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Abstract

The first year of the COVID-19 pandemic put considerable strain on healthcare systems

worldwide. In order to predict the effect of the local epidemic on hospital capacity in England,

we used a variety of data streams to inform the construction and parameterisation of a hos-

pital progression model, EpiBeds, which was coupled to a model of the generalised epi-

demic. In this model, individuals progress through different pathways (e.g. may recover, die,

or progress to intensive care and recover or die) and data from a partially complete patient-

pathway line-list was used to provide initial estimates of the mean duration that individuals

spend in the different hospital compartments. We then fitted EpiBeds using complete data

on hospital occupancy and hospital deaths, enabling estimation of the proportion of individu-

als that follow the different clinical pathways, the reproduction number of the generalised

epidemic, and to make short-term predictions of hospital bed demand. The construction of

EpiBeds makes it straightforward to adapt to different patient pathways and settings beyond

England. As part of the UK response to the pandemic, EpiBeds provided weekly forecasts

to the NHS for hospital bed occupancy and admissions in England, Wales, Scotland, and

Northern Ireland at national and regional scales.
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Author summary

COVID-19, the disease caused by SARS-CoV-2, leads to a high proportion of cases requir-

ing admission to hospital. Coupled with the high burden of infections worldwide, this put

substantial pressure on healthcare systems. To enable public health systems to cope with

the high levels of demand, forecasting models are vital. These models enable public health

managers to plan their workloads accordingly. Here, we developed EpiBeds, which com-

bines an epidemic model with a model for patient flow through hospitals. By fitting this

model to data from England, EpiBeds has been used to provide short-term forecasts of

hospital admissions and bed demand weekly throughout the COVID-19 pandemic. In

this paper, we describe the motivation behind the structure of EpiBeds, how the model is

fitted to data, and report the estimates of the key parameters throughout the pandemic.

We then evaluate the performance of EpiBeds by comparing generated forecasts to future

data points, finding good agreement between the forecasts and data.

1. Introduction

An important component of the UK response to the COVID-19 pandemic was the short-term

prediction of hospital and critical care bed use for planning purposes. As part of this response,

we developed EpiBeds, a minimally complex compartmental model tailored to data available

on hospital flow and the natural history of disease progression that was available at the time.

We fitted EpiBeds to four data streams: daily hospital admissions, daily hospital prevalence,

daily intensive care unit (ICU) prevalence, and daily deaths in hospital, enabling us to make

short-term projections of hospital and ICU bed demand, and to estimate the basic reproduc-

tion number, R. These predictions were used to support the resource management of the

National Health Service of England, nationally and separately for each English region, and the

other Devolved Administrations in the UK.

Forecasting models for hospital occupancy typically assume that individuals in certain bed

types have the same waiting time distribution in that bed type regardless of outcome [1,2].

However, analysis of hospital line-list data showed that outcome was a major determinant of

lengths of stay along the hospital pathway [3], and therefore in EpiBeds we defined hospital

compartments not only by the current status of the patient (e.g. in critical care), but also their

outcome (e.g. will recover). Defining multiple compartments was necessary since compart-

mental models typically require all individuals within a single compartment to have the same

waiting time distribution. By doing so, we were able to maximise the information in the avail-

able data whilst minimising the complexity of the model. We reduced the number of unknown

parameters using high-resolution individual-level data for a subset of hospitalised patients in

England, to estimate the length of stay in each hospital compartment (conditional on the pro-

gression to each possible following stage) of the EpiBeds model.

Since hospitalisation data reflect background incidence, in addition to generating forecasts,

EpiBeds enabled us to approximate the transmission rates in the background epidemic, and

hence to provide real-time estimates of the instantaneous growth rate and effective reproduc-

tion number, published weekly by the UK Government. When policy was known to have

changed recently or to be about to change, often multiple scenarios were submitted in addition

to the projections (which assumed no change in transmission from the day of the projection),

with a range of fixed values for the reproduction number from the date of the policy change.

Here we describe the motivation behind the structure of EpiBeds, including the structure of

the model and the baseline parameter estimates. We then describe the model fitting procedure,
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outlining how the background epidemic is captured and how the model is adapted to capture

changes in patient dynamics. We then illustrate the performance of the model over the first

and second waves, and report posterior estimates of the key epidemiological parameters. We

end with an evaluation of model performance across the first and second waves of the pan-

demic. The relative simplicity of EpiBeds makes it more transparent than more complex mod-

els [4–6] about:blank, and unlike other models enables us to estimate the probability of

moving along different hospital pathways. The simplicity enables issues in the model fitting to

be easily identified and corrected, highlighting when relationships between the underlying

data streams change or the model assumptions are violated. Additionally, with the particularly

sparse data at the start of the pandemic, the minimally complex design ensured minimal

assumptions were required when fitting the model. The flexibility of its construction and para-

meterisation also means it can easily be adapted to provide accurate short-term forecasts for

different countries and healthcare systems, and potentially other pathogens, with the model

structure tailored to the observed data.

2. Results

2.1. Estimates of hospital length of stay distributions

To inform the EpiBeds model structure, we first analysed the detailed COVID-19 Hospitalisa-

tion in England Surveillance System (CHESS) and Severe Acute Respiratory Infection (SARI)

datasets (see Section SM.1.1 in S1 Supplementary Material) to identify the most relevant hospi-

tal pathways and to estimate the distributions of the time individuals spent along each step of

these hospital pathways. We classed patients using five states: Hospitalised (not been to ICU),

in Critical care (ICU), Monitored (discharged from ICU but still in hospital), Recovered, and

Deceased. After hospital admission, patients are either discharged, admitted to ICU, or die

(without entering ICU), and from ICU individuals may go on to be discharged from ICU (but

remain in hospital in the monitored state) or die. We then estimated the distributions of the

time individuals take for each transition (hereafter referred to as “length of stay” or “delay dis-

tribution”, with the former preferred for in-hospital events and the latter preferred for out-of-

hospital events), in particular: hospital admission to ICU admission, ICU admission to ICU

discharge, ICU admission to death, ICU discharge to hospital discharge, hospital admission to

death and hospital admission to hospital discharge. For hospital admission to death and hospi-

tal admission to discharge, we only considered patients who are not admitted to ICU, to pre-

vent overlap with the ICU-related pathways.

