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Key Points 

Question: Can Electronic Health Records (EHRs) be used to search for drug candidates that 

could be repurposed to treat the coronavirus disease 2019 (COVID-19)? 

Findings: Drug-wide association studies (DrugWAS) of COVID-19 severity outcomes were 

conducted on a cohort of 7,768 COVID-19 patients. The study found 15 drug ingredients that 

are significantly associated with a decreased risk of death and other severe COVID-19 

outcomes. 

Meaning: The list of drugs proposed by this study could provide additional insights into 

developing new candidates for COVID-19 treatment. 
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Abstract 

Importance: There is an unprecedented need to rapidly identify safe and effective treatments 

for the novel coronavirus disease 2019 (COVID-19). 

Objective: To systematically investigate if any of the available drugs in Electronic Health 

Record (EHR), including prescription drugs and dietary supplements, can be repurposed as 

potential treatment for COVID-19. 

Design, Setting, and Participants: Based on a retrospective cohort analysis of EHR data, 

drug-wide association studies (DrugWAS) were performed on COVID-19 patients at Vanderbilt 

University Medical Center (VUMC). For each drug study, multivariable logistic regression with 

overlap weighting using propensity score was applied to estimate the effect of drug exposure on 

COVID-19 disease outcomes. 

Exposures: Patient exposure to a drug during 1-year prior to the pandemic and COVID-19 

diagnosis was chosen as exposure of interest. Natural language processing was employed to 

extract drug information from clinical notes, in addition to the prescription drug data available in 

structured format. 

Main Outcomes and Measures: All-cause of death was selected as primary outcome. 

Hospitalization, admission to the intensive care unit (ICU), and need for mechanical ventilation 

were identified as secondary outcomes. 

Results: The study included 7,768 COVID-19 patients, of which 509 (6.55%) were hospitalized, 

82 (1.06%) were admitted to ICU, 64 (0.82%) received mechanical ventilation, and 90 (1.16%) 

died. Overall, 15 drugs were significantly associated with decreased COVID-19 severity. 

Previous exposure to either Streptococcus pneumoniae vaccines (adjusted odds ratio [OR], 

0.38; 95% CI, 0.14-0.98), diphtheria toxoid vaccine (OR, 0.39; 95% CI, 0.15-0.98), and tetanus 

toxoid vaccine (OR, 0.39; 95% CI, 0.15-0.98) were significantly associated with a decreased risk 
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of death (primary outcome). Secondary analyses identified several other significant associations 

showing lower risk for COVID-19 outcomes: 2 vaccines (acellular pertussis, Streptococcus 

pneumoniae), 3 dietary supplements (turmeric extract, flaxseed extract, omega-3 fatty acids), 

methylprednisolone acetate, pseudoephedrine, ethinyl estradiol, estradiol, ibuprofen, and 

fluticasone. 

Conclusions and Relevance: This cohort study leveraged EHR data to identify a list of drugs 

that could be repurposed to improve COVID-19 outcomes. Further randomized clinical trials are 

needed to investigate the efficacy of the proposed drugs. 
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1. INTRODUCTION 

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), has triggered a pandemic infection leading to unprecedented 

excess mortality and adverse consequences to global economy.1-3  According to the World 

Health Organization (WHO), SARS-CoV-2 has spread to over 222 countries and territories 

resulting in >81 million infected individuals and >1.8 million confirmed deaths as of December 

2020.4 While significant progress has been achieved to successfully develop and deploy safe 

and effective SARS-CoV-2 vaccines,5-9 intensive scientific efforts are currently underway to 

discover treatments that improve COVID-19 outcomes, particularly drug treatments that can be 

used early in a patient’s illness to prevent hospitalization or death. Recently, the antiviral drug 

remdesivir has been proven to reduce the recovery time of adult patients hospitalized with 

COVID-19.10 Another study indicated that use of dexamethasone reduces 28-day mortality of 

hospitalized COVID-19 patients receiving mechanical ventilation or high-flow oxygen.11 

Monoclonal antibodies have been shown to reduce the viral load and improve clinical outcomes 

in outpatients with mild or moderate COVID-19.12 Furthermore, several other drugs including 

corticosteroids, antiviral therapies, immune-modulators, and anticoagulants are currently 

investigated as potential therapies for COVID-19.13-17 Despite recent advances, however, there 

is an urgent need for discovering safe and effective treatments that are able to prevent COVID-

19 progression and long-term complications.18 

 Because a de novo treatment usually requires many years to reach the market, involves 

significant costs, and has a low rate of success, drug repurposing methodologies have emerged 

as an attractive strategy to accelerate the discovery of novel COVID-19 treatments.19-21 

Leveraging real-world data from Electronic Health Record (EHR), we conducted a drug-wide 

association study (DrugWAS) to systematically investigate all recorded drug exposures, 

including prescription drugs and dietary supplements, as potential COVID-19 treatments. We 
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hypothesized that drug exposures associated with a lower risk of death or severe COVID-19 

outcomes could identify candidates for further therapeutic study. 

