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Thyroid transcription factor-1 (TTF-1, encoded by the NKX2-1 gene) is

highly expressed in small-cell lung carcinoma (SCLC) and lung adenocarci-

noma (LADC), but how its functional roles differ between SCLC and

LADC remains to be elucidated. Here, we compared the genome-wide dis-

tributions of TTF-1 binding regions and the transcriptional programs regu-

lated by TTF-1 between NCI-H209 (H209), a human SCLC cell line, and

NCI-H441 (H441), a human LADC cell line, using chromatin immunopre-

cipitation-sequencing (ChIP-seq) and RNA-sequencing (RNA-seq). TTF-1

binding regions in H209 and H441 cells differed by 75.0% and E-box

motifs were highly enriched exclusively in the TTF-1 binding regions of

H209 cells. Transcriptome profiling revealed that TTF-1 is involved in neu-

roendocrine differentiation in H209 cells. We report that TTF-1 and

achaete-scute homolog 1 (ASCL1, also known as ASH1, an E-box binding

basic helix–loop–helix transcription factor, and a lineage-survival oncogene

of SCLC) are coexpressed and bound to adjacent sites on target genes

expressed in SCLC, and cooperatively regulate transcription. Furthermore,

TTF-1 regulated expression of the Bcl-2 gene family and showed antiapop-

totic function in SCLC. Our findings suggest that TTF-1 promotes SCLC

growth and contributes to neuroendocrine and antiapoptotic gene expres-

sion by partly coordinating with ASCL1.

1. Introduction

Thyroid transcription factor-1 (TTF-1, encoded by the

NKX2-1 gene) is a homeodomain-containing master

transcription factor (TF) of lung morphogenesis and

differentiation of pulmonary epithelial cells (Kimura

et al., 1996; Minoo et al., 1999). TTF-1 is expressed in

75–80% of lung adenocarcinoma (LADC), a non-

small-cell lung cancer (NSCLC) subtype, and is a mar-

ker of the terminal respiratory unit (TRU) subtype

(Yatabe et al., 2002). TTF-1-positive LADC patients

show better prognosis than TTF-1-negative LADC
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patients (Kim et al., 2018; Zhang et al., 2015). TTF-1

reduces invasion and metastasis in LADC (Hosono

et al., 2012; Winslow et al., 2011); TTF-1 inhibits

TGF-b-induced epithelial–mesenchymal transition

(EMT) in LADC cells (Isogaya et al., 2014; Saito

et al., 2009). In contrast, the NKX2-1 gene is amplified

in 10–15% of LADCs and acts as a lineage-survival

oncogene (Kwei et al., 2008; Tanaka et al., 2007).

TTF-1 has a prosurvival function in cancer cells via

ROR1 induction and LMO3 oncogene regulation

(Watanabe et al., 2013; Yamaguchi et al., 2012). Thus,

TTF-1 plays a double-edged role in LADC (Yam-

aguchi et al., 2013).

Although small-cell lung cancer (SCLC) has primi-

tive neuroendocrine features distinct from LADC, 80–
90% of SCLC tumors express pathologically high

levels of TTF-1 (Misch et al., 2015). TTF-1 is

expressed not only in SCLC but also in small-cell car-

cinoma of other organs, such as prostate (Wang and

Epstein, 2008). Similar to achaete-scute homolog 1

(ASCL1, also known as ASH1), the NKX-home-

odomain family TFs play a critical role in reprogram-

ming normal human epithelial tissues to a

neuroendocrine cancer lineage (Park et al., 2018), sug-

gesting a critical function of TTF-1 in SCLC other

than promoting epithelial cell differentiation. Con-

versely, the majority of SCLCs are of the peripheral

type, and the peripheral-type SCLC expresses TTF-1

more frequently than does the central-type (Miyauchi

et al., 2015), indicating that most SCLCs are derived

from TRU cells expressing TTF-1. A recent report

revealed that the expression of TTF-1 is positively reg-

ulated by ASCL1 in SCLC cell lines to induce nuclear

factor I B-type (NFIB) (Horie et al., 2018).

The aforementioned studies strongly suggest a cen-

tral role of TTF-1 in SCLC pathology. However, the

difference in the roles of TTF-1 between SCLC and

LADC remains to be elucidated. Employing chromatin

immunoprecipitation-sequencing (ChIP-seq) and

RNA-sequencing (RNA-seq), here we compared the

genome-wide TTF-1 binding profiles and the TTF-1-

mediated transcriptional programs in SCLC and

LADC cell lines.

2. Materials and methods

2.1. Cell culture

Human SCLC NCI-H209 (H209) and NCI-H345

(H345), and NSCLC A549 and NCI-H441 (H441)

were obtained from American Type Culture Collection

(Manassas, VA, USA). Human SCLC Lu-135 and

STC-1 cells were purchased from the Japanese Collec-

tion of Research Bioresources (JCRB) Cell Bank

(Osaka, Japan). H209, H441, Lu-135, and STC-1 cells

were cultured in RPMI 1640 (#11875; Thermo Fisher

Scientific, Waltham, MA, USA). H345 cells were cul-

tured in Dulbecco’s modified Eagle’s medium

(DMEM)/Nutrient Mixture F-12 (1 : 1) medium

(#11330; Thermo Fisher Scientific) with 5 lg�mL�1

insulin, 5 lg�mL�1 transferrin, 30 nM sodium selenite

(#I1884; Sigma-Aldrich, St. Louis, MO, USA), 10 nM

b-estradiol (#E2257; Sigma-Aldrich), and 10 nM

hydrocortisone (#H0135; Sigma-Aldrich). A549 cells

were cultured in DMEM (#11965; Thermo Fisher Sci-

entific). All culture media included 10% FBS

(#SH30910.03; Thermo Fisher Scientific), 100 U�mL�1

penicillin G, and 100 µg�mL�1 streptomycin. All cells

were maintained in a humidified atmosphere of 5%

CO2 at 37 °C.

