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Abstract

Ovarian cancer (OVC) is the most lethal of the gynecological malignancies, with diagnosis often occurring
during advanced stages of the disease. Moreover, a majority of cases become refractory to chemotherapeutic
approaches. Therefore, it is important to improve our understanding of the molecular dependencies underlying
the disease to identify novel diagnostic and precision therapeutics for OVC. Cancer cells are known to sequester
iron, which can potentiate cancer progression through mechanisms that have not yet been completely eluci-
dated. We developed an algorithm to identify novel links between iron and pathways implicated in high-grade
serous ovarian cancer (HGSOC), the most common and deadliest subtype of OVC, using microarray gene
expression data from both clinical sources and an experimental model. Using our approach, we identified
several links between fatty acid (FA) and iron metabolism, and subsequently developed a network for iron
involvement in FA metabolism in HGSOC. FA import and synthesis pathways are upregulated in HGSOC and
other cancers, but a link between these processes and iron-related genes has not yet been identified. We used the
network to derive hypotheses of specific mechanisms by which iron and iron-related genes impact and interact
with FA metabolic pathways to promote tumorigenesis. These results suggest a novel mechanism by which iron
sequestration by cancer cells can potentiate cancer progression, and may provide novel targets for use in
diagnosis and/or treatment of HGSOC.
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Introduction

Ovarian cancer (OVC) is the sixth most common
cancer worldwide, and will account for *14,000 deaths

in the United States in 2017 (Siegel et al., 2017). OVC is the
most lethal (i.e., has the lowest 5-year survival rate, *45%)
of all gynecological cancers. High-grade serous ovarian
cancer (HGSOC) is the most common and deadliest subtype,
with a 5-year survival rate of *35% (Sankaranarayanan and
Ferlay, 2006). The distal fallopian tube is believed to be the
site of origin for HGSOC (Vang et al., 2009).

High levels of systemic iron are associated with in-
creased risk for a number of cancers. With respect to dietary
iron, a meta-analysis of 59 epidemiological studies showed

increased relative risk for colorectal, colon, lung, and to a
smaller extent breast cancers with increases in heme iron
intake (Fonseca-Nunes et al., 2014). Elevated systemic
levels of iron can occur independent of diet, such as with
the genetic disorder hereditary hemochromatosis (HH).
Patients with HH are at especially high risk for liver cancer
(Elmberg et al., 2003; Hsing et al., 1995), as well as other
nonhepatic cancers (Hsing et al., 1995; Osborne et al.,
2010; Shaheen et al., 2003).

Cancer cells themselves often exhibit a phenotype of iron
retention, with increased levels of proteins involved in iron
import and decreased levels of proteins involved in iron export
when compared to normal cells (Torti and Torti, 2013). HGSOC
conforms to this paradigm (Basuli et al., 2017). Moreover, iron
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derived from hemolysis of erythrocytes, which are present due
to menstruation, may directly contribute to the initiation and
progression of OVC (this is referred to as the incessant men-
struation hypothesis) (Vercellini et al., 2011). In addition to
contributing to cellular oxidative stress, iron is required for
deoxyribonucleic acid replication and is implicated in several
oncogenic processes and signaling cascades (Xue and Shah,
2013).

However, the precise role of iron in OVC remains unclear.
We were thus motivated to consider how iron can impact the
progression of OVC from a systems viewpoint. To do so, we
analyzed clinical and cell culture gene expression data from
multiple sources and searched for perturbed pathways that
showed involvement of iron-related genes in a majority of the
datasets. We considered that a consistency in results among
different datasets indicated a robust mechanism.

Using our analysis, we identified an involvement of iron-
related genes in pathways involved in fatty acid (FA) import
and synthesis. It has been established that cancer cells in-
crease FA synthesis and import to aid in generation of
phospholipids for cell division and lipid-mediated signaling
(Currie et al., 2013). We propose a novel link between in-
creased FA synthesis and import and the cancer-associated
increase in intracellular iron in HGSOC.

While a link between iron and FA synthesis has not been
investigated in the context of cancer, the effects of iron on FA
metabolism in the normal liver have been studied, although
frequently with contradictory results (Ahmed et al., 2012).
For example, studies have shown that iron deficiency can
either increase [e.g., (Sherman, 1978)] or decrease [e.g.,
(Stangl and Kirchgessner, 1998)] hepatic lipogenesis, with
the diverse methodology used to collect data cited as a po-
tential cause of the discrepancy (Ahmed et al., 2012).