 

2. METHODS 

Study Design 

DrugWAS is a high-throughput method for independently investigating associations between 

drugs and disease outcomes. It relies on a retrospective cohort analysis of data stored in the 

Vanderbilt University Medical Center (VUMC) Research Derivative, a daily updated database of 

identified EHR data restructured for research. Specific data elements extracted from the 

Research Derivative include demographics data, laboratory tests, drugs, clinical outcomes, 

comorbidities, and clinical notes. The study was approved by the institutional review board at 

VUMC. It is presented by following the Strengthening the Reporting of Observational Studies in 

Epidemiology (STROBE) reporting guideline.22 

 

Study Population 

The study included all patients who were tested at VUMC between March 9, 2020 and 

December 31, 2020 and were diagnosed with SARS-CoV-2 confirmed by polymerase chain 

reaction (PCR) assay (Figure 1). Being a large medical center in Middle Tennessee, and the 

sole provider of COVID-19 testing early in the pandemic, VUMC tested a substantial number of 

individuals who never had a care visit at the medical center prior to their test. As the baseline 

clinical and drug exposure data for these patients was sparse, and the risk of treatment 

misclassification was high, patients without an encounter in the EHR within a 1-year period prior 

to February 15, 2020 were excluded.  The exclusion date corresponded to the date that COVID-

19 pandemic was first detected in our geographical area. While no age, gender, race or ethnicity 

selection criteria were imposed, patients with missing demographic information (eg, unknown 

race) were excluded from the study. At VUMC, SARS-CoV-2 PCR testing was initially limited to 
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symptomatic individuals and a selected category of patients who needed to be physically 

present in a VUMC facility (eg, pregnant women or patients scheduled for surgery) PCR testing 

was required before their visit. These patients, flagged as asymptomatic at the test time, were 

excluded from the study since they may increase the false positive rate of COVID-19 outcomes 

(eg, admission to hospital of an asymptomatic COVID-19 patient would be likely influenced by 

surgery rather than by the COVID-19 diagnosis). 

 

Exposure of Interest 

Patient exposure to a drug between February 15, 2019 (approximated as 1-year prior to the 

pandemic arriving in our geographical area) and test time was selected as the exposure of 

interest for each drug-outcome association study in DrugWAS. All generic and brand drugs 

recorded in the EHR for the final study population during this interval were extracted from the 

drug table and normalized to drug ingredients using a previously developed drug normalization 

pipeline.23 Natural language processing (NLP) was also used to extract drug information from 

free-text notes. This process was particularly useful to identify exposure to over-the-counter 

drugs or to drugs prescribed by outside providers. For this, we employed MedXN-v1.0.3,24 a 

high-performance NLP drug extractor previously evaluated on Vanderbilt EHR,25,26 to parse 

>789,000 notes with dates between February 15, 2019 and PCR test time. There was no filter 

restriction by note type for NLP-based drug extraction; thus, notes such as problem lists, clinical 

communications, and outpatient Rx order summaries were also included in this process. 

Diagnostic drug ingredients, excipients, and other non-therapeutic agents (eg, placebo, inert 

ingredients) were excluded from the study. Drugs and supplements were assigned a therapeutic 

category (drug class) using the Lexicomp® database. 

 

Outcomes 
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Outcomes were extracted using EHR data from PCR test date until December 31, 2020. Based 

on the WHO guidelines on COVID-19 severity scale,27 they were classified as: 1) never 

hospitalized, 2) hospitalized with mild conditions and without intensive treatment (hospitalized-

mild), 3) admitted to ICU, 4) on mechanical ventilation, and 5) dead. All-cause of death was 

selected as primary outcome. Two strategies were designed to combine hospitalized-mild, 

admitted to ICU, and on mechanical ventilation into multiple secondary outcomes: 1) cumulative 

severity, where a specific category is combined with more severe categories on the scale, and 

2) exclusive severity, which includes only the patients from a specific category. For instance, the 

cumulative severity strategy for the ICU outcome also includes on ventilator and dead 

categories while the exclusive severity for the same outcome includes only the patients in ICU 

(eFigure 1 in the Supplement). Of note, for the primary outcome, both strategies will generate 

the same severity group. All the severity groups corresponding to the primary and secondary 

outcomes were compared against non-hospitalized, alive COVID-19 patients. 