Our aim was to produce a set of ordinary differential equations (ODEs) that best describe

hospital progression. We therefore assumed length of stay distributions were gamma distrib-

uted, so that they could be approximated by Erlang distributions (see Section SM.1.2 in S1

Supplementary Material). Since treatment policies and practices, and patient demographics,

are likely to have changed over time, we estimated the waiting time distributions separately for

the first (1st March 2020 to 15th September 2020) and second (1st August 2020 to 31st Decem-

ber 2020) waves in the UK (Table 1), with monthly cumulative estimates given in Table D in

S1 Supplementary Material. Our estimates are consistent with previous results for length-of-

stay distributions (Fig A in S1 Supplementary Material), particularly findings for the UK,

Europe and Japan ([7–16]). Note that the first and second wave periods have some overlap, as

some historic data was needed to fit the second wave.

Comparing the first wave to the second wave, we observe substantial changes in the lengths

of stay on ICU. The length of stay from entering ICU to dying slightly increased between the

two waves, whilst the length of stay from entering ICU to leaving ICU decreased by a factor of

two. Similarly, the length of stay from leaving ICU to discharge decreased by a factor of two.
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There are various potential drivers for this. First, treatment changes could have reduced the

length of time patients require critical care treatment, and prolonged the time until death. Sec-

ond, younger patients, who were more common in the second wave, take less time to recover

and longer to die. The lengths of stay without ICU does not show the same drop in the time to

recovery as seen in ICU, but has a similar increase in the time to death, possibly because of

improved quality of treatment.

2.2. Construction of a compartmental model informed by hospital flow

data

Informed by the estimated length of stay distributions (Table 1), we constructed a compart-

mental model describing the progression of individuals through the hospital pathways (Fig 1).

To account for considerable differences in the duration of different hospital transitions even

from the same state, we divided individuals into compartments both in terms of their current

status (e.g., Hospitalised or Critical care) and in terms of their future outcome (e.g., will

recover, will die). This approach requires more parameters than the more common approach

based on competing hazards but is more flexible (resulting in more general phase-type sojourn

times in each state) and can be directly parameterised with the available data. Since the mean

and standard deviation of the estimated lengths of stay in each compartment are similar, this

indicates the gamma distributions are approximately exponential (shape parameter 1). There-

fore, flows between hospital compartments are suitably described by constant transition rates

(equal to the inverse of the mean of the exponentially distributed sojourn time in the compart-

ment, see Section 4.1 [17]). The resultant hospital flow is shown by the red and orange com-

partments in Fig 1.

Since the infectious burden in the population determines the rate at which cases will be

admitted to hospital, we also used compartments to describe the process of infection in the

general population, based on an SEIR (Susceptible Exposed Infectious Recovered) model

structure. Symptomatic individuals therefore go through three states of infection, Exposed

(but not yet infectious), Infectious (but not yet symptomatic), and Late infection (infectious

and symptomatic), with a proportion of symptomatic individuals requiring hospitalisation

(LH) and the other proportion recovering naturally (LR). The latter distinction is motivated by

Table 1. Gamma distributed length of stay for different events in hospital, estimated using the CHESS/SARI data. Brackets indicate 95% confidence intervals (gener-

ated through parametric bootstrapping).

Length of stay Wave1 Mean Standard deviation N

Hosp to ICU Wave 1 2.79 (2.71, 2.87) 3.30 (3.20, 3.41) 6254

Wave 2 2.70 (2.61, 2.79) 2.96 (2.83, 3.07) 3830

ICU to death Wave 1 11.84 (11.43, 12.25) 9.74 (9.35, 10.20) 2268

Wave 2 15.33 (14.50, 16.08) 12.38 (11.52, 13.18) 837

ICU to monitoring Wave 1 15.93 (15.39, 16.52) 16.97 (16.30, 17.64) 3642

Wave 2 8.57 (8.18, 8.98) 7.51 (7.05, 7.96) 1348

Monitoring to recovery Wave 1 11.85 (11.39, 12.29) 11.93 (11.37, 12.44) 2602

Wave 2 6.45 (6.04, 6.90) 6.58 (6.09, 7.09) 945

Hosp to recovery (no ICU) Wave 1 9.37 (9.14, 9.60) 9.68 (9.41, 9.96) 6312

Wave 2 10.02 (9.66, 10.42) 9.89 (9.43, 10.35) 2462

Hosp to death (no ICU) Wave 1 8.93 (8.58, 9.27) 7.81 (7.44, 8.16) 2144

Wave 2 12.16 (11.43, 12.92) 10.40 (9.59, 11.23) 674

1Wave 1 includes dates 1st March 2020 to 15th September 2020 and wave 2 dates from 1st August 2020 to 31st December.

https://doi.org/10.1371/journal.pcbi.1010406.t001
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the fact that the processes of biological recovery and hospital seeking behaviour are conceptu-

ally different, hence involving different progression rates: for an infected individual, the time

to recovery reflects the natural course of a non-severe infection, while the time to hospital

admission is driven by hospital seeking behaviour, current policy, and health-care logistic

availability. A proportion of individuals are assumed to remain asymptomatic throughout

infection; these individuals follow an infection pathway that is distinct from, but mimics, that

of symptomatic individuals.

The structure for the generalised epidemic was constructed to reflect delay distributions

from the literature, using constant rates to represent exponentially distributed sojourn times,

and sequences of compartments to represent gamma-distributed sojourn times (more details

in Section 4.1). This is known as “linear chain trickery” and is a way of representing gamma-

distributed sojourn times by using the Erlang distribution. Hence, to describe a gamma-dis-

tributed incubation period (i.e., the time from infection to symptom onset) with mean 4.85

days and shape parameter 3 [18], we used three subsequent compartments (E1,E2, I) with iden-

tical constant rates between them, with mean sojourn time 1.6 days in each compartment [17].

This assumes pre-symptomatic transmission of 1.6 days, which is roughly consistent with liter-

ature estimates that show most pre-symptomatic transmission occurs in the two days prior to

symptom onset [19]. The delay between symptom onset and hospitalisation is gamma distrib-

uted with shape parameter approximately equal to two [18], and we therefore used two com-

partments for late-infection symptomatic individuals who will be hospitalised (LH). For cases

Fig 1. Schematic representation of the EpiBeds model. The construction of the compartmental model was informed

by available data. EpiBeds is implemented as a set of ordinary differential equations (ODEs), with one state variable per

compartment representing the absolute number of individuals in it. Arrows describe flow between compartments,

which occurs at constant rate. Blue compartments indicate infected individuals who are not hospitalised, with a dark

and light blue distinction, respectively, for individuals with and without symptoms, while red compartments indicate

hospitalised individuals and orange compartments individuals in critical care. The compartments with a red border

contain infectious individuals, with a dashed border denoting an infectivity reduced to 25% of that of the other

infectious compartments; once hospitalised, it is assumed individuals no longer contribute to the community

epidemic. For states in which the waiting times are not exponentially distributed (e.g. Exposed) we use multiple

identical compartments enabling us to approximate gamma-distributed waiting times by using Erlang distributions.