Nevertheless, it is agreed that iron can have a major impact
on FA metabolism through several mechanisms: one is by
directly oxidizing FAs by the Fenton reaction (Bacon and
Britton, 1990), the second is by contributing to the activity of
heme- and iron-binding enzymes involved in FA metabolism
(Stangl and Kirchgessner, 1998), and the third is indirectly by
the downstream products of iron deficiency or overload
(Davis et al., 2012). Such actions of iron are not liver specific
and can transfer to the setting of high iron load in HGSOC
and other cancers, as we show.

To establish a systems-level understanding of the relation-
ship between increased iron utilization and increased FA im-
port and synthesis, we use the results of our analysis in tandem
with the literature to create a network of cancer-associated FA
import and synthesis pathways that are dependent on the ac-
tivity and expression of iron-related genes. From this network,
we derive hypotheses regarding how the action of iron and iron-
related genes can promote tumor growth through their activity
in subcomponents of the FA metabolic network.

Materials and Methods

Data sources

Dataset [1] comes from The Cancer Genome Atlas Re-
search Network (TCGA) (Cancer Genome Atlas Research
Network, 2011) and dataset [2] from the study by Tothill et al.
(2008), both which include mRNA expression profiling data
on HGSOC (Stages II–IV, Grade 2–3) biopsy samples. Since
all cell types are included in the biopsy samples, the data

cannot give a clear understanding of which cell types express
which genes. However, they can provide an overview of gene
expression in the tumor microenvironment and may identify
important paracrine interactions between the distinct resident
cell types.

The next dataset [3] is from Tone et al. (2008) where fallopian
epithelial cells were extracted from subjects who did (FTPb) and
did not (FTPn) have known BRCA mutations. Epithelial cells
were also extracted from patients with high-grade serous fallo-
pian and ovarian cancer, and it was shown that gene expression
between the two cancer types was indistinguishable, and thus we
group the two cancer datasets into the HGSOC set. The Tone
et al. data represent epithelial (stem and differentiated) cells from
normal and cancerous tissue.

Finally, we use expression data (dataset [4]) from primary
follicular stem cells, which are thought to be the cells of
origin of HGSOC, and model cancer stem cells derived from
them (Yamamoto et al., 2016). Yamamoto et al. (2016) ob-
tained the cells through primary culture of fallopian tube stem
cells (FTstem) followed by immortalization and transforma-
tion with h-TERT, SV40 large T antigen, and c-Myc (FTtr),
and further characterized them by gene expression profiling
at the time of isolation. The FT cells represent an in vitro
model system of normal and cancer ovarian stem cells, and
can thus be considered a model subset of the Tone et al. data
(Fig. 1). The data sources are summarized in Table 1.

Data processing

Affymetrix HGU-133A CEL files (1) from TCGA (Cancer
Genome Atlas Research Network, 2011) and HGU-
U133plus2 CEL files from Tothill et al. (2008) (GSE9891),
Tone et al. (2008) (GSE10971), and FT cell lines (Yamamoto
et al., 2016) were robust multiarray average preprocessed and
filtered for markers (without the use of variance-based
methods) in R (v.3.4.0) using the rma and nsFilter functions,
respectively, from the simpleaffy package (v.2.52.0) (Wilson

FIG. 1. Overview of the datasets used with respect to the
tissues (normal ovary/fallopian tube and HGSOC) and cell
types (stem, nonstem, and microenvironment) that they
represent. Numbers in parentheses correspond to the num-
bering of the datasets in the text. [1] TCGA (Cancer Gen-
ome Atlas Research Network, 2011) and [2] Tothill et al.
(2008) datasets come from all cells derived from HGSOC
tissue biopsies, [3] Tone et al. (2008) includes samples from
nonmalignant epithelial fallopian and HGSOC cells, and [4]
are model fallopian stem cells, the predicted precursors of
HGSOC, which have been transformed to cancer stem cells
(Yamamoto et al., 2016). TCGA, The Cancer Genome Atlas
Research Network.
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and Miller, 2005). The probe set with the highest average
expression per gene in each dataset was selected to represent
the expression of that gene.

The comparisons, as described below, for each dataset
were between the following subsets (Table 2): for [1] TCGA,
Mesenchymal (Mes) (n = 108) were compared against Dif-
ferentiated (Diff) (n = 134) samples, for [2] Tothill et al.
(2008), CLOVAR Mes (n = 80) samples were compared
against CLOVAR Diff (n = 35) samples, for [3] Tone et al.
(2008), normal fallopian tube epithelium (FTEn) samples
(n = 12) were compared against high-grade serous ovarian
cancer (HGSOC) samples (n = 13), and for [4] FT cells, c-
Myc-transformed FTtr samples (n = 2) were compared against
normal FTstem samples (n = 2). Subtype classification for
datasets [1] and [2] was obtained from Supplementary
Table S1 in (Verhaak et al., 2013).

