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Discrepancies have been reported between HER2 status in primary breast cancer and micrometastatic cells in bone marrow. The aim
of this study was to assess HER2 gene status in micrometastatic cells in bone marrow and corresponding primary tumour.
Micrometastatic cells were detected in bone marrow aspirations in a prospective series of 27 breast cancer patients by
immunocytochemistry (pancytokeratin antibody). HER2 status of micrometastatic cells was assessed by fluorescence in situ
hybridisation (FISH), respectively in 24 out of 27. Primary tumour HER2 status was assessed by immunohistochemistry (CB11
antibody) and by FISH in 20 out of 27 of the cases. HER2 was amplified or overexpressed in five out of 27 (18.5%) primary tumours
and in four out of 27 (15%) micrometastatic cells. In two cases, HER2 was overexpressed and amplified in primary tumour, but not in
micrometastatic cells, whereas, in one case, HER2 presented a low amplification rate (six copies) in micrometastatic cells not found in
the primary tumour. We demonstrated that negative and positive HER2 status remained, in the majority of the cases, stable between
the bone marrow micrometastasis and the primary tumour. Therefore, the efficiency of anti-HER2 adjuvant therapy could be
evaluated, in a clinical trial, by sequential detection of HER2-positive micrometastatic cells within the bone marrow, before and after
treatment.
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HER2 overexpression, observed in 15– 30% of breast cancers, is
associated with a poor outcome, especially in node-positive breast
carcinoma (Gusterson et al, 1992; Perou et al, 2000). HER2 status
remains stable between the primary tumour site and distant
metastasis (Niehans et al, 1993; Gancberg et al, 2002; Vincent-
Salomon et al, 2002; Carlsson et al, 2004) or regional lymph node
metastasis (Simon et al, 2001). In contrast, HER2 has been found
to be overexpressed in 60–100% in bone marrow micrometastatic
cells, independently of the primary tumour status (Braun et al,
2001b). Cytotoxic agents currently used for chemotherapy in high-
risk breast cancer patients do not completely eliminate micro-
metastatic cells in bone marrow (Braun et al, 2000a) and bone
marrow micrometastasis in breast cancer patients is associated
with a poor outcome (Braun et al, 2000b, 2005; Naume et al, 2004).
In this context, a targeted therapy, specific for micrometastatic

cells, would be appropriate. However a recent study showed HER2
heterogeneous overexpression in bone marrow micrometastatic
cells could be detected in patients with HER2-negative primary
tumours. This heterogeneity may reduce the efficacy of an
immunotherapy-based strategy in an adjuvant setting (Solomayer
et al, 2006). The aim of this pilot study was to assess HER2 gene
status by fluorescence in situ hybridisation (FISH) in micrometa-
static cells in bone marrow of breast cancer patients and to
compare it to HER2 primary tumour status, in order to evaluate if
anti-HER2 therapy in adjuvant setting, could be given to patients
after an assessment of HER2 status of the primary tumour only. In
addition, as the cytokeratin antigens detected in epithelial
micrometastatic cells are not specific to cancer cells, morpholo-
gical analysis of positive detected cells is a major step in the
identification of micrometastatic cells. In this perspective, the
second aim of our study was to confirm that the isolated
cytokeratin-positive (CKþ ) cells detected in bone marrow
aspirates and interpreted as micrometastasis actually corre-
sponded to tumour cells. We therefore documented the neoplastic
nature of the cells by assessing the gene status of other frequently
amplified oncogenes in breast carcinomas (Taccagni et al, 1997;
Al-Kuraya et al, 2004; Orsetti et al, 2004), especially CCND1
(cyclinD1) and MYC.
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MATERIALS AND METHODS

Patients

Cytokeratin positive micrometastatic cells were detected in bone
marrow aspirates in a prospective series of breast cancer patients.
Bone marrow samples positive for micrometastatic cells and the
corresponding primary tumours were obtained from 27 patients
(three stage II, one stage III, one local relapse and 22 stage IV). A
single bone marrow aspiration was performed under local
anaesthesia from the posterior iliac crest before chemotherapy in
an adjuvant setting or for metastatic disease. Informed consent
was obtained from all patients.