All variables, rates, and probabilities are described in Tables 2 and 3. The force of infection λ depends on the numbers

in the infectious compartments (Section 4.1).

https://doi.org/10.1371/journal.pcbi.1010406.g001
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that recover without hospitalisation, in the absence of better data on the duration of infectivity

since symptom onset, we made the parsimonious choice of a single late infection compartment

with an exponentially distributed length of stay with mean 3.5 days, such that the overall

period during which an individual is actively infectious (I plus the L compartments) is consis-

tent with the 5-day mean generation time estimated in [20]. The resultant compartmental

model is illustrated in Fig 1, with the state variables and parameters described in Tables 2 and

3. The equations are reported in Section 4.1.

We assumed only non-hospitalised infectious individuals contribute to new infections,

with asymptomatic individuals less infectious than individuals who are pre-symptomatic or

symptomatic. Due to behavioural changes, changes in test specificity, and the possibility that

asymptomatic cases may correspond to individuals who simply have a long incubation period,

identification of the relative infectivity of an asymptomatic case is challenging. We assume rel-

ative infectivity of 25%, based on [30,31]. We assume that asymptomatic cases make up 55% of

infections, which we determined by adjusting age specific estimates of the asymptomatic rate

to the age distribution in England [24]. Although infections from hospitalised patients could

have an effect on the overall epidemic, most notably with health care workers as transmission

links, detailed genetic data are required to characterise this process [32]. We also assume that

nosocomial cases do not substantially alter hospital flow, i.e., upon testing positive nosocomial

patients follow similar pathways to community-acquired cases. In the hospital admissions

data, we either count patients from admission (if they were tested in the community) or from

the date of their first positive swab result (if they were tested in hospital). This second cohort

will include all nosocomial cases, who we treat as being admitted from the community.

2.3. Model fitting

2.3.1. Procedure. We fitted EpiBeds to English data (SITREP—NHS situation report and

CPNS—COVID-19 Patient Notification System) using a Bayesian MCMC approach (Section

4.2). When fitting to data, we considered waves one and two independently in order to capture

temporal changes in the hospital dynamics. Since there were substantial parameter changes

between the first and second wave, when fitting the second wave we used admissions for the

whole time-series combined with beds, ICU, and deaths data only from 1st August 2020

onwards. This enabled the probabilities to be fitted to the second wave independently of the

first wave, while still accounting for the depletion of susceptibles throughout the first wave and

reasonable initial conditions for all variables at the start of the second wave.

To reduce the number of free parameters, we used the average waiting times in each hospi-

tal compartment for each wave estimated from the CHESS/SARI data (Table 1), and previously

Table 2. State variables for the compartmental model.

State variable Description

S Susceptible

EA, ES Exposed–will stay asymptomatic, become symptomatic

IA, IS Infectious–will stay asymptomatic, become symptomatic

AR Asymptomatic–will recover

LR, LH Late infection (symptomatic)–will recover, be hospitalised

HR, HC, HD Hospitalised–will recover, enter critical care, die without entering critical care

CM, CD Critical care–will be monitored before recovery, die

MR Monitored–will recover

R Recovered

D Deceased

https://doi.org/10.1371/journal.pcbi.1010406.t002
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published estimates for disease parameters (Table 3), as fixed model parameters. For the

remaining parameters (Table 3) we used uninformative priors with the exception of the proba-

bilities of death if in ICU (pD). This is because the data on deaths and recoveries do not distin-

guish whether individuals have transitioned to ICU or not, and hence are both affected

simultaneously by a combination of pC and pD (through ICU) and pT (without passing through

ICU) thus making these three parameters only weakly identifiable (at best) if at least one of

them is not constrained separately. For pD we used a strongly informative Normal prior distri-

bution with a mean and 95% CI estimated from CHESS/SARI data for wave one at 35.7%

(31.9%, 38.4%) and for wave 2 at 28.7% (26.5%, 32.1%). Obtaining similar priors for pT and pC

(probability of entering ICU if hospitalised) was not possible due to insufficient and geograph-

ically uneven coverage in the data, causing problems in both power and representativeness.

The background epidemic is driven by a transmission rate, that represents the total infec-

tious pressure exerted by a symptomatic infectious individual. This parameter collates contact

behaviour, transmission probability of contacts and strength of contacts into a single parame-

ter. On an individual level, this does not provide accurate information about the transmission

dynamics, but on a population level aggregating all of these into a single parameter is a simple

way to represent the average transmission dynamics in the population.

Table 3. Parameter variables and values for the compartmental model.

Parameter

variable

Description Fixed parameter or prior

distribution

Literature

range

References

rE Rate of transition through early stage infectious classes

(ES, IS, EA, IA)

1/4.85 1/4.85 [18]

rAR Rate of transition from late stage asymptomatic (AR) to

recovered (R)

1/3.5 (see text) [20]

rLR Rate of transition from late stage symptomatic (LR) to

recovered (R)

1/3.5 (see text) [20]

rLH Rate of transition from late stage severely symptomatic

(LH)

1/5.2 1/5.2 [18]

rHR Rate of transition from hospital admission (HR) to

recovered (R), without ICU

1/9.37 –Wave 1

1/10.02 –Wave 2

1/6.1 [21], Table D in S1 Supplementary

Material

rHC Rate of transition from hospital admission (HC) to ICU

(CM, CD)

1/2.79 –Wave 1

1/2.70 –Wave 2

1/4 to 1/1.5 [7,8,21,22], Table D in S1

Supplementary Material

rHD Rate of transition from hospital admissions (HD) to death

(D), without ICU

1/8.93 –Wave 1

1/12.16 –Wave 2

1/9.8 to 1/7.5 [23], Table D S1 in Supplementary

Material

rCM Rate of transition from critical care admission (CM) to

step down (MR)

1/15.93 –Wave 1

1/8.57 –Wave 2

1/16.8 to 1/12 [11,21], Table D in S1 Supplementary

Material

rCD Rate of transition from critical care admission (CD) to

death (D)

1/11.84 –Wave 1

1/15.33 –Wave 2

1/17 to 1/7 [7,11,13], Table D in S1

Supplementary Material

rMR Rate of transition from step down (MR) to discharge (R) 1/11.85 –Wave 1

1/6.45 –Wave 2

1/7 [11], Table D S1 in Supplementary

Material

pA Proportion of infected individuals that will be

asymptomatic

0.55 0.179 to 0.972 [24–28]

pH Proportion of symptomatic individuals that will be

hospitalised

0.08 0.036 to 0.155 [21,22,29]

pC Proportion of hospitalised individuals that will enter

critical care

Uninformative

prior

0.091 to 0.485 [8,14,21,22,29]

pT Proportion of hospitalised individuals that will die

without entering critical care

Uninformative

prior

0.316 [8]

pD Proportion of individuals in critical care that will die 1Wave 1: 0.357 (0.319–0.384)