Genes that were differentially expressed within each da-
taset were found using the linear modeling paradigm limma
in R/Bioconductor (Ritchie et al., 2015; Smyth, 2004). Sig-

nificantly perturbed Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways within each dataset were found
using the gene set analysis method Generally Applicable
Gene-set Enrichment (GAGE) (Luo et al., 2009), using the
bidirectional option (same.dir = F) and unpaired sample set-
ting (compare = ‘‘unpaired’’).

Comparison of subtypes within the datasets

The decision to compare the Mes and Diff subtypes in
dataset [1] and CLOVAR Mes and Diff subtypes in dataset [2]
was made based on the following rationale: while none of the
original molecular subtypes showed significant differences in
survival in TCGA (Cancer Genome Atlas Research Network,
2011), Verhaak et al. (2013) showed that an optimized clas-
sification algorithm using the same training data and original
four profiles as in the original study gave four modified pro-
files (termed CLOVAR Diff, Pro, Imr, and Mes) that were
different in terms of survival. In particular, when applied to

Table 1. Datasets Used for Analysis, Total Number of Samples (n), Source of Cells, Affymetrix

Platform, Comparisons Performed Within the Datasets, Public Accessibility of the Data,

and Associated References

Dataset [1] TCGA [2] Tothill et al. [3] Tone et al. [4] FT model cell

n 489 218 37 6

Cell type Biopsy, heterogeneous Biopsy, heterogeneous Biopsy, epithelial cells Model cell line

Platform hgu133a hgu133plus2 hgu133plus2 hgu133plus2

Comparison Mes. (n = 108) v. Diff.
(n = 134) subtypes

CLOVAR Mes.
(n = 80) v. Diff.
(n = 35) subtypes

HGSOC samples
(n = 13) v. normal
(n = 12) fallopian

HGSOC cancer stem
(FTtr) (n = 2) v.
normal fallopian
stem (Ftstem) (n = 2)
model cell line

Public access TCGA Data Portal (2014) GEO acc: GSE9899 GEO acc: GSE10971 GEO acc: GSE69428

Reference Cancer Genome Atlas
Research Network
(2011)

Tothill et al. (2008) Tone et al. (2008) Yamamoto et al. (2016)

TCGA, The Cancer Genome Atlas Research Network.

Table 2. The Top Three Mutually Perturbed Pathways for the Three Datasets Indicated

KEGG Pathway
FDR p
value

% iron
DE genes Iron DE genes

[1] TCGA Cancer
Genome Atlas
Research Network
(2011)

Mineral absorption 9.33E-22 44.44 FTL, HMOX1, SLC11A2, HEPH
PPAR signaling pathway 3.10E-19 9.09 SCD, FADS2
Metabolism of xenobiotics by

cytochrome P450
1.46E-05 11.76 CYP1A2, CYP1B1

[2] Tothill et al. (2008) PPAR signaling pathway 4.72E-32 13.04 CYP27A1, SCD, FADS2
Metabolism of xenobiotics by

cytochrome P450
1.71E-22 23.81 CYP1A2, CYP1B1, CYP2A13, CYP3A5,

CYP2S1
Mineral absorption 2.50E-22 40.00 FTL, HMOX1, CYBRD1, HEPH

[3] Tone et al. (2008) Mineral absorption 3.42E-06 31.58 SLC46A1, FTH1, FTL, STEAP2,
SLC40A1, HMOX1

PPAR signaling pathway 3.37E-03 20.00 CYP27A1, SCD, SCD5, FADS2
Metabolism of xenobiotics by

cytochrome P450
8.08E-03 16.67 CYP1B1, CYP2E1

‘‘Iron DE genes’’ refers to iron-related genes that are differentially expressed and ‘‘% iron DE genes’’ refers to the percent of iron DE
genes with respect to all DE genes in that pathway.

KEGG, Kyoto Encyclopedia of Genes and Genomes; PPAR, peroxisome proliferator-activated receptors.
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test data of 800 samples, the CLOVAR Mes subtype had
significantly lower survival than the CLOVAR Diff subtype.

The classification by TCGA was based on the expression
values of 1,500 of the most variable genes from an analysis of
multiple micorarrays from TCGA, whereas the CLOVAR
classification was based on the 100 genes most correlated or
anticorrelated with survival of the TCGA patients (Cancer
Genome Atlas Research Network, 2011; Verhaak et al.,
2013). We used both the [1] Mes v. Diff and [2] CLOVAR
Mes v. Diff subsets to search for impact of iron-related genes
on pathways perturbed in the Mes v. Diff samples since the
original classification could potentially more accurately
identify molecular subtypes, whereas the CLOVAR-based
classification was part of the test set that contributed to sig-
nificant differences in survival between CLOVAR subtypes.