Bone marrow specimens

Techniques have been described previously (Pierga et al, 2004).
Briefly, 3 –5 ml of bone marrow aspirate was collected on EDTA
(Vacutainer, Becton Dickinson, Le Pont de Claix, France).
Components of the bone marrow aspirate from the two iliac crests
were processed under sterile conditions. Each sample was diluted
by addition of half the volume of Hanks solution (Gibco BRL,
Invitrogen, Cergy, Pontoise, France). Samples were separated by
Ficoll/Hypaque density centrifugation (Sigma, St Louis, MO, USA;
density, 1.077 g ml�1) in Leucosep tubes (Polylabo, Au Verney,
Servion, France) (830 g, 15 min, 201C). The mononuclear cells
(MNCs) layer was harvested from each tube, combined, diluted in
50 ml of Hanks and centrifuged at 360 g, 5 min at 201C. Cells were
resuspended in PBS/0.1% bovine serum albumin (BSA). After
dilution to 3% in pure acetic acid for red cell lysis, an aliquot of the
cell suspension was counted. The MNCs were resuspended in PBS/
BSA at 1.106 ml�1. One millilitre of the cell suspension was
cytocentrifuged twice onto polylysine-coated slides at 580 g for
3 min (Hettich Universal 16A cytocentrifuge). The supernatant was
carefully removed from each slide after the first cytocentrifugation
and the slides were allowed to dry in air overnight. Slides were
stored at �201C and then at �801C until staining.

Immunocytochemical staining

The pancytokeratin (CK) monoclonal antibody A45-B/B3 (Micro-
met, Munich, Germany and Chromavision, San Juan, Capistrano,
USA), which recognises several cytokeratin epitopes which
characterise CK 8, CK 18 and CK 19, was applied for cell detection
(Stigbrand et al, 1998). The immunostaining procedure was
standarised by using an automated device (Cadenza, Shandon,
France). Before staining, cytospots were fixed with 4% para-
formaldehyde for 5 min, and then dried for 15 min at room
temperature. Endogenous alkaline phosphatase was then blocked
with TBS solution (Sigma) with 2% human AB serum, for 15 min.
This solution was used to dilute primary and secondary antibodies.
After blocking, the slides were incubated with the primary
antibody A45 B/B3 (2 mg ml�1 for 40 min). Control slides were
incubated under the same conditions with a mouse monoclonal
anti-FITC IgG1 (1/1250) (Sigma). Slides were incubated for 20 min
with secondary polyclonal rabbit anti-mouse antibody (Dako
France, Trappes, France, A/S, Glostrup, Denmark). After each step,
the slides were rinsed for 5 min in TBS 1 X solution. Immune
complexes were revealed by the alkaline phosphatase-anti-alkaline
phosphatase (APAAP) technique (Dako) (1/50) for 25 min. The
chromogen reaction was performed for 20 min with a colorimetric
substrate of fuchsin solution (2.5% in 2 N HCl) (New Fuchsin,
Sigma) with 4% NaNO2, 8% b-naphthol (Sigma) and 2%
levamisole (Dako). Cells were counterstained with Mayer hemato-
xylin (1 min) (Sigma) diluted to one out of three in distilled water.
The specimen was then rinsed under running water for 5 min and
then in TBS. Slides were coverslipped using Faramount mounting
medium (Dako). Mononuclear cells (3� 106) in three slides were

evaluated for each patient. Negative controls, stained with anti-
FITC monoclonal mouse antibody, were performed on an
equivalent number of cells (i.e. three slides, 3� 106 mononuclear
cells) for each patient.

Positive controls were obtained with bone marrow from
‘normal’ donors undergoing orthopedic surgery, spiked with
SKBR3 or MCF7 cell lines, 10– 102 for 106 mononuclear cells per
cytospot. One positive control slide and one negative control slide
were added to each series of 20 stained slides in the automated
device.

CKþ cell detection

Cell detection was performed by manual screening with an optical
microscope. Criteria for evaluation of immunostained cells in bone
marrow were adapted from Borgen et al (1999) based on the results
of the European ISHAGE Working Group for standarisation of
tumour cell detection. The main criteria were a large cell size, a
high nuclei/cytoplasm ratio and the absence of obvious haemato-
poietic cell morphology.