 

Covariates 

Age, sex, race, and ethnicity were selected to account for the differences in patient 

characteristics. Additionally, the weighted Elixhauser comorbidity score28,29 was chosen to 

account for the severity of medical conditions since multiple comorbidities have been shown to 

be associated with COVID-19 outcomes.30,31 The covariate encoding this comorbidity score was 

computed by: 1) extracting the International Classification of Diseases, 9th/10th Revision, 

Clinical Modification (ICD-9/10-CM) billing codes from each patient record up to the PCR test 

time and determining their inclusion in any of the 31 Elixhauser comorbidity groups;32 2) 

aggregating the severity scores derived from associations between the 31 comorbidity groups 

and the risk of in-hospital death;29 and 3) categorizing the aggregated severity scores into 4 

ordinal categories: <0, 0, 1-4, and 5+.33 
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Statistical Analysis 

Patient characteristics were reported as means and standard deviations (SDs) for continuous 

variables and counts (percentages) for categorical variables.  

For each drug studied, a propensity score method was used to adjust for differences 

between the patients exposed to the drug prior to being diagnosed with SARS-CoV-2 (exposed 

group) and those not exposed (unexposed group). The propensity score represents the 

probability of a patient being assigned to the exposed group conditional on the observed patient 

characteristics. In observational, nonrandomized studies, propensity score methods are used to 

balance the main patient characteristics across treatment groups, which is essential in reducing 

the bias in estimating treatment effects.34-36 In DrugWAS, the propensity score adjustment 

played a critical role in reducing the likelihood of confounding (especially confounding by 

indication) since patients exposed to drugs are likely to have comorbidities as treatment 

indications that may also affect the study outcomes.  

This study applied the overlap weighing with a propensity score method. The method 

has been shown to achieve high performance under different configurations,37,38 and, recently, it 

has been successfully used in estimating the relationship between use of specific drugs and 

COVID-19 outcomes.39-41 Specifically, the propensity score for being exposed to a drug was 

estimated by a multivariable logistic regression model using age, sex, race, ethnicity, and 

weighted Elixhauser comorbidity score. Using the estimated propensity score, a weighted 

multivariable logistic regression was performed to estimate the effect of drug exposure on both 

primary and secondary outcomes, where each patient was weighted with the probability of the 

patient being assigned to the opposite exposure group. The estimates of adjusted odds ratio 

(OR) and 95% confidence intervals (CIs) were reported in the results. Associations 

corresponding to a specific outcome were performed for all drugs with at least 100 exposed 

patients of whom at least 5 had the outcome. All drugs with corresponding effect estimates 

indicating reduced severity risk (OR<1) were reported as potential candidates for COVID-19 
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treatment repurposing. No adjustment for multiple testing was performed. All statistical analyses 

were done in R, version 3.6.1. 

 

3. RESULTS 

Patients 

The study included 7,768 SARS-CoV-2 infected patients. The mean age was 42 and the 

majority of patients were females (61.3%), whites (84.2%), and non-Hispanic or Latino (96.5%). 

From this cohort, 509 (6.55%) were hospitalized and 90 (1.16%) died (Figure 1). Among those 

who died, 11 did not have an inpatient visit at VUMC after they were diagnosed with SARS-

CoV-2 infection. While the weighted Elixhauser comorbidity score indicated a current state of 

health for most of the patients, 1,875 (24.1%) of them had severe comorbidity scores (Table 1). 

The hospitalized patients had a mean age of 60, and an increased percent of males (49.3%), 

blacks (24.8%), and severe comorbidity scores (58.7%). 