2.2. Clinical samples

This study was certified by Ethics Committee in the

University of Tokyo and in the Cancer Institute and

was carried out in accordance with the Helsinki Decla-

ration. Primary SCLC samples were obtained from

patients undergoing pulmonary resection at the

Department of Surgery, Cancer Institute Hospital,

with written informed consent. These samples were

immediately frozen with liquid nitrogen and stored at

�80 °C. The frozen materials were microscopically

examined by two independent pathologists and were

dissected to enrich cancer cells when necessary. Total

RNA was extracted using TRIzol (Thermo Fisher Sci-

entific), confirming high quality of RNA with RNA

intensity number ≥ 7.0, and expression array analysis

using Affymetrix GeneChip Human Genome U133

Plus 2.0 oligonucleotide arrays (Fremont, CA, USA)

was conducted previously (Sato et al., 2013). In overall

survival analysis, the Kaplan–Meier curve was drawn

and P-value was calculated by log-rank test using R

(version 2.15.3) with ‘survival’ package (version 2.41.3)

(http://www.R-project.org/). The end of follow-up per-

iod was 142 months from the primary surgery, and the

mean follow-up time of the cases was 92 months.

Death as a result of SCLC was the primary end point,

and deaths by other causes were censored.

2.3. Antibodies

The following antibodies were used: anti-TTF-1 [for

immunoblotting (IB) and ChIP, 1 : 1000 and 5 µg,
respectively, #MS-699-P; Lab Vision Corporation, Fre-

mont, CA, USA; for immunohistochemistry (IHC)
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(1 : 50), immunofluorescence (1 : 200), and in situ

proximity ligation assay (PLA) (1 : 100), #ab76013;

Abcam, Cambridge, UK], anti-a-tubulin (1 : 10 000,

#T1699; Sigma-Aldrich), anti-FLAG M2 (1 : 1000,

#F3165; Sigma-Aldrich), anti-c-Myc (1 : 1000, #017-

21874; Wako Pure Chemical Industries, Osaka, Japan),

anti-MASH1/ASCL1 [for PLA (1 : 50), IB (1 : 1000),

and ChIP (5 µg), #556604; BD, Franklin Lakes, NJ,

USA], anti-Bim (1 : 1000, #2933; Cell Signaling Tech-

nology, Danvers, MA, USA), and anti-Bcl-2 (1 : 100

for IHC, 1 : 1000 for IB, and 1 : 400 for immunofluo-

rescence, #15071; Cell Signaling Technology).

2.4. Immunohistochemistry of tissue microarray

A tissue microarray of SCLC (LC818a) was obtained

from US Biomax (Rockville, MD, USA). The array

was deparaffinized and rehydrated followed by antigen

retrieval using 10 mM sodium citrate buffer (pH 6.0).

Endogenous peroxidase activity was blocked by 3.0%

hydrogen peroxide. The array was then blocked with

Blocking One reagent (Nacalai Tesque, Kyoto, Japan)

and incubated with anti-TTF-1, anti-MASH1/ASCL1,

or anti-Bcl-2 antibody. Vectastain ABC Kit (Vector

Laboratories Inc., Burlingame, CA, USA) and 3,30-di-
aminobenzidine (Dako, Agilent Technologies, Santa

Clara, CA, USA) were used for immunodetection. Sec-

tions were weakly counterstained with hematoxylin.

Images were captured with the all-in-one fluorescence

microscope, BZ-X710 (Keyence, Osaka, Japan).

We evaluated three spots per tumor sample with a

209 objective. For TTF-1 and ASCL1 IHC, the frac-

tion of stained tumor cells was scored as follows: 0,

0%; 1, 1–20%; 2, 21–50%; 3, 51–80%; and 4, > 81%.

For Bcl-2 IHC, the intensity of staining was scored as

follows: 0, negative; 1, weak; 2, moderate; 3, strong;

and 4, very strong. The IHC scores of each array spot

were evaluated by a pulmonologist (S.H.).

2.5. Immunofluorescence

Paraffin-embedded H209 cells were treated as

described above. The cells were stained with anti-TTF-

1 and anti-Bcl-2 antibodies. Stained cells were visual-

ized using anti-mouse IgG H&L (Alexa Fluor 594;

Thermo Fisher Scientific), anti-rabbit IgG H&L (Alexa

Fluor 488; Thermo Fisher Scientific), and DAPI.

Images were captured with the all-in-one fluorescence

microscope BZ-X710. The expression of Bcl-2 was

quantified by area fraction measurement of ImageJ

and normalized by cell number. For each condition,

randomly selected two enlarged images were used for

calculation.

2.6. In situ proximity ligation assay

We used Duolink kit (Olink, Uppsala, Sweden) for

in situ PLA assay as previously described (Isogaya

et al., 2014). The anti-TTF1 and anti-MASH1/ASCL1

were used as primary antibodies. Combination of the

primary antibodies was determined so that no antibody

cross-reacted with the PLA probe-conjugated secondary

antibody to other primary antibodies. Vectashield

mounting medium with DAPI (Vector Laboratories)

was used as a nuclear counterstain. The experiment was

performed twice with essentially the similar results.

2.7. Immunoblotting and immunoprecipitation

For IB, cells were rinsed with ice-cold PBS and lysed

with RIPA buffer [50 mM Tris/HCl (pH 8.0), 150 mM

NaCl, 1% Nonidet P-40, 0.1% SDS, and 0.5% sodium

deoxycholate] that included cOmplete EDTA-free pro-

tease inhibitor (Roche Diagnostics, Basel, Switzerland).