Wave 2: 0.287 (0.265–0.321)

0.4 to 0.453 [8,11]

1We used a strongly informative Normal prior distribution obtained from SARI data, with mean and 95% CI shown.

https://doi.org/10.1371/journal.pcbi.1010406.t003
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To model the background epidemic, we need to estimate the value of this transmission

parameter. We cannot assume this transmission rate is constant, because there are large

changes in this parameter across the pandemic, for example due to behavioural changes,

implementation of control policies, and circulation of different variants. However, we do not

want to add too many different values, as this risks overfitting noise in the data rather than

genuine changes in transmission. To capture these large changes, we assumed the transmission

rate was piecewise constant with pre-selected change points that generally correspond to large

policy changes:

• 13th March 2020 (visible change in hospitalisation trend, possibly due to media-driven beha-

vioural changes or inaccuracies in recording early hospitalisation data),

• 24th March 2020 (beginning of a UK-wide lockdown),

• 11th April 2020 (visible change in trend towards the end of lockdown),

• 15th August 2020 (visible rise in hospital admissions),

• 6th September 2020 (visible change in trend),

• 14th October 2020 (Merseyside first area in England to enter “tier 3” restrictions),

• 5th November 2020 (England-wide second lockdown),

• 18th November 2020 (indicated by an increase in infections due to the rise of the B.1.1.7 vari-

ant–now called Alpha–in England and potentially increasing social interactions, this also

encompasses any transmission changes after lifting the second lockdown on 2 December

2020).

In addition, we included change points three weeks before the final data point, unless a

major intervention was already present within the last three weeks. This translates in addi-

tional transmission rate changes on:

• 25th August 2020, when producing the fit to the entire first wave (Fig 2),

• 10th December 2020, when producing the fit to the entire second wave (Fig 3).

We refer to the periods during which transmission rates are assumed to be constant as con-

stant-transmission intervals. Although further changes in transmission rates could have been

added, this risked overfitting to noise in the data rather than genuine transmission trends. For

a full description see Supplementary Methods in S1 Supplementary Material.

2.3.2. EpiBeds captures the dynamics of the first and second waves in England. EpiBeds

performed well in capturing the dynamics of both the first and second waves (Figs 2 and 3).

For the first wave, the model fits admissions and hospital beds particularly well (low overdis-

persion of data around the average model prediction), whereas ICU occupancy and deaths

required high overdispersion to capture the data. This is driven by multiple factors including:

data quality issues between data streams at the start of the first wave; a large shift in the age dis-

tribution of admissions from frailer older people in the spring to younger people with low

mortality risk in the summer; and changes in treatment which likely altered outcome

probabilities.

For the second wave (Fig 3), there is better agreement among the data streams, due to more

consistent reporting of data by the hospital trusts, less demographic shift in hospital admis-

sions, and less dramatic changes in treatments, compared to the first wave. Although EpiBeds

links all four data streams well during this period, there was a sharper increase in ICU admis-

sion during September 2020 than the model captured. During this period, admissions were
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concentrated in the relatively young, with severely ill younger patients more likely to visit ICU

rather than be treated on the ward compared to older patients, since younger patients have

more favourable ICU outcomes. As the epidemic spread through the community, the age dis-

tribution became relatively stable, corresponding to a slowdown in the ICU admission rate

from October. Due to data quality issues in the early admissions data, we changed the data def-

initions used between the first and second waves slightly (see Section SM.1.1 in S1 Supplemen-

tary Material), resulting in higher admissions in the data used when fitting the second wave.

Since for the second wave we only fitted the other three streams from 1st August 2020 onwards,

these data quality issues no longer affect the performance of EpiBeds when linking the four

data streams.

2.3.3. The probabilities of dying, with and without ICU, declined significantly between

waves. Through the model fitting we obtained posterior estimates for the free parameters

(see Table SM.1.2 in S1 Supplementary Material for the list of parameters—estimates are only

reported for those with epidemiological significance, posterior distributions for all parameters

can be found on Github [33]), including the outcome probabilities pD, pT, and pC (Table 4).

These outcome probabilities were assumed to be constant throughout each wave and are pre-

sented only at the end of wave one (15th September 2020) and wave two (31st December 2020),

to highlight the difference between waves (Table 4). Since we used strongly informative priors

for pD, the posterior estimates of pD generated through MCMC remained close to the prior,

though we did observe a significant reduction between waves one and two (from 34% to 30%).

The estimated probability of being admitted to ICU (pC) remained relatively constant through-

out 2020 at ~13%, in line with previous estimates [3,19,21]. In contrast, the probability of

dying without entering ICU (pT) dropped by more than 25% between the two waves, from

Fig 2. First-wave model fit to admissions (red), beds (blue), ICU beds (cyan) and deaths (magenta). Vertical lines indicate when transmission rate changes are

added to EpiBeds (see Section SM.1.3.3 in S1 Supplementary Material). Note that there is a delay between transmission changing in the community and its

effect being observed in the hospital data, so visual inflections in the model trend occur after the transmission change point. The 90% prediction interval was

calculated by generating, for each parameter posterior sample, a new potential realisation of the data and then taking the 5 and 95 quantiles of the set of realised

data at each time point. All dates are given as day/month/year.

https://doi.org/10.1371/journal.pcbi.1010406.g002
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32% to 23%. These posterior estimates are consistent with the range of estimates from the liter-

ature (Fig C in S1 Supplementary Material).

In line with other published estimates [3,22,29], we estimated 13% of COVID-19 patients

were admitted to ICU, during both the first and second waves in England. The proportion of

patients surviving on ICU improved over time, with 34% mortality during the first wave and

30% during the second wave. An even stronger reduction in mortality occurred outside the

ICU, with 32% of admissions dying without ICU during the first wave and 23% during the sec-

ond wave. This reflects the change in the age distribution of cases and potential improvements

in treatments. Given only 13% of admitted patients went to ICU, the vast majority of deaths

Fig 3. Second-wave model fit to admissions (red), beds (blue), ICU beds (cyan) and deaths (magenta). Admissions data were fitted starting from 1st March

2020, while the other three data streams were fitted starting from 1st August 2020. Vertical lines indicate when transmission rate changes are added to EpiBeds

(see Section SM.1.3.3 in S1 Supplementary Material). Note that there is a delay between transmission changing in the community and its effect being observed

in the hospital data, so visual inflections in the model trend occur after the transmission change point. The 90% prediction interval was calculated by

generating, for each parameter posterior sample, a new potential realisation of the data and then taking the 5 and 95 quantiles of the set of realised data at each

time point. All dates are given as day/month/year.

https://doi.org/10.1371/journal.pcbi.1010406.g003

Table 4. Posterior estimates for hospital pathway proportions during 2020. Note that these periods overlap because

some historic data were needed to fit the second wave.