Iron-related genes and mutually perturbed
pathway analysis

Genes that bind iron or are influential in iron-related ho-
meostasis were considered part of a set of iron-related genes.
This list of 274 iron-related genes was compiled manually
from the literature and the gene ontology (GO) category of iron
ion binding (GO:0005506) (Ashburner et al., 2000; Thomas,
2017). The list includes genes involved in iron metabolism
itself (i.e., iron uptake, storage, and efflux), genes encoding
proteins that use iron, heme, or iron-sulfur clusters as cofac-
tors, as well as genes that regulate proteins of iron metabolism,
and is provided as Supplementary Table S1.

For each KEGG pathway identified by GAGE to be sig-
nificantly perturbed (FDR adjusted p value <0.05) per data-
set, the number of iron-related genes that were differentially
expressed (as indicated by limma) and had log2-fold change
‡j0.2j was counted, and the percentage of genes that were
iron-related genes in the full list of differentially expressed
genes per pathway was calculated. A pathway was consid-
ered mutually perturbed if it was found to be perturbed in
datasets [1]-[3], and had ‡2 differentially expressed iron-
related genes. A summary of all mutually perturbed pathways
identified is found in Supplementary Table S2, and an or-
dering of the pathways in ascending order of cumulative rank
is found in Supplementary Table S3. The full results of the
GAGE pathway analysis for each dataset, along with differ-
entially expressed iron-related genes for each pathway, are
found in Supplementary Tables S4–S7.

Overrepresentation analysis (ORA) of iron-related genes
in KEGG pathways by the hypergeometric test was per-
formed using the ConsensusPathDB database (Kamburov
et al., 2011).

Results

Overview of data used for analysis

We utilize a variety of datasets to investigate the impact of
iron on HGSOC (Table 1, Fig. 1). The datasets consist of
microarray expression data from biopsy samples of HGSOC
patients (Stages II–IV, Grade 2–3) collected by [1] TCGA
(Cancer Genome Atlas Research Network, 2011) and [2]
Tothill et al. (2008), [3] laser capture microdissected fallo-
pian epithelial cells from healthy controls and patients with
high-grade serous fallopian and ovarian cancer (Tone et al.,
2008), and [4] primary follicular stem cells FTstem and model

OVC stem cells (FTtr, ‘‘tr’’ stands for transformed) derived
from them (Yamamoto et al., 2016).

Dataset [2] does not contain samples from nonmalignant
tissue, and dataset [1] contains eight such samples when
queried in June, 2017 (Broad Institute TCGA Genome Data
Analysis Center, 2016), which we deemed were not an ap-
propriate sample size to compare against the qualitatively
larger number of tumor samples in the database. Thus, in
these datasets, we compared molecular subtypes that differ in
survival. Specifically, HGSOC samples have been classified
into four molecular profiles: Differentiated (Diff), Pro-
liferative (Pro), Immunoreactive (Imr), and Mesenchymal
(Mes) (Cancer Genome Atlas Research Network, 2011).

A simplified classification algorithm was developed by
(Verhaak et al., 2013) and termed CLOVAR. Using dataset [2]
as part of a test set, Verhaak et al. (2013) showed that the
CLOVAR Mes subtype showed significantly lower survival
than the CLOVAR Diff subtype. We therefore chose to
compare the Mes v. Diff subtypes as a means of comparing
subsets with higher (Diff) v. lower (Mes) survival. Datasets [3]
and [4] do contain normal, or model normal, samples, and thus
a comparison between HGSOC and normal samples was
performed for these two datasets (see Table 1 for a summary of
comparisons for all datasets). See the Materials and Methods
section for more details on the datasets and comparisons.

Mutually perturbed pathways with differentially
expressed iron-related genes

We define iron-related genes as genes with a GO annotation
of ‘‘iron-ion binding,’’ as well as genes known to function in
intracellular iron regulation (transferrin receptor [TFRC], fer-
roportin, etc.) (assembly of the list of iron-related genes is
further described in the Materials and Methods section). To
investigate how iron-related genes can contribute to HGSOC
development and progression, we identified significantly per-
turbed KEGG pathways in each dataset using GAGE, a gene set
analysis method for pathway analysis (Khatri et al., 2012),
since it is optimized for use with both small and large datasets
(Luo et al., 2009). GAGE, like Gene-Set Enrichment Analysis
by which it was inspired, is a pathway analysis method in the
functional class scoring (FCS) category where perturbed
pathways can be identified from cumulative changes in gene
expression between genes in a pathway, even when individual
genes may not be identified as differentially expressed.