After centrifugation at 15 000 r.p.m. (20 400 g) and

4 °C for 10 min, protein concentrations were estimated

using the BCA Protein Assay Kit (Thermo Fisher Sci-

entific). The same amount of proteins was subjected to

SDS/polyacrylamide gel electrophoresis and transferred

to Fluoro Trans W membranes (Pall, Port Washington,

NY, USA). For immunoprecipitation (IP), cultured

cells were lysed with lysis buffer [1% Nonidet P-40,

150 mM NaCl, 20 mM Tris/HCl (pH 7.5), and cOmplete

EDTA-free protease inhibitor]. Co-IP was performed

as previously described (Koinuma et al., 2009a). IB was

carried out as described previously (Katsura et al.,

2017; Koinuma et al., 2011) and imaged with a

LAS-4000 lumino Image analyzer (FUJIFILM, Tokyo,

Japan). The experiments were repeated, and the repre-

sentative data are shown in the figures.

2.8. RNA interference

Reverse transfection of Stealth Select siRNA (Thermo

Fisher Scientific) was performed using Lipofectamine

RNAiMAX (Thermo Fisher Scientific). We used two

sets of siRNA: TTF-1 (siTTF-1) (#1: HSS144277 and

#2: HSS144278) and ASCL1 (siASCL1) (#1:

HSS100745 and #2: HSS181121). Medium GC Com-

plex #2: 12935-112 (Thermo Fisher Scientific) was used

as negative control siRNA (siNC).

2.9. RNA extraction and quantitative real-time

reverse transcription–PCR

Total RNA was extracted with the RNeasy Mini Kit

(Qiagen, Hilden, Germany). First-strand cDNAs were
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synthesized using PrimeScript II reverse transcriptase

and oligo dT primers (Takara Bio, Shiga, Japan)

according to the manufacturer’s instructions. Quantita-

tive real-time reverse transcription–PCR (qRT-PCR)

was performed with the StepOnePlus Real-Time PCR

System (Thermo Fisher Scientific) and the FastStart

Universal SYBR Green Master Mix (ROX) (Roche

Diagnostics). All samples were run in duplicate, and

results were averaged and normalized to the expression

of GAPDH (glyceraldehyde-3-phosphate dehydroge-

nase). Primer sequences are shown in Table S1.

2.10. Chromatin immunoprecipitation, ChIP-seq,

and data analysis

ChIP-qPCR and ChIP-seq of H441 and H209 cells

were performed using anti-TTF-1 antibody or anti-

ASCL1 antibody as described previously (Koinuma

et al., 2009b). Data were obtained as two biological

replicates. The TTF-1 ChIP-seq of H441 cells has been

published [available at Gene Expression Omnibus

(GEO; GSE51510)] (Isogaya et al., 2014), and we addi-

tionally obtained new data as a biological replicate in

this study. For ChIP-seq data analysis, reads were

trimmed down to 50 bp to compare with the published

datasets and were aligned against the human reference

genome (NCBI Build 36, hg19) with BOWTIE (Lang-

mead et al., 2009). Peaks of TTF-1 and ASCL1 ChIP-

seq were called using MACS2 (Zhang et al., 2008) by

two-sample analysis using default parameters, where

input genomic DNA was used as a negative control.

Mapped sequence data were visualized using Integra-

tive Genomics Browser. Gene annotations and gene

ontology (GO) analysis for TTF-1 and ASCL1 ChIP-

seq data were performed using GREAT version 3.0.0

with default parameters and whole genome as back-

ground (McLean et al., 2010). De novo motif discovery

and motif centrality analysis for TTF-1 and ASCL1

ChIP-seq were conducted with MEME-CHIP ver 5.0.5

(Machanick and Bailey, 2011), which internally used

DREME version 5.0.5 and CENTRIMO version 5.0.5 (Bailey

and Machanick, 2012). The 500-bp genomic sequences

flanking the peak summits of the binding regions were

used for calculation. Default parameters were used

except for the number of motifs (8) and the minimal

length of the motif (5) for MEME. Primer sequences for

ChIP-qPCR are shown in Table S2. The full list of the

motifs reported by DREME is available as Data S1–S3.

2.11. RNA-seq and data analysis

RNA-seq was performed as described previously (Iso-

gaya et al., 2014; Kawasaki et al., 2018). For RNA-

seq data analysis, reads were aligned against the

human genome (NCBI Build 36, hg19) using TOPHAT2

(https://ccb.jhu.edu/software/tophat/). Differential

expression was evaluated using the Cuffdiff function

of CUFFLINKS (http://cufflinks.cbcb.umd.edu/). Gene set

enrichment analysis (GSEA) (Subramanian et al.,

2005) was used for gene functional classification.

2.12. Plasmid construction and cDNA

transfection

Plasmids encoding human TTF-1 and ASCL1 were

constructed by PCR amplification. Fragments were

subcloned into pcDNA3-6xMyc vector (TTF-1) or

pcDNA3-FLAG vector (ASCL1). All cDNAs were

verified by sequencing. Transient transfection into cells

was performed using Lipofectamine 3000 reagent

(Thermo Fisher Scientific), as recommended by the

manufacturer’s protocol. Plasmids for adenoviral

expression vectors of LacZ and TTF-1 were prepared

as previously described (Saito et al., 2009).

2.13. Adenovirus production and infection

Adenoviruses for transduction of LacZ (Ad-LacZ) or

TTF-1 (Ad-TTF-1) were generated using ViraPower

Adenoviral Expression System (Thermo Fisher Scien-

tific). Adenovirus titer was determined using the

Adeno-X Rapid Titer Kit (Takara-Clontech, Shiga,

Japan). Multiplicity of infection 200 was used for

infection using Ad-TTF-1. The same corresponding

multiplicity of infection for Ad-LacZ was used as con-

trol.

2.14. Cell proliferation assay

H209 cells were seeded at a density of 1 9 105 per well

into a 24-well plate with siRNA transfection. After

72 h, cell proliferation was evaluated with Cell Count

Reagent SF (Nacalai Tesque). Absorbance at 450 nm

was measured with a Model 680 Microplate Reader

(Bio-Rad, Melville, NY, USA), and the absorbance at

595 nm was deducted from it.