Parameter Before 15th

September

After 1st August

Proportion of hospitalised individuals that will enter critical care, pC 0.125 (0.119, 0.130)1 0.127 (0.123,

0.129)

Proportion of hospitalised individuals that will die without entering

critical care, pT

0.317 (0.305, 0.329) 0.234 (0.229,

0.240)

Proportion of individuals in critical care that will die, pD 0.344 (0.318, 0.372) 0.296 (0.270,

0.321)

1Parentheses indicate 90% credible intervals

https://doi.org/10.1371/journal.pcbi.1010406.t004
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occurred outside of ICU (about 89% and 84% of deaths during the two waves). In most cases

these were frail individuals for whom ICU was unsuitable.

2.3.4. Reproduction numbers fluctuated considerably during 2020. Using the transmis-

sion rates determined from EpiBeds, we estimated two types of reproduction numbers: the

control reproduction number Rc(t) and the effective reproduction number Re(t) [6]. The con-

trol reproduction number Rc(t) is the average number of new infections generated by an aver-

age infection started at time t, in the absence of population immunity, assuming the

transmission rate does not change (e.g. due to policy changes affecting physical distancing)

from its value at time t. The basic reproduction number R0 is then given by Rc(t) before the

first intervention reduces transmission by limiting the “natural” (i.e. pre-pandemic) popula-

tion contact patterns. The effective reproduction number, Re(t) (also denoted Rt), describes the

average number of new infections generated by an average infection started at time t, taking

into account population immunity. This can be obtained by multiplying Rc(t) by the suscepti-

ble fraction of the population at time t.
We calculated Rc(t) and Re(t) (Section 4.1) for each constant-transmission interval, using

estimates of the transmission rate obtained when fitting only to data obtained during the first

wave, or data from both waves (Table 5). The longer the interval during which the transmis-

sion rate is assumed to be constant, the smaller the uncertainty. Moreover, the estimates of

Re(t) that are obtained when only fitting the first wave are constrained by all four data streams,

whilst the first wave Re(t) estimates obtained when fitting to the second wave are only con-

strained by the hospital admissions, resulting in the slightly different estimates.

Although Rc(t) is proportional to the transmission rate and hence is constant throughout

each constant-transmission interval, as the proportion of susceptibles changes continuously

over time, so does Re(t), and therefore, we report the value of Re(t) only at the start of each con-

stant-transmission interval. The first lockdown significantly reduced the transmission rate. As

Table 5. Posterior estimates for effective, Re(t), and control, Rc(t) reproduction numbers during 2020. Wave-one

transmission rate estimates use data captured during the first wave only, whereas wave-two uses rates were estimated

using data captured from the whole epidemic (see main text for further details). The final interval ended on 31st

December 2020.

Date of change Re(t)1 Wave 1 Rc(t)2 Wave 1 Re(t)1 Wave 2 Rc(t)2 Wave 2

31st January 2020 5.87 (5.32, 6.54)^ 5.87 (5.32, 6.54)^ 5.44 (4.51, 6.35)�^ 5.44 (4.51, 6.35)�^

13th March 2020 3.02 (2.91, 3.12) 3.02 (2.91, 3.12) 2.84 (2.64, 3.02)� 2.84 (2.64, 3.02)�

24th March 2020 0.67 (0.65, 0.68) 0.67 (0.65, 0.68) 0.78 (0.76, 0.81)� 0.78 (0.76, 0.81)�

11th April 2020 0.81 (0.80, 0.81) 0.81 (0.80, 0.81) 0.80 (0.79, 0.80)� 0.80 (0.79, 0.80)�

10th August 2020 1.02 (0.88, 1.17) 1.18 (1.02, 1.36) NA NA

15th August 2020 NA NA 1.62 (1.60, 1.65) 1.71 (1.68, 1.74)

6th September 2020 NA NA 1.48 (1.47, 1.49) 1.57 (1.55, 1.68)

14th October 2020 NA NA 1.23 (1.22, 1.24) 1.30 (1.29, 1.31)

5th November 2020 NA NA 0.80 (0.78, 0.83) 0.85 (0.83, 0.88)

18th November 2020 NA NA 1.15 (1.13, 1.17) 1.23 (1.21, 1.25)

10th December 2020 NA NA 1.43 (1.39, 1.46) 1.54 (1.50, 1.57)

1Re(t) estimates are given for the new transmission after a date of change. Early Re(t) estimates do not substantially

differ from Rc(t) estimates due in negligible susceptible depletion.
2Rc(t) estimates are given for the interval beginning at the date of change until the next date of change.

^ Based on very few data points, since the data starts on 1st March 2020, so may be unreliable. See trace plots (Fig A

in S1 Supplementary Material) for poor identifiability of the initial growth rate.

�Based only on admissions rather than all four data streams so may be less reliable.

https://doi.org/10.1371/journal.pcbi.1010406.t005
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lockdown went on, Re(t) increased slightly, as indicated by the transmission rate change on

11th April 2020. Over August, transmission increased, bringing Re(t) above 1. This growth con-

tinued until further interventions were brought in with the local tier system. This reduced the

transmission rate, likely driven by the effectiveness of the tier 3 interventions in the North

West. Finally, the second lockdown brought transmission down across the whole of England,

bringing again Re(t) below 1. Note that, using this model the initial reproduction number is

not reliably constrained, since there are very few data points informing the initial transmission

rate. This lack of identifiability is reflected in the MCMC trace plots (Fig A in S1 Supplemen-

tary Material).

2.4. Short-term forecasts were accurate unless transmission rates changed

markedly during the forecasting window

To evaluate the performance of EpiBeds as a tool for real-time monitoring of the evolving epi-

demic in England, we performed two-week projections made on days 1 and 15 of each month,

from March to December 2020, based on the data available at that time. We illustrate these

projections in Fig 4, superimposed to the complete data for both waves. The posterior parame-

ter estimates vary at every projection due to the additional data at each successive time point.

We do not report the specific parameter estimates from each model fitting, but only the projec-

tions for the data streams. See Section SM.1.3.4 in S1 Supplementary Material for details on

the setup when generating these results.