HER2 status

HER2 status of micrometastatic cells in BM was assessed by FISH
on slides on which CKþ cells had been detected. Slides were
rinsed in PBS, then treated by pepsin (0.05% in 0.01 N HCl), for
5 min at 371C, then dehydrated in ethanol series. Digoxigenin-
labelled HER2 probe solution (Zymed Laboratories Inc., South San
Francisco, CA, USA) was laid onto the slides, which were covered
by coverslips. In some cases, directly SpectrumOrange-labelled
Cyclin D1 or myc probes (Vysis, Downers Grove, IL, USA) were
added to the mix in order to increase the probability of detecting
abnormal micrometastatic cells. Simultaneous denaturation of the
probes and cell DNA was performed at 751C for 2 min. Slides were
then incubated overnight at 371C in humid chamber, for
hybridisation. Rinsing was performed in 0.4� SSC/0.3% Igepal
at 751C, for 4 min, then in the same solution at 201C, for 2 min,
followed by 5 min in PBS. HER2 hybrids were revealed by
incubation with a FITC-labeled anti-digoxigenin antibody (Roche
Diagnostics, Basel, Switzerland), 1/100 dilution, for 30 min, at
371C. Finally, slides were mounted in Vectashield/DAPI (Vector
Laboratories, Burlingame, CA, USA). Preparations were analysed
by microscope and when technically possible, all CKþ cells
detected by their cytoplasmic fluorescence were photographed
under FITC, and, in the case of Cyclin D1 or myc hybridisation,
under SpectrumOrange excitations.

HER2 status of primary tumour was assessed by immunohis-
tochemistry (CB11 antibody, Novocastra, Newcastle, UK) and by
FISH in 20 cases out of the 27 cases, with available and suitable
blocks for HER2 FISH analysis.

HER2 immunostainings and FISH were performed on histo-
logical tissue sections prepared from a representative sample of
the primary tumour. Immunohistochemical procedures for the
analysis of HER2 expression were defined to provide a strong
correlation between HER2 overexpression and gene amplification
status, as determined by FISH (Couturier et al, 2000).
After rehydration and antigenic retrieval in citrate buffer
(10 mM, pH 6.1), tissue sections were incubated with the CB11
anti-p185 HER/neu monoclonal antibody (Novocastra, Newcastle
UK), for 1 h, at 1/800 dilution. Staining was revealed with the
Vectastain Elite ABC peroxidase mouse IgG kit (Vector Burlin-
game, CA, USA), using diaminobenzidine (Dako A/S, Glostrup,
Denmark) as chromogen. Under these conditions, normal
epithelial cells were not immunostained and therefore constituted
an internal negative control.

Immunostainings were scored as strong, weak or negative
according to the percentage of labelled tumour cells and
membrane staining intensity. Cases were considered to be positive
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when at least 60% of cells were stained (Bilous et al, 2003; Vincent-
Salomon et al, 2003). HER2 status was then classified as
overexpressed (strong or moderate staining) or not significantly
overexpressed.

Fluorescence in situ hybridisation was performed according to
the same protocol as that already described earlier for micro-
metastasis. In addition, after deparaffinisation, slides were first
treated with a protein digesting enzyme, at 371C, for 10 min.

Cytokeratins 8/18 expression was also assessed on these 20 out
of 27 primary tumours according to a previously published
protocol (Azoulay et al, 2005).

RESULTS

Patient characteristics are summarised in Table 1. The mean age
was 55.6 years (range: 36–75 years). Tumours were invasive ductal
carcinomas in 85% of cases with a histological grade II or III in
14/25 (56%).

A visceral metastasis was observed 22 of the cases (22/27 cases,
81%). Nineteen cases presented bone metastases (19/27, 70% of
cases). Eight of 22 stage IV patients had synchronous metastasis at
primary diagnosis. Patients with metastatic disease received
chemotherapy as first-line treatment in 65% of cases (15 patients),

or second-line treatment (four patients)(17.5%) or third-line
treatment (four patients) (17.5%).

HER2 status in primary tumours and bone marrow micro-
metastasis are summarised in Table 2. 6/27 (22.2%) primary
tumours had HER2 overexpression (2þ and 3þ ). In five cases,
the intensity of staining was strong (3þ ) and observed in 100% of
tumour cells of the invasive component. In 4/4 (100%) cases
assessable for FISH analysis, this overexpression was associated to
HER2 amplification. The remaining case with moderate (þ þ )
staining did not show any amplification by FISH. Therefore,
5/27 (18.5%) tumours presented HER2 amplification and over-
expression.

Micrometastatic cells in bone marrow were observed in all
selected cases. The cell morphology on cytospots was interpreted
according to the ISHAGE criteria for tumour cells. The cells were
large, with a high nucleus/cytoplasm ratio. In 19 out of 27 cases,
the micrometastatic cells formed clusters. The number of
micrometastatic cells ranged from 1 to 1500 per slide examined.