 

Primary Outcome 

The analysis for the primary outcome consisted of 233 association studies between previous 

drug exposure and all-cause of death (eTables 1 and 2 in the Supplement). Propensity score 

overlap-weighted logistic regression indicated that 49 drugs have lower death risk estimates 

(adjusted OR<1). Among these, previous exposures to Streptococcus pneumoniae serotype (1, 

19A, 3, 5, 6A, 7F) capsular antigen diphtheria CRM197 protein conjugate vaccine (OR, 0.38; 

95% CI, 0.14-0.98), Streptococcus pneumoniae serotype (14, 18C, 19F, 23F, 4, 6B, 9V) 

capsular antigen diphtheria CRM197 protein conjugate vaccine (OR, 0.38; 95% CI, 0.17-0.89), 

diphtheria toxoid vaccine (OR, 0.39; 95% CI, 0.15-0.98), and tetanus toxoid vaccine (OR, 0.39; 

95% CI, 0.15-0.98) are associated with a significantly decreased risk of death. After overlap 

weighting with propensity score for the first (and second) Streptococcus pneumoniae vaccine 

the death rate was 2.1% (1.9%) in the exposed group compared with a death rate of 4.1% 
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(3.6%) in the unexposed group. For both diphtheria and tetanus toxoid vaccines, the death rate 

was 0.7% vs 1.7% in the exposed and unexposed groups, respectively. Figure 2 and eTable 3 

in the Supplement show additional details of the 49 drug studies for the primary outcome while 

eTable 4 in the Supplement demonstrates that the overlap weighting achieved a good balance 

in main patients characteristics between the exposed and unexposed groups. A sensitivity 

analysis where the exposure of interest was extracted using only the information from the drug 

table (in structured format) found no significant associations for the primary outcome. 

 

Secondary Outcomes 

The secondary outcome analyses lead to the discovery of additional drugs as potential 

treatments for COVID-19 (eTables 5-10 in the Supplement). Figure 3 summarizes the 

significant associations obtained across all COVID-19 outcomes. In addition to vaccines, 

pervious exposure to flaxseed extract, methylprednisolone acetate, pseudoephedrine, omega-3 

fatty acids, turmeric extract, ibuprofen, and fluticasone showed significant lower risks for 

hospitalized-mild (cumulative and exclusive severity). Furthermore, ethinyl estradiol and 

estradiol demonstrated protective effect for hospitalized-mild (cumulative severity). 

 

Risk Trend Analysis 

A visual analysis showing the risk trends over the selected outcomes for all 49 drugs from the 

primary analysis is depicted in Figure 4. Spline regression was also used to visualize non-

linearity of risk trends across COVID-19 outcomes ordered by increased severity (eFigures 2 

and 3 in the Supplement). Drugs including fluticasone, naproxen, flaxseed extract, and omega-3 

fatty acids show a constant low risk across the entire COVID-19 severity scale whereas 

cephalexin and cyclobenzaprine indicate a protective effect only for the primary outcome. 

 

4. DISCUSSION 
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We presented a high-throughput method to systematically investigate associations between 

drug exposures and COVID-19 outcomes. Our study found 15 drug ingredients that are 

significantly associated with a decreased risk of death and other severe COVID-19 outcomes. 

Moreover, 103 other drug ingredients indicated a protective effect for COVID-19 outcomes. It is 

our hope that this proposed list of drug ingredients provides additional insights into developing 

efficient COVID-19 treatments and would serve as a starting point for future prospective studies. 

Since their short- and long-term adverse events have been already studied, the efficacy of these 

drug ingredients against COVID-19 could be investigated rapidly in clinical trials.42 

For each drug study, overlap weighting with propensity score was implemented to adjust 

for confounding when comparing the drug exposed and unexposed groups. Another significant 

contribution of our study is the use of NLP to better capture drug exposure information from 

clinical notes. Notably, this process had a critical role in enabling the study of over-the-counter 

drugs including dietary supplements as potential COVID-19 treatments. 

Some of the significant drug ingredients found in this study replicate previous findings of 

potential dug repurposing candidates for COVID-19. Two network-based bioinformatics 

approaches found fluticasone as a possible efficient treatment for COVID-1920,43 while an in vitro 

study indicated that fluticasone does not suppress SARS-CoV-2 replication.44 

Methylprednisolone has been previously shown to be associated with a decreased risk of 

death.30 It is currently recommended as a treatment for COVID-19 patients with severe and 

critical outcomes when dexamethasone is unavailable.45 In a network-based bioinformatics 

analysis pseudoephedrine was ranked as the best treatment candidate against COVID-19.46 

Concerns regarding the use of ibuprofen causing potential harm to COVID-19 patients has 

initially received significant attention.47-49 More recent studies, however, found no significant 

evidence to suggest that ibuprofen is associated with severe COVID-19 outcomes.50,51 Further, 

an observational study using EHR data from 6 hospitals indicated that exposure to ibuprofen is 

associated with a lower risk of hospitalization due to COVID-19 (OR, 0.73; 95% CI, 0.64-0.84).52 
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A retrospective study using EHR data showed a decreased fatality rate for women 50+ years 

old receiving estradiol therapy (OR, 0.33; 95% CI, 0.18-0.62).53 Multiple clinical trials are 

currently underway to test the efficacy and safety of using methylprednisolone (NCT04263402, 

NCT04559113, NCT04636671), ibuprofen (NCT04334629, NCT04382768, NCT04383899), and 

estradiol (NCT04539626) against COVID-19.  