2.15. Apoptosis assay

H209 cells were seeded at a density of 5 9 105 per well

into a 6-well plate with siRNA transfection. After

72 h, cells were stained with Annexin V and propidium

iodide (eBioscience, Vienna, Austria) for 15 min at

room temperature prior to detection in Gallios (Beck-

man Coulter, Brea, CA, USA). Results were analyzed

using the FLOWJO software (BD).
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Fig. 1. High expression of NKX2-1 in a subset of SCLC. (A) Expression of NKX2-1 mRNA (encoding TTF-1) in various cancers from the CCLE

database. Normalized expression of the microarray data was calculated by robust multichip analysis (RMA). (B) Lung cancer cell datasets

from CCLE were divided into SCLC (n = 52), LADC (n = 73), and squamous cell carcinoma (n = 28). *P < 0.05, one-way ANOVA with

Dunnett’s test. (C) Expression of NKX2-1 in 23 clinical SCLC tumors and 42 normal tissues (GSE43346). Red dotted bar indicates the

average expression of NKX2-1 in the normal tissues. ***P < 0.001, unpaired t-test. (D) Comparison of NKX2-1 expression in the clinical

SCLC samples (GSE43346) between the classic (n = 12) and variant (n = 11) subtypes. Bars indicate the mean and S.E. ***P < 0.001,

unpaired t-test. (E) Relationship between NKX2-1 expression and overall survival in SCLC patients (GSE43346) (Sato et al., 2013) analyzed

by the Kaplan–Meier plot. Patients were divided into NKX2-1low (GeneChip score < 250, n = 13) and NKX2-1high (score > 250, n = 10). P-

value was calculated by log-rank test. (F) qRT-PCR analysis of NKX2-1 mRNA in lung cancer cells used in this study. Data represent means

of the two biological replicates. Error bars, SE. (G) IB for TTF-1 in the lung cancer cell lines.
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2.16. Statistical analysis

Student’s t-test was used for two-sample analyses.

Comparisons of the multiple experimental groups were

made using one-way ANOVA with Dunnett’s test. The

Mann–Whitney U-test was used for IHC score data.

Comparisons of the frequency were made using the

chi-square test. Statistical analyses were conducted

with PRISM 7.00 (GraphPad Software, San Diego, CA,

USA).

3. Results

3.1. TTF-1 is highly expressed in a subset of

SCLC in association with poor prognosis

Investigation of microarray data from the Cancer Cell

Line Encyclopedia (CCLE) (Barretina et al., 2012)

showed that the median values of NKX2-1 expression

in lung cancers were higher among cancers originating

from different tissues (Fig. 1A), and SCLC showed

significantly higher expression than other types of

lung cancers (Fig. 1B). The expression of NKX2-1 in

clinical SCLC tumors was also higher than that in

normal tissues except in thyroid and lung, which

physiologically express TTF-1 (Fig. 1C) (Sato et al.,

2013). Our previous microarray dataset of SCLC

tumors revealed that the classic-type SCLC was char-

acterized with lower AJUBA (also known as JUB)

and higher GRP expression when compared with the

variant SCLC group. Classic-type SCLC was associ-

ated with poor prognosis, and NKX2-1 expression

was significantly higher in this type (Fig. 1D) (Sato

et al., 2013). Although a recently published paper

reported the association of high NKX2-1 expression

and poor SCLC patient prognosis (Yan et al, 2019),

NKX2-1 expression was not significantly associated

with overall survival in this cohort (Fig. 1E) (log-rank

test, P = 0.09).

We then investigated the expression of NKX2-1 in

LADC and SCLC cell lines. H209 and H345 cells

(classified as classic-type SCLC cell lines according to

the neuroendocrine feature) (Horie et al., 2016) highly

expressed TTF-1 mRNA and protein (Fig. 1F,G).

3.2. TTF-1 binding regions in LADC and SCLC

cells show little overlap in distribution

Genome-wide distribution of TTF-1 binding regions in

SCLC and LADC cells was compared by ChIP-seq in

the H209 and H441 cell lines. Binding regions of

48 421 and 26 752 were identified from each of the

two biological replicates in H209 cells (q < 10�5). In

H441 cells, 58 099 and 74 258 binding regions were

identified in each of the two biological replicates

(q < 10�5). We calculated the intersection of the bio-

logical replicates for each cell line and used 21 871

(H209) and 51 454 (H441) TTF-1 binding regions in

the following analyses, respectively. The known

NKX2-1 motif was enriched and had a centrality for

both cell lines (Fig. 2A), supporting the validity of the

data. Significant peaks were found at known TTF-1

binding sites in H441 LADC cells, for example, the

SFTPB gene (encoding surfactant protein B) locus but

not at the HBB gene locus used as a negative control

(Fig. S1A). In contrast, TTF-1 binding at SFTPB

locus in H209 cells was not significant at the present

settings (Fig. S1A) and ChIP-qPCR suggested very

weak binding compared to H441 cells (Fig. S1B).

Surprisingly, comparisons between H441 and H209

cells revealed little overlap of the TTF-1 binding

regions at the genome-wide level (Fig. 2B). KRT4 and

SDPR gene loci, which were TTF-1-bound genes in

LADC cells (Isogaya et al., 2014), had peaks only in

H441 cells, whereas NFIB and NCAM1 gene loci,

which are known as oncogenes for SCLC (Calbo

et al., 2011; Semenova et al., 2016), had peaks mainly

in H209 cells (Fig. 2C). We confirmed the similar ten-

dency by ChIP-qPCR (Fig. 2D). Furthermore,

Fig. 2. Distinct properties of TTF-1 binding regions in SCLC. (A) Motif centrality analysis of TTF-1 binding regions using CentriMo. The

known TTF-1 binding motif from HOCOMOCOv11 (NKX21_HUMAN.H11MO.0.A, upper panel) was used for calculation. The x-axis indicates

the relative position (bp) of the best site from the peak summit of each binding region. (B) Venn diagram showing the overlap of TTF-1

ChIP-seq peaks between H209 and H441. (C) The upper or lower two lanes show TTF-1 binding signals of the two biological replicates (Rep

1 and Rep 2) obtained from H441 (blue) or H209 (magenta) cells, respectively. Arrows show the position of ChIP-qPCR analysis evaluated in

(D). kb Sizes denote the ranges shown in the panels. (D) ChIP-qPCR analysis of TTF-1 binding in H441 and H209 cells. Data represent the

result of two biological replicates. %input values at the target genomic loci were normalized to those at HBB locus. (E) Charts showing the

proportion of overlaps with TTF-1 binding regions in NSCLC cell lines. The binding regions of TTF-1 were identified by ChIP-seq data using

H441 and H209 cells (this study) or other NSCLC cell lines (SRP045118). The proportions of overlaps with the TTF-1 binding regions in H441

and H209 cells were compared. ***P < 0.0001, chi-square test. (F) Motif enrichment and centrality analysis using DREME and CentriMo.