In parallel, we identified significantly differentially ex-
pressed genes between subtypes of the datasets as shown in
Table 1 using the Bioconductor/R limma package for dif-
ferential gene expression, which fits linear models to gene
expression data and uses an empirical Bayes method to es-
timate the variance in gene expression by ‘‘borrowing in-
formation’’ across genes (Ritchie et al., 2015; Smyth, 2004).
We analyzed which pathways were significantly perturbed
and included several differentially expressed iron-related
genes, and how consistent this observation was among the
datasets (Fig. 2). We overlaid the perturbed pathways iden-
tified using GAGE analysis with differentially expressed
iron-related genes as a conservative method to identify per-
turbed pathways in which iron-related genes make a contri-
bution to the alteration in pathway activity.

We assayed manually curated pathways specific to hu-
mans, each with its own pathway identifier (e.g., hsa04930)
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from the KEGG (Kanehisa et al., 2017). As described in the
Materials and Methods section, a pathway was considered to
be mutually perturbed if it was perturbed in datasets [1]–[3],
and had ‡2 differentially expressed iron-related genes with a
log2-fold change of ‡j0.2j. This threshold, which keeps genes
with fold change £0.87 and ‡1.15, removes genes with very
low fold changes in expression, while still allowing the
capture of genes with potentially low fold changes in ex-
pression, but that may correspond to a pattern of changes in
gene expression within the pathway, which is in the spirit of
the FCS pathway analysis methods.

Four such pathways were identified (Supplementary
Table S2). Three pathways with the lowest cumulative rank-
ing (Supplementary Table S3) were considered for further
analysis. These are the peroxisome proliferator-activated re-
ceptors (PPAR) signaling pathway (hsa03320), mineral absorp-
tion (hsa04978), and metabolism of xenobiotics by cytochrome
P450 (hsa00980). Possibly due to the small sample size, GAGE
analysis of dataset [4] only gave 11 significantly perturbed
pathways, none of which satisfied our mutually perturbed path-
way criteria. Therefore, to find mutually perturbed pathways, we
used only datasets [1]–[3].

The top three mutually perturbed pathways with iron-related
differentially expressed genes are in Table 2 (a full list of sig-
nificantly perturbed KEGG pathways, along with differentially
expressed iron-related genes for datasets [1]–[3] are in Sup-
plementary Tables S4–S7, respectively). Confirming the de-
pendence of OVC on iron, we first note that mineral absorption,
the KEGG pathway that contains the preponderance of genes
of iron metabolism, is a mutually perturbed pathway.

Furthermore, for each dataset in Table 2, several genes
involved in intracellular iron regulation from the mineral
absorption pathway are differentially expressed, including
the iron storage gene ferritin (FTH1, FTL), iron exporters
hephaestin (HEPH) and ferroportin (SLC40A1), iron importer
DMT1 (SLC11A2), iron-import stimulator CYBRD1, and heme
oxygenase 1 (HMOX1), the inducible member of heme oxyge-
nase that catabolyzes heme to biliverdin, CO, and ferrous iron
(Fe2+). While the mineral absorption pathway is not significantly
perturbed in dataset [4], the genes FTL, FTH1, HMOX1, and
SLC11A2 are all differentially expressed. Moreover, Basuli et al.
(2017) showed that FTtr displays an iron retention phenotype in
comparison to FTstem.

We also note that TFRC, which is not in the mineral ab-
sorption pathway, is significantly increased in the cancer v.
nonmalignant cell-type comparisons in datasets [3] and [4]

FIG. 2. Summary of the algorithm to identify mutually
perturbed pathways with substantial iron-associated gene
involvement. DE, differentially expressed; FDR, false dis-
covery rate; lfc, log-fold change.

FIG. 3. The network shows how both iron-binding (red outline) and other enzymes (orange fill) act on exogenous and de
novo synthesized FAs in HGSOC. Cellular processes are labeled in green, the dashed line separates the exterior of the cell
(top) from the interior (bottom). Relevant connections to specific hypotheses deriving from this network are shaded blue, red,
and purple. FA, fatty acid; TAG, triacylglycerol; LPL, lipoprotein lipase; LA, linoleic acid; AA, arachidonic acid; MUFA,
monounsaturated FA; PL, phospholipid; LPA, lysophosphatidic acid; FA-coA, fatty acyl-CoA; Lipid-OOH, lipid peroxide.
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(with fold change 2.52 and 1.82, respectively). A full list of
fold changes in the iron-related genes in the mineral ab-
sorption pathway that are significantly differentially ex-
pressed in each dataset are found in Supplementary Table S8.
These results are consistent with increased intracellular iron
in these HGSOC datasets.