In four out of 27 (15%) (95%CI: 2 –28%) cases HER2
amplification was observed in bone marrow micrometastatic cells.
When more than 20 cells were observed and interpretable the
amplification was homogeneous. In two cases, HER2 was amplified
and overexpressed in the primary tumour, but not in distant BM
micrometastatic cells and in one case, HER2 presented a very low
level of amplification in BM micrometastatic cells (six copies) and
not in the primary tumour (two copies). At least, only two (50%) of
four cases with HER-2 amplification in primary tumours showed
HER-2 amplification in micrometastatic cells, and three (75%) of

Table 1 Patients and primary tumour characteristics

Characteristics N¼ 27 (%)

Age(years)
p50 8 30
450 19 70

Clinical stage
Stage I 0 0
Stage II 3 11
Stage III 1 4
Stage IV 22 81
Local relapse 1 4

Tumour size (mm)
p20 5 18
] 20; 40] 8 30
440 10 37
ND 4 15

Histological grade
Grade I 5 18
Grade II 14 52
Grade III 6 22
ND 2 7

Histological type
Ductal invasive 23 85
Lobular invasive 4 15

Nodal status
0 8 30
1–3 2 7
X4 7 26
ND 10 37

Hormonal status
ER+ 16 59
PR+ 9 34
ND 2 7

Vascular invasion
+ 13 48
� 6 22
ND 8 30

Abbreviation: ND¼ not determined.

Table 2 Descriptive results of HER2 status in primary tumours and in
bone marrow by FISH and by immunohistochemistry

Oncogenes status in bone
marrow

HER2 status in
primary tumour HER2 CCND1 MYC

Cases
IHC (% positive

cells)
No. of
copies

No. of
copies

No. of
copies

No. of
copies

1 30 2� 2� 2� ND
2 0 3� 3� 2� ND
3 0 ND 3� 420� 2�
4 100 12–15� 15� 12–15� ND
5 0 2� 2� ND ND
6 0 2� 2� 2� ND
7 0 ND 2� 2� 2�
8 0 3� 3� ND ND
9 0 2� 2� 2� ND

10 0 2� 2� 2� ND
11 0 2� 2� 2� 2�
12 0 ND 2� 12� ND
13 0 ND 2� 2� ND
14 0 2� ND ND ND
15 0 2� 2� 2� ND
16 0 2� 6� 410� ND
17 0 2� ND ND ND
18 100 8–20� 20� 15� 1�
19 15 2� 2� 2� ND
20 100 12� 2� 2� ND
21 0 ND 3� 410� ND
22 0 2� ND ND ND
23 60 2� 2� 2� ND
24 100 8–20� 3� ND ND
25 100 ND 420� 420� 410�
26 0 ND 2� ND ND
27 0 2� 2� 2� 2�

Abbreviations: ND¼ not determined; FISH: fluorescence in situ hybridization; IHC:
Immunohistochemistry.
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four cases with HER-2 amplification in micrometastatic cells
showed HER-2 amplification in the primary tumours.

CCND1 gene status was assessed in 20/27 of the cases. CCND1
was amplified in seven of these 20 cases (35%). Notably, four of
these seven CCND1 amplified cases showed also an amplification
of HER2 (Figure 1). In the remaining three cases, this amplification
confirmed that the detected HER2-negative CKþ cells actually
corresponded to tumour cells.

MYC gene status was assessed in six cases and was amplified
in one case, in which HER2 and CCND1 were also amplified
(Table 2).

Four cases, without HER2 amplification, presented three HER2
gene copies per nucleus and thus demonstrated a HER2 over-
representation in relation with a chromosome 17 trisomy. The
presence of chromosome 17 trisomy was another proof of
malignancy of these micrometastatic cells (Figure 2) (Table 2).

All analysed cases showed cytokeratin 8/18 expression in their
primary breast tumour, ranging from 10 to 100% of positive cells
per case.

DISCUSSION

In this pilot study, we wanted to document the stability of the
HER2 status between primary tumours and their bone marrow
micrometastasis. We observed that the majority of the HER2-
negative tumours were associated with HER2-negative micro-
metastasis except in one case in which micrometastatic cells
demonstrated a lower level of HER2 amplification. In addition, in
our series of breast carcinomas, 15% of bone marrow micrometa-
static cells presented HER2 amplification. This rate is very close to
that observed in primary breast tumours. HER2 gene amplification
appears thus to occur before bone marrow micrometastatic
process in breast cancer and to remain stable during bone marrow
micrometastatic spread.