The top four de novo-calculated motifs with the smallest E-values identified by DREME are shown.
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comparisons using published TTF-1 ChIP-seq data of

other NSCLC cell lines (SRP045118) (Clarke et al.,

2015) revealed that while TTF-1 binding regions in

NCI-H1819 and HCC1195 cells showed more overlap

with H441 cells, TTF-1 binding regions in HCC1833

cells, which were derived from LADC with neuroen-

docrine features (Kosari et al., 2014), showed compa-

rable ratios of overlap in H209 and H441 cells

(Fig. 2E). These findings suggest that TTF-1 plays

highly different roles in LADC and SCLC.

De novo motif analysis of the TTF-1 binding

regions in H441 and H209 cells was performed to

understand the differences in their binding sequence

preferences. Predictably, NKX-homeodomain motif

emerged as one of the top preferred motifs in both

cell lines, while the Forkhead family TFs (the known

cooperative TFs of TTF-1) binding motifs were also

commonly identified (Fig. 2F). Among differentially

preferred motifs, AP-1 was strongly enriched in H441

cells, consistent with a previous report (Maeda et al.,

2012), whereas the E-box motif was enriched specifi-

cally in H209 cells. Both ASCL1 and NEUROD1,

members of the E-box binding TFs, were the lineage-

specific TFs and differentially regulate key oncogenes

in SCLC (Borromeo et al., 2016), suggesting that

TTF-1 plays a role in the development of SCLC

through these TFs.

Gene ontology analysis of nearby genes calculated

from the ChIP-seq data indicated that in H209 cells,

the TTF-1-bound genes were related to the biological

process terms related to neuron differentiation and

aorta morphogenesis (Fig. S1C), suggesting the

involvement of TTF-1 in cellular morphology and dif-

ferentiation in SCLC cells. In addition, the molecular

function terms included BH3/BH domain binding

(Fig. S1C), indicating that TTF-1 may associate with

Bcl-2 family genes, which regulate apoptosis. In con-

trast, TTF-1-bound genes in H441 cells were related to

the MAP kinase pathway and cell-to-cell junction and

no terms in the top 20 list were shared by the two cell

lines (Fig. S1C).

3.3. TTF-1 and ASCL1 bind to common genomic

regions in SCLC cells

Gene expression profiling of SCLC cell lines revealed

that the expression of NKX2-1 showed positive corre-

lation with ASCL1 but not with NEUROD1, whereas

the expression of MYC, a target of NEUROD1, and

NKX2-1 exhibited negative correlation (Fig. S2A).

Likewise, NKX2-1 and ASCL1 were coordinately

expressed in SCLC tissue samples (GSE43346)

(Fig. S2B). Investigations of the ASCL1, NEUROD1,

and MYC expressions in several SCLC cell lines

revealed a similar pattern (Fig. S2C). These findings

suggest that expressions of TTF-1 and ASCL1 are

strongly related.

Although the coexpression of TTF-1 and ASCL1

and their binding motif-based analyses have been

reported in SCLC (Gazdar et al., 2017; Park et al.,

2018), direct relationship between these TFs has not

been fully investigated at a genome-wide level. To this

end, we obtained ASCL1 ChIP-seq data from other

SCLC cell lines (GSE69398). According to ASCL1

ChIP-seq data in the ASCL1-expressing cell lines

(NCI-H128, NCI-H2107, and NCI-H889) and NEU-

ROD1 ChIP-seq data in the NEUROD1-expressing

cell lines (NCI-H82 and NCI-H524), TTF-1 binding

regions in H209 cells had more overlap with the

ASCL1 binding regions than with the NEUROD1

binding regions (Fig. 3A). We next carried out ASCL1

ChIP-seq in H209 cells and identified 13 920 and

Fig. 3. Interaction between TTF-1 and ASCL1 proteins in SCLC. (A) Charts showing the overlaps with TTF-1 binding regions in ASCL1 or

NEUROD1 binding regions. The binding regions of ASCL1/NEUROD1 were identified by ChIP-seq data of SCLC cell lines (GSE69398). (B) A

chart showing the overlaps with TTF-1 binding regions in ASCL1 binding regions in H209 cells. (C) A heat map representation of TTF-1 and

ASCL1 binding regions (two biological replicates, Rep 1 and Rep 2) in H441 and H209 cells. The vertical blue or magenta line indicates the

TTF-1 binding regions in H441 or H209 cells, respectively. (D) Motif centrality analysis using CentriMo in the overlapping regions between

TTF-1 and ASCL1 ChIP-seq peaks. The 500-bp sequences flanking the summit position of each TTF-1 or ASCL1 binding region were used

for the analysis. The known NKX-homeodomain binding motif (Nkx2-5, MA0503.1) and ASCL1 binding motif (ASCL1, MA1100.1) were used

for calculation. The x-axis indicates the relative position (bp) of the best site from the peak summit of each binding region. (E) Co-IP assay

of HEK293T cells transfected with expression plasmids for 6xMyc-TTF-1 and FLAG-ASCL1. (F) In situ PLA using TTF-1 and ASCL1

antibodies in H209 cells to show their proximity in the nucleus. H209 cells treated only with the TTF-1 antibody were used as a control.