Pathways involving FA import and synthesis are perturbed
in HGSOC and include differentially expressed iron-related
genes. As discussed in the Introduction, cancer cells increase
synthesis (and, in some cases import) of FAs for a variety of
purposes, including membrane biosynthesis and generation of
signaling molecules. Increasingly, FA synthesis pathways are
being considered targets for novel cancer therapeutics (Currie
et al., 2013; Röhrig and Schulze, 2016). Thus, the presence of the
PPAR signaling pathway, which integrates a number of impor-
tant FA metabolic and signaling processes in the list of mutually
perturbed pathways, indicates that there may be an important, and
as yet unappreciated, connection between HGSOC-mediated
changes in FA metabolism and iron-related genes.

PPARs are nuclear receptors that are activated by by-
products of lipid metabolism and act as transcription factors
for, and regulators of, key enzymes and proteins for lipid and
carbohydrate metabolism, among other pathways. The three
subtypes of PPARs are PPARa, PPARc, and PPARb/d, which
are encoded by three separate genes (Schoonjans et al., 1996;

Tyagi et al., 2011). The KEGG PPAR signaling pathway
(hsa03320) mainly includes the transcriptional targets of
PPAR proteins, which are genes involved in various aspects
of FA metabolism. Targets include SCD, SCD5, FADS1, and
FADS2, which are iron-related genes that participate in FA
synthesis and metabolism pathways by catalyzing desatura-
tion of FAs to monounsaturated (SCD and SCD5) and poly-
unsaturated (FADS1and FADS2) FAs.

A further analysis of the datasets (and, the set of iron-
related genes) provides additional evidence that FA pathways
are altered in HGSOC, and that iron and iron-related genes
may play an important role in these alterations. Critical genes
involved in de novo FA synthesis, desaturation, and uptake,
as well as arachidonic acid (AA) metabolism, the pentose
phosphate pathway, the NADPH oxidase (NOX) family, and
glycerolipid metabolism were found to be differentially ex-
pressed in all the datasets (Table 3), indicating that a per-
turbation in FA metabolism, with concomitant involvement
of iron-related genes, had occurred in all the datasets.

In addition, as previously discussed, GAGE analysis of
perturbed networks in dataset [4] generated far fewer per-
turbed pathways, but glycerolipid metabolism (hsa:00561)
was found to be perturbed near the significance level cutoff
(adjusted p value of 0.071 and rank order 13 of 222 human
KEGG pathways). This is a pathway that links FA uptake
and synthesis with synthesis of phospholipids (Prentki and

Table 3. Fold Changes in Datasets [1]–[4] for Significantly Differentially Expressed (FDR Adjusted

p Value <0.05, log-Fold Change ‡j0.2j) Genes That Play Important Roles in the Subprocesses

(in Bold) Involved in Global Cellular Fatty Acid Metabolism

Dataset Dataset

[1] [2] [3] [4] [1] [2] [3] [4]

FA synthesis and regulation Pentose phosphate pathway
PPARG 1.15 1.33 1.78 3.12 G6PD 2.36
SREBF1 1.49 PGD 1.36 2.79 2.13
ACLY 1.23 1.41 2.21
FASN 1.83
ACSLx {{ {{ {{ {{

FA desaturation NOX proteins
FADS2� 1.22 1.34 1.48 CYBB� (NOX2) 1.95 1.66 1.82
SCD� 1.54 1.72 6.85 1.34 NOX4� 2.10 3.09 7.49 0.66
ELOVL2 2.65 NOX5� 2.01
ELOVL5 1.38 1.56 DUOX1� 0.80 0.12 0.15

DUOX2� 0.51

AA metabolism Glycerolipid metabolism
PLA2G4A 0.09 3.58 AGPATx { { { {{
CYPx� { {{ {{ {{ DGAT1 1.42 0.41
ALOXx� { { {{ LPIN1 0.85 3.11 6.15
PTGS2�(COX-2) 1.26 1.63 0.10 2.39 LPIN2 1.20 2.10 3.33

GK 0.42 3.74
GPAM 1.56 2.92 1.85

FA uptake
LPL 2.00 2.08 20.41
CD36 2.80 4.62
FABP4 6.50 9.81
APOC2 0.75

Iron-related genes are indicated by a (�) following their name, genes that are part of a family are labeled with an ‘‘x’’ at the end (for
example ACSL1-6 comprise ACSLx), and if one gene of that family is differentially expressed in a dataset, then one { is used, if ‡2 genes
of that family are differentially expressed in that dataset, then two {{ are used. Unmarked cells indicate there were no significant differences
in gene expression in that dataset.