For the first forecasts (start date 1st April 2020), a transmission change was added on 24th

March 2020 to allow EpiBeds to adjust transmission based on lockdown. Such a short fitting

window resulted in large uncertainty, with both growing and declining epidemics falling

Fig 4. England hospital forecasts. Green shaded regions are the 90% prediction intervals from forecasts up to 15th September 2020. Blue shaded regions are

the 90% prediction intervals from forecasts after 1st October 2020 (using data from 1st August 2020). Vertical black lines mark where major transmission

changes occur, with changes in trajectory only manifesting after a delay that is data stream dependent. The y-axis is truncated to aid visibility, though a few

forecast regions do exceed the y-limit.

https://doi.org/10.1371/journal.pcbi.1010406.g004

PLOS COMPUTATIONAL BIOLOGY EpiBeds: Data informed modelling of the COVID-19 hospital burden in England

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010406 September 6, 2022 12 / 20

https://doi.org/10.1371/journal.pcbi.1010406.g004
https://doi.org/10.1371/journal.pcbi.1010406


within the 90% prediction interval. By the 15th April 2020 forecast, a peak had been observed

in the admissions data, but EpiBeds was unable to reconcile the four data streams, which

resulted in the forecasts underestimating the reduction in the transmission rate and overshoot-

ing the data. This poor performance could be driven by multiple factors, such as challenges

with estimating length of stay early in the pandemic (Sections SM.1.2 and SM.3 in S1 Supple-

mentary Material), changing demographics after entering the first lockdown, and data quality

issues in some of the data streams (Section SM.1.1 in S1 Supplementary Material). After this

point, forecasts remained reliable into the summer.

As transmission started to rise again, EpiBeds was able to accurately forecast the rise in all

four data streams. However, throughout September and October, there was a demographic

change, from younger to older age groups. This led to the ICU probability gradually declining

and the mortality rate increasing, and the forecasts overestimated and underestimated, respec-

tively, these two data streams. In November, the demographic distribution of cases stabilised,

and EpiBeds was able to reconcile all four data streams. Noticeably, the 1st December 2020

forecast completely missed the trend in the data. This was partly to be expected since 2nd

December 2020 marked the end of the second England-wide lockdown, and prior to this trans-

mission rates were also likely to have been increasing due to behaviour changes and the emer-

gence of the more transmissible Alpha variant [34].

Overall, 77% of data points, across all 4 data streams, fell within the 90% prediction intervals

admissions 76%; hospital beds 80%; ICU beds 73%; deaths 80%). In many cases when data

points fall out of the 90% prediction interval occur where an intervention was introduced dur-

ing the forecasting window. Others potentially arise from data quality issues between the data

streams, particularly during the first wave. Overall, this shows reasonably good model perfor-

mance, and in practice throughout the pandemic EpiBeds has provided reliable forecasts in all

regions where it was used. Our results highlight the context dependence of model perfor-

mance, with lower predictive ability when transmission rates change frequently, and con-

versely greatly predictive ability when transmission rates are relatively stable.

3. Discussion

To make short-term predictions for the flow of patients through hospitals we developed Epi-

Beds, a compartmental model tailored to available line list data. The explicit inclusion of com-

partments depending on patient outcomes enabled the optimal use of available data whilst

keeping model complexity low. By fitting the model to hospital occupancy data, we estimated

the proportion of patients entering each hospital pathway, generated short-term hospital occu-

pancy predictions, and helped inform management of hospital caseloads. Using the model, we

were also able to estimate the effective and control reproduction numbers during different

periods of the epidemic, corresponding to substantial changes in the hospital trends driven by

major policy changes, the emergence of new variants, and seasonal effects. As well determining

changes in the reproduction number during the 2020 epidemic in England, which largely cor-

responded to changes in policy, we also captured the greater proportion of hospitalised

patients recovering between the first and second waves.

We validated the short-term forecasting performance of EpiBeds by generating 14-day fore-

casts using data available at the start and midpoint of each month. Due to the potentially fast-

growing nature of COVID-19 outbreaks [18] about:blank, and the limited duration of most

interventions, long-term forecasting is limited, since conditions are likely to have changed

between the production of the forecast and reaching the forecast horizon. Because of the delay

of a few weeks between the implementation of interventions and their effects on hospital

admissions [18,35], short-term forecasts of a few weeks should not be significantly affected,
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and are valuable planning tools for hospitals and health services. Most of our forecasts cap-

tured the data within the 90% prediction interval of the forecasts, demonstrating the reliability

of EpiBeds for providing short-term hospital flow predictions. When transmission rates were

stable, forecasting accuracy was particularly high. However, large changes in transmission

rates, for example due to major policy changes and the emergence the Alpha variant, reduced

the forecasting accuracy. Data quality issues can also affect predictions, and this likely contrib-

uted to some of the forecasting inaccuracies we observed during the first wave.

EpiBeds was developed specifically to provide predictions of hospital occupancy and

designed to maximise the information in available data whilst minimising the inclusion of

unsupported assumptions. For this reason, the model is not structured by sex or age, or other

comorbidities such as heart failure or chronic kidney disease, even though these are known to

affect disease severity [12,36]. The SITREP does not include sex as a category and does not

include age for all data streams (particularly when the model was first developed). As epidem-

ics progress, the communities in which the virus circulates may change, which in turn could

affect how individuals progress through hospital pathways, such as the probability of entering

ICU if critically ill. This emphasises the need for the consistent reporting of high-quality data

so that estimates can be continuously updated, resulting in more accurate forecasts. To

account for demographic changes, as well as potential improvements in treatments, we fitted

the parameters for the second wave independently of the first wave.

The structure of EpiBeds makes use of the fact that the delay distributions were approxi-

mately Erlang distributed, so that they can easily be approximated by a series of ODEs. It

would be possible to instead write the model in terms of delay equations, but the ODE

approach leads to significantly reduced computational cost, which is essential for a modelling

product that may need to be run multiple times per week.

A limitation of the current framework is the assumption of complete immunity. For the

time period considered, this is unlikely to have affected the results. However, with mass vacci-

nation, immune waning and immune escape variants, more complexity may be required to

capture long term dynamics. To address this, vaccinated compartments, variants, and immune

waning could be added to the model. However, over the short time scales of projections con-

sidered, population immunity is unlikely to have a major influence on the dynamics, which

are mostly driven by recent trends in the data.

Our model differs from more conventional compartmental models by defining compartments

based not only on current status, but on future outcome, making it more closely aligned to the

data. This alignment to data, and its relative simplicity, means EpiBeds can be used to make short-

term predictions in different settings, as well as used as a framework to develop short-term fore-

casts in the case of new outbreaks. Moreover, the minimal complexity of EpiBeds makes it easy to

identify the cause of model fitting issues, including lack of identifiability of the patient outcome

probabilities without strongly informative priors and temporal changes in the relationships

between the different data streams, and makes both model behaviour and model limitations trans-

parent. We deem these to be key reasons to advocate for the use of simple models. Here, we fitted

EpiBeds to hospital data for England, but it can readily be applied to other geographies. For exam-

ple, as part of the COVID-19 response, we used it to generate forecasts for Scotland, Wales, North-

ern Ireland, and the United Kingdom, as well as for smaller English regions.