Proximity between TTF-1 and ASCL1 was detected as signals (red) in the nuclei (DAPI, blue). Scale bars, 50 µm. (G) Anti-TTF-1 and ASCL1

IHC on a tissue microarray of SCLC. The fraction of stained cancer cells was scored as shown in Fig. S4A. Representative images of TTF-1-

and ASCL1-positive (upper panels, score 4) and negative (lower panels, score 0) tumors are shown. Scale bars, 50 µm. (H) Correlations of

TTF-1 and ASCL1 IHC staining scores in the SCLC tissue microarray. r, Spearman’s correlation coefficients. (I) Scatter plots of TTF-1 (left)

and ASCL1 (right) staining scores in a SCLC tissue microarray divided into two groups according to the SCLC stage. Data are represented

as mean � SE (*P < 0.05, **P < 0.01, Mann–Whitney U-test).
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11 141 ASCL1 binding regions from each of the two

biological replicates (q < 10�5). The 8949 common

binding regions were then used in the following analy-

ses. The known ASCL1 binding motif was significantly

enriched and had a clear centrality (Fig. S3A), sup-

porting the validity of the data. ASCL1 binding

regions largely overlapped with the TTF-1 binding

regions in H209 cells but not with those in H441 cells

(Fig. 3B,C). Moreover, motif centrality analysis in

H209 cells showed unimodal distribution of the NKX-

homeodomain motif and bimodal distribution of the

ASCL1 motif in the overlapping regions between

TTF-1 and ASCL1 ChIP-seq peaks (Fig. 3D), suggest-

ing that TTF-1 and ASCL1 are closely located in the

genomic DNA.

3.4. TTF-1 physically and functionally interacts

with ASCL1

We then found the physical interaction between TTF-1

and ASCL1 using HEK293T cells ectopically expressing

both TFs (Fig. 3E). Formation of the endogenous TTF-

1-ASCL1 complex in H209 cells was also observed by

in situ PLA to find their nuclear distribution (Fig. 3F).

The predicted GO terms of the ASCL1-bound genes

were in part common to those of the TTF-1-bound

genes, such as ‘BH domain binding’ and ‘aorta morpho-

genesis’ (Fig. S3B). Furthermore, de novo motif analysis

in the overlapping regions between TTF-1 and ASCL1

ChIP-seq peaks identified both E-box and NKX-home-

odomain motifs (Fig. S3C). These findings suggest that

in SCLC cells, TTF-1 interacts physically and function-

ally with ASCL1.

We also examined the relationship between TTF-1

and ASCL1 expression in clinical SCLC tumors using

a tissue array. IHC revealed that the expression of

TTF-1 and ASCL1 showed positive correlation in the

nucleus of cancer cells (Fig. 3G,H and Fig. S4A).

Additionally, both TTF-1 and ASCL1 scores were sig-

nificantly higher in advanced-stage tumors than in ear-

lier stage ones (Fig. 3I).

3.5. TTF-1 and ASCL1 cooperatively regulate

target gene expression

Expression of TTF-1 or ASCL1 was then silenced to

evaluate their effects on target gene expression. We

noticed that TTF-1 knockdown led to ASCL1 upregu-

lation (Fig. 4A,B), and ASCL1 knockdown led to

upregulation of TTF-1 protein in H209 cells (Fig. 4C,

D). Although TTF-1 and ASCL1 were coexpressed in

SCLC (Fig. 3G,H), these findings suggested a tight

regulation of the amounts of both TFs.

Significant TTF-1 binding and ASCL1 binding were

observed in the promoter region of CALCA (encoding

CGRP) and DLL3 genes (Fig. 4E,F), which are the

genes characteristic of the neuroendocrine phenotype.

We then conducted the knockdown experiments with

siRNAs for TTF-1 and ASCL1 using H209 cells

(Fig. S5A,B) and assessed mRNA expression of these

genes. The limited effect of each siRNA on the expres-

sion of CALCA and DLL3 possibly reflected the

mutual regulation between TTF-1 and ASCL1, and

enhanced inhibition of CALCA and DLL3 expression

was observed when both TTF-1 and ASCL1 were

depleted (Fig. 4G).

RNA-seq was then performed following the

knockdown of TTF-1 or ASCL1 to find their targets

in H209 cells (Fig. 4H). Some genes downregulated

by both TTF1 and ASCL1 siRNAs were expressed

in neuronal system, for example, LRRN4, SYTL3,

TACR1, and TESC, suggesting that both TTF-1 and

ASCL1 were involved in the maintenance of neu-

roendocrine features in SCLC cells. One of the genes

upregulated by both siRNAs was BCL2L11 (encod-

ing BIM) of the proapoptotic BCL2 family gene.

Fig. 4. Cooperative regulation of the expression of target genes by TTF-1 and ASCL1 in SCLC. (A) Expression of NKX2-1 (encoding TTF-1;

left) or ASCL1 (right) mRNA in H209 cells treated with negative control (siNC) or TTF-1 siRNAs (siTTF-1) by qRT-PCR. (B) IB for TTF-1 and

ASCL1 in H209 cells treated with siNC or siTTF-1. (C) Expression of NKX2-1 and ASCL1 mRNAs in H209 cells treated with siNC and ASCL1

siRNAs (siASCL1). (D) IB for TTF-1 and ASCL1 in H209 cells treated with siNC or siASCL1. (E) Visualization of the TTF-1 and ASCL1 ChIP-

seq data at the CALCA and DLL3 gene loci. The upper two lanes show TTF-1 binding signals in H441 cells. The middle or lower two lanes

show TTF-1 or ASCL1 binding signals in H209 cells, respectively. Rep 1 and Rep 2 indicate biological replicates 1 and 2. The kb sizes

denote the ranges shown in the panels. Arrows show the position of ChIP-qPCR analysis evaluated in (F). (F) ChIP-qPCR analysis of TTF-1

and ASCL1 at the genomic regions shown in (E). %input values at the target regions were normalized to those in HBB locus. (G) Fold

change in the expression of CALCA and DLL3 mRNA in H209 cells treated with siTTF-1, siASCL1, or both, relative to those treated with

siNC. Expression of mRNAs was quantified by qRT-PCR. (H) Genes down- or upregulated by both TTF-1 and ASCL1 in H209 cells. The

genes with overlapping peaks between TTF-1 and ASCL1 ChIP-seq data were selected from the commonly regulated genes of TTF-1 and

ASCL1 determined by RNA-seq of TTF-1- or ASCL1-depleted cells. These genes are listed in the boxes. qRT-PCR data represented as

mean � SE of the three independent experiments. **P < 0.01, ***P < 0.001, one-way ANOVA with Dunnett’s test.