AA, arachidonic acid; FA, fatty acid; NOX, NADPH oxidase.
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Madiraju, 2008). Also, several critical genes involved in FA
uptake (LPL), synthesis (FASN, SREBP1, and ACLY), desa-
turation (SCD and ELOVL2), and AA metabolism (PLA2-
G4A, PTGS2) were also found to be upregulated in the FTtr v.
FTstem cells in [4], indicating that FA metabolism is perturbed
in the model HGSOC stem cells (Table 3).

Finally, an ORA for iron-related genes in KEGG pathways
showed that iron-related genes are significantly overrepre-
sented in several FA metabolic and signaling pathways. ORA
uses a statistical test, based most commonly on a hypergeo-
metric distribution, to ascertain whether a set of genes is
significantly overrepresented in a select pathway or pathways
of interest (Khatri et al., 2012; Zhang et al., 2005a).

Notably, AA metabolism is ranked first in this analysis
(iron-binding CYP and ALOX proteins are involved in AA
metabolism and oxidation), see Supplementary Table S9 for
full results. We also note that the KEGG pathways for min-
eral absorption, metabolism of xenobiotics by cytochrome
P450, and lysine degradation are also observed in the ORA
analysis, suggesting further that all these pathways have a
potentially therapeutically tractable dependence on iron
through the activity of iron-related genes.

A network for iron involvement in FA metabolism in
OVC. To synthesize these results into actionable hypotheses,
we constructed a network for involvement of iron-related genes
in FA metabolism in OVC (Fig. 3). The network uses infor-
mation from the preceding analysis by incorporating the key
players in FA synthesis and import that have been especially
implicated in cancer, several of which are iron-related genes
and/or were differentially expressed in the datasets, and many of
which are strongly linked to the PPARc signaling pathway. The
network is also deeply rooted in the known biochemistry of FA
metabolism, and all links are supported by the literature (Sup-
plementary Table S10). The value of the network lies in the
ability to derive novel, experimentally verifiable hypotheses
from it, which we do in the following subsections.

PPARc- mediated promotion of de novo FA synthesis

It has been previously observed that expression and nuclear
localization of the ligand-activated nuclear hormone receptor
PPARc is increased with increasing tumor grade in ovarian
carcinoma (Zhang et al., 2005b). It is upregulated in all the
datasets analyzed (Table 3), whereas PPARD and PPARA are
not consistently significantly differentially expressed in more
than any one dataset (not shown).

PPARc upregulates lipogenesis and FA uptake, as well as
inducing differentiation and restricting cellular progression
through altering (by expression or activity) proteins involved in
the cell cycle and inflammation (Michalik et al., 2004). Notably,
despite the promotion by PPARc of de novo FA synthesis, ac-
tivation of PPARc by agonist drugs can initiate cell apoptosis
and other antitumorigenic processes (Vignati et al., 2006). In
prostate cancer cells, it has been shown that the paradox may be
due to a dose dependency: at low doses of an agonist drug,
PPARc activation results in upregulation of several lipogenic
genes, whereas at higher doses, this effect disappears with a
corresponding increase in cell apoptosis (Mansour et al., 2011).

In addition, the cumulative effect of PPARc (protumori-
genic vs. antitumorigenic) also depends on the molecular
milieu of the given cell or tumor type, since PPARc activity is

regulated by several ligands resulting from the metabolism of
AA and linoleic acid (LA), as well as kinase activity by
MAPK, EGF, and PDGF, whose proportional concentrations
are often altered in cancerous cells, and in turn regulates
pathways such as TP53, Wnt, AKT/PTEN, and others, which
may have mutated, upregulated, or downregulated compo-
nents in a given cellular context (Dong, 2013; Robbins and
Nie, 2012; Varga et al., 2011).

We consider that in HGSOC, PPARG is upregulated and
activated to support FA import and synthesis, but strong phar-
maceutical or endogenous activation will lead to PPARc-
dependent activation of proapoptotic and antitumorigenic path-
ways. The latter process is shown in Figure 3 using a thicker
arrow connecting PPARc and antitumorigenic processes. We
observe that there exists a positive feedback cycle involving
PPARc: PPARG upregulation and activation lead to FA import
and synthesis, which increase AA production and metabolism.
The metabolites of AA are PPARc agonists (Krey et al., 1997),
thus completing the loop. We therefore hypothesize that iron-
related genes involved in AA metabolism promote PPARc ac-
tivation, and thus FA synthesis and import processes in HGSOC
cells (Fig. 3, relevant connections in blue).