4. Methods

M.1 The ODE compartmental model for hospital flow

The structure of the ODE model was informed by the delay distributions (Section 2.1 and Sec-

tion SM.1.2 in S1 Supplementary Material). In an ODE compartmental model with constant
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progression rates, the permanence waiting times in each compartment are exponentially dis-

tributed with mean equal to the inverse of the rate. Since all the hospital length of stay distribu-

tions were approximately exponential (because the mean is similar to the standard deviation),

we modelled the hospital compartments using constant rates. For the background epidemic,

we represented the Gamma-distributed incubation period (shape parameter 3, [4]) and the

Gamma-distributed time between symptom onset to hospitalisation (shape parameter 2, [5]),

by using three and two compartments in sequence. This is a way of representing Gamma-dis-

tributed permanence times by using the Erlang distribution. Specifically, an Erlang distribu-

tion with shape parameter n corresponds to the sum of n independent and identically

distributed exponential distributions [6]. If all rates are equal to r, the mean permanence time

in a sequence of n compartments will be Erlang distributed with mean n/r and shape parame-

ter n [7]. This results in EpiBeds described by the flowchart in Fig 1 and by the following sys-

tem of ODE’s (where the time index in all parameters and variables has been dropped for

brevity)

dS
dt
¼ � l

dES1

dt
¼ 1 � pAð Þl � 3rEES1

dES2

dt
¼ 3rEES1

� 3rEES2

dEA1

dt
¼ pAl � 3rEEA1

dEA2

dt
¼ 3rEEA1

� 3rEEA2

dIs

dt
¼ 3rEES2

¼ 3rEIS

dIA

dt
¼ 3rEEA2

� 3rEIA

dLR

dt
¼ 3rEIS 1 � pHð Þ � rLHLR

dAR

dt
¼ 3rEIA � rARAR

dLH1

dt
¼ 3rEISpH � 2rLHLH1

dLH2

dt
¼ 2rLHLH1

� 2rLHLH2

dHD

dt
¼ 2rLHLH2

pT � rHDHD
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dMR

dt
¼ rCMCM � rMRMR

dD
dt
¼ rHDHD þ rCDCD

dN
dt
¼ � rHDHD � rCDCD

dR
dt
¼ rHRHR þ rMRMR þ rLRLR þ rARAR

where

l ¼ Sbðf ðIA þ ARÞ þ IS þ LR þ LH1
þ LH2

Þ:

Here, f is the reduction in transmission for asymptomatic cases, which is taken to be

f = 0.25.

From the solution to the ordinary differential equations, the control and effective reproduc-

tion numbers can be calculated. The control reproduction number is given by

RcðtÞ ¼ bðtÞk;

where

k ¼ 1 � pAð Þ
1

3rE
þ

pH

rLH
þ

1 � pH

rLR

� �

þ pAf
1

3rE
þ

1

rAR

� �

:

From the control reproduction number, the effective reproduction number can be calcu-

lated as

Re tð Þ ¼ Rc tð Þ
SðtÞ
NðtÞ

:

M.2 Markov Chain Monte Carlo (MCMC)

To fit the ODE model to data, we generated a likelihood function which we then optimised

using MCMC. Specifically, adding Negative Binomial noise to the ODEs describing the model

enabled us to calculate a likelihood function for observing the data given our model parame-

ters. This is based on the probability that the deviation between our model and the data can be

explained by noise. For each of the four data streams we constructed a likelihood function,

which were then multiplied together to build the overall likelihood function. In addition, we

included an informative prior for the probability of dying in ICU, pD, giving an overall likeli-

hood function:

L ¼
X

ln f dA;
yA

sA � 1
;

1

sA

� �� �

þ
X

ln f dB;
yB

sB � 1
;

1

sB

� �� �
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þ
X

ln f dC;
yC

sC � 1
;

1

sC

� �� �

þ
X

ln f dD;
yD

sD � 1
;

1

sD

� �� �

�
1

2
lnð2ps2

priorÞ

� �

�
1

ð2s2
priorÞðpD � mpriorÞ

2

Where A, B, C and D refer to the four different data streams fitted and σ is the overdisper-

sion parameter of the Negative Binomial observation noise, d is the data, y is the solution to

the ODEs, μprior is the mean prior estimate of pD and σprior is the standard deviation of the

prior pD estimate. The continuous variables y are defined as

yA ¼ rLHLH2

yB ¼ HD þHC þHR þ CD þ CM þMR

yC ¼ CD þ CM

yD ¼ rHDHD þ rCDCM

and were evaluated at each day for which a data point d was available. The sums are over all

days for which data is available. Adding an informative prior for pD was required to constrain

the values for pC and pT.

To fit the model, we manually tuned a random walk MCMC algorithm implemented in

Julia, with the input data depending on whether the first wave or second wave was being fitted.

We start the epidemic on 20th January 2020, with I0 initial cases in the EA and ES states. This

allowed sufficient time for the other compartments to reach roughly stable proportions before

the first data point on 1st March 2020. Prior values for EpiBeds parameters are specified as

described in Sections SM.1.3.1 –SM.1.3.2 in S1 Supplementary Material, coupled with initial

conditions for the free parameters with uninformative priors. The ODE was then solved for

the input parameters, generating the time-series output that are added to the likelihood func-

tions. Based on these likelihoods, the parameter values are scored and resampled, allowing Epi-

Beds to explore the parameter space. Code for simulating EpiBeds, and generating the

scenarios shown in the paper, are available at [11], along with trace plots for all MCMC results

included in this paper. Unfortunately, input data cannot be shared, since this was provided

through a data sharing agreement, but similar publicly available data are available at [2].

When fitting the data, we considered the first and second waves separately. Due to changes

in length of stay and patient outcomes over time, we cannot fit a single set of parameters over

the whole pandemic. To fit the first wave of the epidemic, we used all four data streams, using

data starting on 1st March 2020. When fitting the second wave, we removed beds, ICU, and

deaths data prior to 1st August 2020. Prior to this date, EpiBeds is only constrained by the hos-

pital admissions data, and only the first term of the likelihood (which does not depend on the

outcome probabilities pC, pT and pD) is used. After 1st August 2020, we introduce the other

three data streams and compute the other likelihood terms. This then constrains the probabili-

ties to fit the relationship between these data streams in the second wave.