This result is in accordance with those concerning visceral
metastases and local and regional metastases (Barnes et al, 1988;
Niehans et al, 1993; Masood and Bui, 2000; Simon et al, 2001;
Gancberg et al, 2002; Vincent-Salomon et al, 2002; Carlsson et al,
2004). Recently, in a meta-analysis of the published data
concerning HER2 status stability among primaries and metastases,
Carlsson et al (2004) confirmed that there was no drastic
modification in HER2 status between primary tumours and their
locoregional lymph node metastases and their distant visceral
metastases.

Our results and these published data on the stability of HER2
status between primary and metastatic tumours are in contrast
with the recently published studies by Schmidt-Kittler et al (2003)
and by Klein et al (Mercapide et al 2002) showing that
micrometastatic cells demonstrated fewer chromosomal altera-
tions, such as losses and gains detected by single-cell CHG
analysis, than primary tumour cells (Mercapide et al 2002;
Schmidt-Kittler et al, 2003). Another recently published study
also showed that HER2 amplification was more frequently
observed in circulating cells than in primary tumours and
therefore concluded that HER2 amplification could be acquired
during the metastatic process (Meng et al, 2004). The HER2
amplicon corresponds to a 280-kb minimal region of amplification
at the HER2 locus of chromosome 17q arm, in breast cancer. The
amplification is significantly associated with increased expression
of six of the 10 genes located within this region (HER2, GRB7,
PNMT, MLN64, MGC9753 and MGC 1483) as described by
Kauraniemi et al (2003). This amplicon has been observed since
the early stage of in situ carcinoma (Van de Vijver et al, 1988). The
observation of HER2 amplification exclusively in disseminated
cells, suggests a selection of clones within the primary tumour that
harboured initial HER2 amplification and that were under-
represented in the primary tumour, for example, by cytotoxic
agents, rather than an acquisition of this amplification de novo
within the metastatic cells.

Previous studies by Pantel et al (1993), Braun et al (2001a) and
Solomayer et al (2006), reported high rates of HER2 over-
expression ranging from 60 to 100% of cases, analysed by
immunocytochemistry only. These rates could therefore be
explained by technical aspects, that is, excessively sensitive
immunohistochemistry technique. Using the FISH approach, we
demonstrated that primary breast tumours and bone marrow
micrometastasis demonstrate the same range of HER2 activation,
ranging around 15% of the cases (Table 3).

The gene expression profile of metastasis and their primaries
has also been compared and has been shown to cluster together
(Ramaswamy et al, 2003; Weigelt et al, 2003). In the literature,
Cyclin D1 amplification in primary breast tumours ranged between
10 and 23%. In our series, the CyclinD1 (CCND1) amplification

20�m

Figure 1 One micrometastatic cell CKþ (intracytoplasmic red labelling)
with HER 2 amplification (red spots) and CCND1 amplification (green
spots).

20�m

Figure 2 Chromosome 17 trisomy (blue spots) in CKþ cells
(cytoplasmic red labelling) and disomy (blue spots) in cytokeratine-negative
cell.
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rate was 35% (Al-Kuraya et al, 2004). This rate is therefore higher
than previously reported for ductal carcinomas, although our
series is very small to derive any conclusions about this issue.
However, we can speculate that the amplification rate might be
higher in this group of metastatic and advanced breast carcinomas.
Amplification of HER2 with other oncogenes has been reported

previously, particularly in a recently published FISH study (Al-
Kuraya et al, 2004). In this work, HER2 was associated with CCND1
amplification in 18% of cases. CCND1 was amplified in 20% of
cases. Determination of coamplification rates of major oncogenes
such as MYC and CCND1 in breast carcinomas should provide
important information regarding prognosis. It has also been
recently reported, during the 2005 San Antonio meeting, that MYC
status could be a predictive parameter of tumour response to anti-
HER2 therapy (Gianni et al, 2005).

In conclusion, the HER2 status assessed by FISH in isolated
micrometastatic cancer cells in bone marrow was well correlated
with that of primary tumour. Our pilot study showed that in the
majority of the cases, the stable, positive or negative, status of
HER2 during the bone marrow micrometastatic process. This
observation on a small series of cases should be confirmed on a
larger scale and identification of HER2-positive micrometastatic
cells in breast carcinomas could constitute part of patient
management in a future clinical trial, in order to select patients
for anti-HER2 adjuvant therapy. Repeated assessment of the
presence of micrometastases could also be part of the follow-up
and evaluation of the efficacy of anti-HER2 therapy.
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