An important finding by our study is that recent exposure to various types of 

Streptococcus pneumoniae vaccines, diphtheria toxoid vaccine, tetanus toxoid vaccine, and 

acellular pertussis vaccine is associated with a decreased risk of death and other severe 

COVID-19 outcomes. This may be explained by the ability of these vaccines to stimulate the 

immune system and provide immunologic protection against SARS-CoV-2.54 Pneumonia and 

influenza vaccination was also suggested to prevent COVID-19 exacerbation due to co-infection 

with other viruses.55 To our knowledge, dietary supplements such as flaxseed extract, omega-3 

fatty acids, and turmeric extract have not been previously shown to be associated with a 

reduced COVID-19 severity risk. However, due to their anti-inflammatory properties, they have 

been proposed as alternative treatments to improve the clinical outcomes of COVID-19 

patients.56-61 Yet, the dietary supplement results should be interpreted with caution since the 

corresponding ingredients are not evaluated by the United States Food and Drug Administration 

for safety and effectiveness and are not intended to diagnose, treat, cure, or prevent any 

disease. 

 

Limitations 

Although overlap weighting with propensity score was applied to balance out the main patient 

characteristics between the drug exposed and unexposed groups, there may be unmeasured 

confounding factors that were not included in the propensity score model. Thus, while the bias 

may be reduced, confounding by indication is still possible due to unmeasured confounding 
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factors. This is a major limitation, generally applicable to observational studies that lack 

randomization for drug exposure assignment.40,62  

Treatment misclassification was addressed by including only patients with at least one 

encounter in the EHR such that drug exposure information could be extracted for each SARS-

CoV-2 positive patient during at least one year prior to diagnosis. However, EHR phenotyping 

pose many challenges which could lead to inaccurately extracting the treatment status of the 

patient.63 For example, drug exposure extraction from clinical text relies on accurate 

identification of text expressions that are negated (eg, “he could not be on Coumadin because 

of history of GI bleed”) or hypothetical (eg, “Zofran 4 mg PO once a day as needed for 

nausea”).23,64 This is another reason for interpreting the results of dietary supplements with 

caution since they are primarily extracted from clinical notes. Furthermore, assuming drug 

exposure information is accurately extracted for a patient, exposure of the drug at and after 

diagnosis time is not guaranteed. However, vaccine data in the EHR is not subject to this 

limitation. 

Misclassification of COVID-19 outcomes was addressed by excluding patients that were 

asymptomatic at test time. These patients could introduce bias in the study since, for instance, 

they may be admitted to hospital for reasons other than COVID-19. Additionally, despite 

including only patients with VUMC as their “medical home”, there could be a small number of 

patients among those classified as non-hospitalized who were in fact admitted to another 

hospital.  

Finally, generalizability has yet to be proven on larger cohorts with a more 

heterogeneous study population. In this single-site study, patients are predominantly white, non-

Hispanic or Latino and relatively young (mean age of 42). Larger cohorts would also enable 

conducting subgroup analyses for a specific race, sex, age category, set of comorbidities, drug 

dose, drug route, drug exposure intervals, or combination therapy. 
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5. CONCLUSIONS 

Leveraging EHR data, DrugWAS of COVID-19 severity outcomes enables the discovery of drug 

ingredients that could be repurposed as potential treatments for COVID-19. In addition to the 

prescription drugs available in structured format, extracting drug information from clinical notes 

using NLP facilitates the study of over-the-counter drugs on improving the recovery of COVID-

19 patients. The efficacy of the identified drug ingredients needs to be evaluated in prospective 

clinical trials using larger and more heterogenous study populations. 
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Table 1 Patient characteristics. 