PLOS COMPUTATIONAL BIOLOGY EpiBeds: Data informed modelling of the COVID-19 hospital burden in England

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010406 September 6, 2022 17 / 20

https://doi.org/10.1371/journal.pcbi.1010406


Supporting information

S1 Supplementary Material. Additional details describing the methods for EpiBeds. Extra

figures supporting the narrative. Additional results detailing the input parameters used for the

performance evaluation.

(DOCX)

Acknowledgments

The authors would like to thank colleagues in SPI-M-O and JUNIPER consortium for various

discussions around hospital modelling and forecasting.

Author Contributions

Conceptualization: Christopher E. Overton, Lorenzo Pellis, Katrina A. Lythgoe.

Data curation: Christopher E. Overton, Lorenzo Pellis, Helena B. Stage, Francesca Scarabel,

Anel Nurtay, Katrina A. Lythgoe.

Formal analysis: Christopher E. Overton, Lorenzo Pellis, Helena B. Stage, Francesca Scarabel,

Joshua Burton, Filippo Pagani, Katrina A. Lythgoe.

Methodology: Christopher E. Overton, Lorenzo Pellis, Francesca Scarabel, Joshua Burton, Ian

Hall, Thomas A. House, Chris Jewell, Filippo Pagani, Katrina A. Lythgoe.

Software: Christopher E. Overton, Lorenzo Pellis, Francesca Scarabel, Joshua Burton, Filippo

Pagani.

Visualization: Christopher E. Overton, Lorenzo Pellis, Helena B. Stage, Katrina A. Lythgoe.

Writing – original draft: Christopher E. Overton, Lorenzo Pellis, Helena B. Stage, Francesca

Scarabel, Christophe Fraser, Anel Nurtay, Katrina A. Lythgoe.

Writing – review & editing: Christopher E. Overton, Lorenzo Pellis, Helena B. Stage, Fran-

cesca Scarabel, Anel Nurtay, Katrina A. Lythgoe.

References
1. Littig SJ, Isken MW. Short term hospital occupancy prediction. Health Care Manage Sci. 2007 Jan 2; 10

(1):47–66. https://doi.org/10.1007/s10729-006-9000-9 PMID: 17323654

2. Whitt W, Zhang X. Forecasting arrivals and occupancy levels in an emergency department. Operations

Research for Health Care. 2019 Jun 1; 21:1–18.

3. Leclerc QJ, Fuller NM, Keogh RH, Diaz-Ordaz K, Sekula R, Semple MG, et al. Importance of patient

bed pathways and length of stay differences in predicting COVID-19 hospital bed occupancy in

England. BMC Health Serv Res. 2021 Jun 9; 21(1):566. https://doi.org/10.1186/s12913-021-06509-x

PMID: 34107928

4. Anderson R, Donnelly C, Hollingsworth D, Keeling M, Vegvari C, Baggaley R, et al. Reproduction num-

ber (R) and growth rate (r) of the COVID-19 epidemic in the UK: methods of estimation, data sources,

causes of heterogeneity, and use as a guide in policy formulation. The Royal Society. 2020; 2020.

5. Funk S, Abbott S, Atkins BD, Baguelin M, Baillie JK, Birrell P, et al. Short-term forecasts to inform the

response to the Covid-19 epidemic in the UK. medRxiv preprint—BMJ Yale [Internet]. 2020 Dec 4 [cited

2021 Sep 10]; Available from: https://researchonline.lshtm.ac.uk/id/eprint/4660335/.

6. Pellis L, Birrell PJ, Blake J, Overton CE, Scarabel F, Stage HB, et al. Estimation of reproduction num-

bers in real time: conceptual and statistical challenges. Journal of the Royal Statistical Society Series A.

(to appear).

7. ECDC. COVID-19 surveillance report Week 25, 2020 [Internet]. 2020 [cited 2021 Sep 10]. Available

from: https://covid19-surveillance-report.ecdc.europa.eu/.

PLOS COMPUTATIONAL BIOLOGY EpiBeds: Data informed modelling of the COVID-19 hospital burden in England

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010406 September 6, 2022 18 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010406.s001
https://doi.org/10.1007/s10729-006-9000-9
http://www.ncbi.nlm.nih.gov/pubmed/17323654
https://doi.org/10.1186/s12913-021-06509-x
http://www.ncbi.nlm.nih.gov/pubmed/34107928
https://researchonline.lshtm.ac.uk/id/eprint/4660335/
https://covid19-surveillance-report.ecdc.europa.eu/
https://doi.org/10.1371/journal.pcbi.1010406


8. ISARIC. ISARIC COVID-19 Report: 08 June 2020 [Internet]. 2020 [cited 2021 Sep 10]. Available from:

https://isaric.tghn.org/.

9. Coronavirus modelling [Internet]. Norwegian Institute of Public Health. [cited 2021 Sep 10]. Available

from: https://www.fhi.no/en/id/infectious-diseases/coronavirus/coronavirus-modelling-at-the-niph-fhi/.

10. Bhatraju PK, Ghassemieh BJ, Nichols M, Kim R, Jerome KR, Nalla AK, et al. Covid-19 in Critically Ill

Patients in the Seattle Region—Case Series. New England Journal of Medicine. 2020 May 21; 382

(21):2012–22. https://doi.org/10.1056/NEJMoa2004500 PMID: 32227758

11. ICNARC. ICNARC report on COVID-19 in critical care 17 July 2020 [Internet]. 2020 [cited 2021 Sep 10].

Available from: https://www.icnarc.org/Our-Audit/Audits/Cmp/Reports.

12. Petrilli CM, Jones SA, Yang J, Rajagopalan H, O’Donnell L, Chernyak Y, et al. Factors associated with

hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York

City: prospective cohort study. BMJ. 2020 May 22; 369:m1966. https://doi.org/10.1136/bmj.m1966

PMID: 32444366

13. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline characteristics and

outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy.

Jama. 2020; 323(16):1574–81. https://doi.org/10.1001/jama.2020.5394 PMID: 32250385

14. Lewnard JA, Liu VX, Jackson ML, Schmidt MA, Jewell BL, Flores JP, et al. Incidence, clinical outcomes,

and transmission dynamics of severe coronavirus disease 2019 in California and Washington: prospec-

tive cohort study. BMJ. 2020 May 22; 369:m1923. https://doi.org/10.1136/bmj.m1923 PMID: 32444358

15. Saito S, Asai Y, Matsunaga N, Hayakawa K, Terada M, Ohtsu H, et al. First and second COVID-19

waves in Japan: A comparison of disease severity and characteristics. Journal of Infection. 2021 Apr 1;

82(4):84–123. https://doi.org/10.1016/j.jinf.2020.10.033 PMID: 33152376
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