286 Molecular Oncology 14 (2020) 277–293 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Differential TTF-1 binding regions in lung cancer S. Hokari et al.



A B

siNC siTTF-1 #1 siTTF-1 #2
0

1

2

3

4
R

el
at

iv
e 

ex
pr

es
si

on
 [/
G
A
PD
H

]
***

**

R
el

at
iv

e 
ex

pr
es

si
on

 [/
G
A
PD
H

]

siNC siTTF-1
#1      #2

80

H441 TTF-1

H209 TTF-1

H209 ASCL1

CALCA

DLL3

16 kb

24 kb

E

G

IB; TTF-1

IB; ASCL1

IB; Tubulin

H

Transcriptional activation 

DEGS2 SYTL3
KCNH6 TACR1
KIFC3 TESC
LRRN4 TMEM158
POU6F2 TSPEAR
RNF183

Transcriptional repression

ADCYAP1 GABRB3
BCL2L11 RBFOX2
CNN2 SDC2
DLK1 SHISA2
FN1 FOXN3

Common target genes of TTF-1 and ASCL1

siNC siASCL1 #1 siASCL1 #2
0

1

2

3

4

5
**

R
el

at
iv

e 
ex

pr
es

si
on

 [/
G
A
PD
H

] siNC siASCL1
#1      #2

DC

IB; TTF-1

IB; Tubulin

IB; ASCL1

F

0

10

20

30

HBB CALCA DLL3

H441 H209

0

50

100

150

200

HBB CALCA DLL3

H441 TTF-1

H209 TTF-1

H209 ASCL1

E
nr

ic
hm

en
t (

fo
ld

)
E

nr
ic

hm
en

t (
fo

ld
)

TTF-1 ChIP-qPCR

ASCL1 ChIP-qPCR

80

80

80

80

80

80

80

80

80

80

80

Rep 1
Rep 2

Rep 1
Rep 2

Rep 1
Rep 2

Rep 1
Rep 2

Rep 2

Rep 2

Rep 1

Rep 1

(H209)

ASCL1

ASCL1

NKX2-1

NKX2-1

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n 
[ /G

A
P

D
H

]
lo

g 2
(s

iR
N

As
/s

iN
C

)

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n 
[/G

A
P

D
H

]
lo

g 2
(s

iR
N

As
/s

iN
C

)

DLL3CALCA

287Molecular Oncology 14 (2020) 277–293 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

S. Hokari et al. Differential TTF-1 binding regions in lung cancer



We confirmed that BIM protein was upregulated by

TTF-1 and/or ASCL1 knockdown in H209 cells

(Fig. S6A,B).

3.6. TTF-1 positively regulates the expression of

Bcl-2

We further focused on BCL2 expression as a TTF-1-

bound target gene. Gene expression profiling of SCLC

cell lines in CCLE dataset revealed that BCL2 exhib-

ited positive correlation with NKX2-1 (Fig. 5A). More-

over, TTF-1 knockdown downregulated the mRNA

expression of BCL2 in H209 cells (Fig. 5B). We also

confirmed that knockdown of TTF-1 decreased the

Bcl-2 expression by the immunofluorescent assay in

H209 cells (Fig. 5C). IHC of a SCLC tissue array

showed the expression of TTF-1 positively correlated

with Bcl-2 (Fig. 5D,E and Fig. S4B). Although ASCL1

also reportedly upregulates BCL2 in some of the

SCLC, the effect of ASCL1 siRNA on BCL2 was not

remarkable in H209 cells (data not shown). These

results suggest a complementary role of TTF-1 in the

regulation of BCL2.

3.7. TTF-1 promotes survival of SCLC cells and

regulates the genes associated with poor

prognosis

We postulated that TTF-1 promotes survival of SCLC

cells through inhibition of apoptosis, similar to ASCL1

(Murai et al., 2015). Using WST-8 assay, we revealed

that TTF-1 silencing in H209 cells resulted in

decreased cell viability (Fig. 5F). On the contrary,

ectopic TTF-1 by adenovirus vector increased cell via-

bility in TTF-1-low Lu-135 cells (Fig. 5G and Fig. S7).

We further investigated whether TTF-1 knockdown

could enhance apoptosis of H209 cells. As a nature of

SCLC cell lines, baseline population of apoptotic cells

in the culture was high (Horie et al., 2018). However,

the fractions of Annexin-positive apoptotic cells mar-

ginally but significantly increased after TTF-1 knock-

down (Fig. 5H).

Finally, we examined enrichment of 166 genes,

which were downregulated by TTF-1 knockdown in

H209 cells, using expression arrays of clinical SCLC

samples (GSE43346) to explore its relationship to

patient prognosis. When this SCLC cohort was divided

into good and poor prognosis groups, TTF-1-regulated

genes were significantly enriched in the poor prognosis

group (Fig. 5I), which also suggested the tumor-pro-

moting role of TTF-1 in clinical SCLC tumors.

4. Discussion

In this study, we clarified the distinct properties of

TTF-1 binding regions between SCLC and LADC.

