study protein dynamics, enzyme mechanisms, and interactions between biomolecules [203-206] have already provided valuable 
insights into the interactions and functions of RBPs. Moving forward, the development of more sophisticated tools, like machine 
learning-informed RNA-binding chemical space exploration [207], can aid in identifying novel RNA-binding compounds and un
derstanding their mechanisms of action. Additionally, the utilization of fusion proteins for enhanced small RNA loading to extra
cellular vesicles can revolutionize RNA delivery systems, enabling targeted and efficient delivery of therapeutic RNAs to specific 
tissues [208]. The integration of computational biology with experimental techniques, as demonstrated in the prediction of RNA- 
protein binding sites using deep learning, can enhance our ability to predict and understand RBP interactions [209]. Furthermore, the 
construction of a versatile RNA-binding protein using designer proteins showcases the potential of integrating protein engineering 
with RNA manipulation technologies for future therapeutic applications. Such integrative approaches can lead to a more holistic 
understanding of the roles of RBPs in genetic stability and diseases [210]. The field of personalized medicine is not left out, as it holds 
great promise in leveraging the knowledge of RBPs for tailored therapeutic interventions. Understanding the binding preferences of 
RBPs to RNA editing events [211] and the dysregulated expression patterns of circular RNAs in cancer [212], can provide valuable 
information for developing personalized treatment strategies. Moreover, the optimization of protein-targeted medicines into RNA- 
specific small molecules has the potential for personalized RNA-targeted therapies [213]. By incorporating information on individual 
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genetic variations and RNA profiles, personalized medicine can offer more effective and precise treatments, as seen in the success of 
personalized cancer nanomedicine [214].

Conclusion

In conclusion, RNA-binding proteins are pivotal in maintaining genetic stability within the cellular context. Their diverse func
tions in RNA metabolism and gene regulation underscore their significance in preserving genomic integrity. The dysregulation of 
RBPs is intricately linked to various diseases characterized by genetic instability, thereby presenting a compelling case for their 
investigation in the context of pathophysiology. As research progresses, the understanding of RBPs’ roles will not only enhance our 
comprehension of genetic stability but also unveil novel therapeutic avenues to combat diseases rooted in RBP dysfunction. Future 
studies should focus on elucidating the specific mechanisms by which RBPs influence genomic stability, as well as exploring targeted 
interventions that could restore normal RBP function in disease states. This knowledge will ultimately contribute to the development 
of innovative strategies aimed at mitigating the effects of genetic instability and improving patient outcomes in a range of disorders.
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