 All patients  Hospitalized patients 
Characteristic N %  N % 
Total 7,768 100  509 100 
Age, y* 42 20  60 19 

      
Sex      
Men 3,003 38.7  251 49.3 
Women 4,765 61.3  258 50.7 

      
Race      
White 6,543 84.2  369 72.5 
Black 1,018 13.1  126 24.8 
Asian 207 2.7  14 2.8 

      
Ethnicity      
Not Hispanic or Latino 7,497 96.5  488 95.9 
Hispanic or Latino 271 3.5  21 4.1 

      
Weighted Elixhauser comorbidity score   
<0 1,124 14.5  50 9.8 
0 3,675 47.3  109 21.4 
1-4 1,094 14.1  51 10 
5+ 1,875 24.1  299 58.7 

* Reported as age mean and standard deviation 
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Figure 1 Selection of COVID-19 patients for the DrugWAS analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

21,228 Patients tested positive for SARS-
Cov-2 infection

10,413 (49.05%) Excluded: no EHR data 
during 1-year prior Feb 15, 2020

10,815 With at least one encounter prior 
the COVID-19 pandemic

1,495 (16.14%) Excluded: had missing 
demographic information

1,206 (13.02%) Race
994 (10.73%) Ethnicity

1,552 (14.35%) Excluded: asymptomatic 
at the time of test

9,263 With symptoms at the time of test 
and with EHR data prior the COVID-
19 pandemic

7,768 Final study population
509 (6.55%) Hospitalized

82 (1.06%) In ICU

64 (0.82%) On ventilator

90 (1.16%) Dead
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Figure 2 Association between drug exposure and all-cause of death. Adjusted odds ratios (ORs) and 
95% confidence intervals (CIs) were estimated using propensity score overlap-weighted logistic 
regression while death rates were computed using overlap weighting with propensity score.  

 
Abbreviations and acronyms. *A Streptococcus pneumoniae serotype X: Streptococcus pneumoniae serotype (1, 
19A, 3, 5, 6A, 7F) capsular antigen diphtheria CRM197 protein conjugate vaccine; *B Streptococcus pneumoniae 
serotype X: Streptococcus pneumoniae serotype (14, 18C, 19F, 23F, 4, 6B, 9V) capsular antigen diphtheria CRM197 
protein conjugate vaccine; *C Streptococcus pneumoniae type X: Streptococcus pneumoniae type (1, 10A, 11A, 12F, 
14, 15B, 17F, 18C, 19A, 19F, 2, 20, 22F, 23F, 3, 33F, 4, 5, 6B, 7F, 8, 9N, 9V) capsular polysaccharide antigen; 
NSAID: nonsteroidal anti-inflammatory drug. 
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Figure 3 Significant associations grouped by outcome. 

 
Abbreviations and acronyms. *A Streptococcus pneumoniae serotype X: Streptococcus pneumoniae serotype (1, 
19A, 3, 5, 6A, 7F) capsular antigen diphtheria CRM197 protein conjugate vaccine; *B Streptococcus pneumoniae 
serotype X: Streptococcus pneumoniae serotype (14, 18C, 19F, 23F, 4, 6B, 9V) capsular antigen diphtheria CRM197 
protein conjugate vaccine; *C Streptococcus pneumoniae type X: Streptococcus pneumoniae type (1, 10A, 11A, 12F, 
14, 15B, 17F, 18C, 19A, 19F, 2, 20, 22F, 23F, 3, 33F, 4, 5, 6B, 7F, 8, 9N, 9V) capsular polysaccharide antigen; 
NSAID: nonsteroidal anti-inflammatory drug. 
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Figure 4 Heatmap of 49 drug associations across the COVID-19 severity scale: hospitalized-mild (M), 
ICU admission (I), on ventilation (V), and death (D). In Figures 4A and 4B the secondary outcomes were 
extracted following the cumulative severity and exclusive severity strategies, respectively. In Figure 4B, 
drug studies that did not meet the inclusion criteria are shown in white. 

 
Abbreviations: *A Streptococcus pneumoniae serotype X: Streptococcus pneumoniae serotype (1, 19A, 3, 5, 6A, 7F) 
capsular antigen diphtheria CRM197 protein conjugate vaccine; *B Streptococcus pneumoniae serotype X: 
Streptococcus pneumoniae serotype (14, 18C, 19F, 23F, 4, 6B, 9V) capsular antigen diphtheria CRM197 protein 
conjugate vaccine; *C Streptococcus pneumoniae type X: Streptococcus pneumoniae type (1, 10A, 11A, 12F, 14, 
15B, 17F, 18C, 19A, 19F, 2, 20, 22F, 23F, 3, 33F, 4, 5, 6B, 7F, 8, 9N, 9V) capsular polysaccharide antigen 
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