Our findings suggested that TTF-1 promotes SCLC

growth and contributes to neural differentiation by

partly coordinating with ASCL1. One of the represen-

tative motifs commonly enriched in the TTF-1 binding

regions in both H441 and H209 cells was that of the

Forkhead family genes. Forkhead family TFs are pio-

neer factors that target enhancers for tissue-specific

gene activation during development and cellular repro-

gramming (Iwafuchi-Doi et al., 2016). In a murine

LADC model, TTF-1 physically binds and interacts

with FOXA, providing a direct connection between

transcriptional lung differentiation programs and

tumor initiation (Snyder et al., 2013). Therefore, the

differential TTF-1 binding regions between SCLC and

LADC appear to be determined epigenetically by

Forkhead TFs.

Previous comprehensive genomic studies indicate

that SCLC harbors several somatic mutations, such as

deletion of the TP53 and RB1 genes (Peifer et al.,

2012). Moreover, several TF genes are amplified,

Fig. 5. Regulation of cell growth and BCL2 by TTF-1 in SCLC. (A) Correlations of NKX2-1 and BCL2 gene expressions in SCLC cells of the

CCLE database. r, Spearman’s correlation coefficients. (B) Relative expression of BCL2 mRNA in H209 cells treated with siTTF-1 relative to

those treated with siNC. (C) Immunofluorescence staining for TTF-1 (red) and Bcl-2 (green) in H209 cells treated with siNC (left) or siTTF-1

#2 (right). Right panel shows the result of quantification of the Bcl-2 expression. Data represented as mean � S.E of randomly selected two

microscopic fields. *P < 0.05, unpaired t-test. Scale bars, 50 µm. (D) Anti-TTF-1 (left) and Bcl-2 (right) IHC on a tissue microarray of SCLC.

The intensity of staining was scored as shown in Fig. S4B. Representative images are shown. Scale bars, 50 µm. (E) Correlations of TTF-1

and Bcl-2 staining scores in the SCLC tissue microarray. r, Spearman’s correlation coefficients. (F) WST-8 cell proliferation assay in H209

cells treated with siNC or siTTF-1. (G) WST-8 cell proliferation assay in Lu-135 cells infected with adenovirus for LacZ (Ad-LacZ) and TTF-1

(Ad-TTF1) expression. *P < 0.05, unpaired t-test. (H) Induction of apoptosis by knockdown of TTF-1 in H209 cells. Annexin V-positive cells

were evaluated by flow cytometry. *P < 0.05, one-way ANOVA with Dunnett’s test. (I) Enrichment plot of the TTF-1-regulated gene set

(fold-changes ≤ 0.66) in H209 cells. GSEA was performed using the gene expression data of the clinical SCLC samples (GSE43346).

Patients’ samples were divided into good (n = 12) and poor (n = 11) prognosis groups as in Fig. 1D. NES, normalized enrichment score.

Data represented as mean � S.E of the three (B, F, H) or two (G) independent experiments. *P < 0.05, **P < 0.01, one-way ANOVA with

Dunnett’s test.
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including MYC, NFIB, and SOX2 (George et al.,

2015; Kim et al., 2006; Rudin et al., 2012). Among

them, ASCL1 is believed to be a key regulator of

neuroendocrine differentiation (Borges et al., 1997;

Osada et al., 2008) and a lineage-survival oncogene of

SCLC (Borromeo et al., 2016). ASCL1 is also known
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as a repressive target of Smad TFs downstream of

transforming growth factor-b (TGF-b) and is required

for tumor formation by suppressing apoptosis in

SCLC cells (Murai et al., 2015). ASCL1, insulinoma-

associated 1 (INSM1) zinc finger transcription factor,

and BRN2 collaborate to form regulatory circuitry

involved in neuroendocrine differentiation of SCLC

(Borromeo et al., 2016; Fujino et al., 2015; Sakaeda

et al., 2013). Furthermore, concomitant enrichment of

proneural TFs (including ASCL1) and NKX-home-

odomain TFs (including TTF-1) is critical for transfor-

mation to small-cell neuroendocrine carcinoma (Park

et al., 2018). Consistently, our genome-wide analysis of

SCLC cells revealed that TTF-1 binding regions and

TTF-1-regulated genes are associated with cellular dif-

ferentiation and neural development. Of note, LADC

that expresses ASCL1 shows neuroendocrine pheno-

type (Miyashita et al., 2018). Other reports indicate

that LADC transforms into SCLC during the course

of clinical treatments (Ferrer et al., 2019; Marcoux

et al., 2019). In LADC cells, TTF-1 interacts with the

Smad family TFs downstream of TGF-b signaling to

inhibit EMT, providing a mechanism of tumor sup-

pressor function of TTF-1 (Isogaya et al., 2014). TGF-

b signaling is frequently silenced in SCLC (Murai

et al., 2015). The study of dynamics of changes in

genomic distribution of TTF-1 and its co-TFs, during

the transformation of LADC into SCLC, could help

clarify its complex roles during tumor progression and

differentiation.

Bcl-2, one of the transcriptional targets of ASCL1,

is known as an antiapoptotic regulator and acts as

an oncogene in neuroendocrine lung cancers (Augus-

tyn et al., 2014). Our results revealed that TTF-1

positively regulated the expression of Bcl-2 in SCLC

cells and was coexpressed in clinical tissues. Bcl-2

expression can be presumably enhanced by TTF-1 in

clinical tumors, which in turn may participate in

SCLC progression. Consistently, Cardnell and col-

leagues have reported the association between TTF-1

expression and sensitivity to a Bcl-2 inhibitor (Card-

nell et al., 2017). Considering the cooperative regula-

tion of proapoptotic BIM expression, relationship

between TTF-1 and ASCL1 might be of special clini-

cal significance as a predictive marker of SCLC treat-

ment.

5. Conclusions

Our results revealed distinct properties of TTF-1 distri-

bution on the genome in SCLC. Our genome-wide

analysis unraveled different roles of TTF-1 between

LADC and SCLC and revealed its transcriptional

regulatory programs related to antiapoptotic and neu-

roendocrine gene expression in SCLC.
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