Indeed, iron-related genes, in addition to being downstream
effectors of PPARc activation (such as SCD), are also critically
involved in PPARc activity since they comprise the predominant
enzymes in AA metabolism. For example, a well-characterized
activating ligand of PPARc is 15d-d12,14-PGJ2, a prostaglandin
metabolite derived from AA through reactions mediated by the
heme-binding enzymes PTGS1 (COX-1) and PTGS2 (COX-2).
When fibroblasts are supplemented with this metabolite, they
will undergo adipocyte differentiation and upregulate lipogenic
pathways (Kliewer et al., 1995).

While data are not available for cancer cells on iron-mediated
increases in eicosanoid (AA metabolite) production, Mattera
et al. (2001) showed that iron-overloaded cardiomyocytes pro-
duced increased eicosanoids when stimulated by cytokines in
comparison to control, and the increase in prostaglandins was
due to iron-mediated COX-2 induction, showing support for our
hypothesis.

NOX-mediated reactive oxygen species production

NOX proteins are heme-binding proteins that generate
reactive oxygen species (ROS) from NADPH and have been
found to be upregulated in several cancers, including ovarian
and breast (Block and Gorin, 2012). In cancer cells under-
going de novo FA synthesis, NADPH production is increased
by the pentose phosphate pathway (PPP), which generates
ribonucleotides and NADPH from glucose. The PPP is ac-
celerated in cancer cells through increased expression and
activity of several enzymes of the PPP, including G6PD and
PGD, although other mechanisms for PPP acceleration exist
( Jiang et al., 2014; Patra and Hay, 2014). Key PPP and NOX
genes are upregulated in the datasets (Table 3).

We thus derive the hypothesis that an increase in NADPH
production through the pentose phosphate pathway, partially
for the purpose of de novo FA synthesis, also provides more
substrate for heme-binding NOX proteins, which are in-
creased in HGSOC (Fig. 3, relevant connections in red).

In support of this hypothesis, we consider that NOX ac-
tivity vis-a-vis iron has been most thoroughly investigated in
the original phagocytic NADPH oxidase, which includes
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NOX2 as part of its complex. Inhibition of heme synthesis in a
cell model of differentiating myeloid cells results in down-
regulation of NOX2 and disruption of NADPH oxidase activity
compared to control (Yu et al., 1997). At the organismal scale,
the iron-chelator desferrioxamine (DFO), but not iron-loaded
DFO, was shown to suppress inflammation-induced NADPH
oxidase activity in mouse dorsal air pouches as well as suppress
expression of another heme-containing member of the com-
plex, p22phox (levels of NOX2 were not measured) (Li and Frei,
2006).

In the neutrophils of iron-deficient anemic patients,
NADPH oxidase activity was reduced relative to controls,
and increased after iron supplementations (Kurtoglu et al.,
2003). Since all NOX homologs share conserved structural
and functional properties, the studies presented here suggest
that the impact of iron levels on NOX family activity may be
significant in HGSOC.

In addition, both the PPP and NOX proteins act as positive
regulators of ferroptosis (Dixon et al., 2012). Therefore, an
increase in activity of these pathways/enzymes in OVC cells
may influence their susceptibility to this form of cell death.
Indeed, recent work has shown that FTtr cells are more sus-
ceptible to ferroptosis than FTstem cells (Basuli et al., 2017),
and as shown in Table 3, the FTtr cells also show upregulation
of the PPP enzymes G6PD and PGD.

FA desaturases, FADS2 and SCD

FADS2, FA desaturase 2, also known as delta-6-desaturase
controls the rate-limiting step in the conversion of the omega-
6 LA to AA and the omega-3 alpha LA to eicosapentaenoic
acid. FADS2 has a conserved heme-binding domain at its
N-terminus that has been shown to be essential for its function
(Pereira et al., 2003; Sayanova et al., 1999).

FADS2 activity has been shown to be increased in breast
cancer (Pender-Cudlip et al., 2013) by measurement of the
ratio of LA metabolites to AA. FADS2 was also found to be
increased in melanoma and lung tumors implanted in mice,
and its inhibition led to decreased tumor growth in both
models (He et al., 2012). Similarly, inhibition of FADS2 in a
mouse model of intestinal cancer inhibited tumorigenesis, an
effect that was rescued by the addition of exogenous AA
(Hansen-Petrik et al., 2002).

FADS2 and the downstream gene for the enzyme ELOVL5
are increased in the Mes subtype over the Diff subtype in
datasets [1] and [2]. In these two datasets, we also observe
increases in the genes encoding FA import proteins CD36 and
FABP4 in the Mes subtype (Table 3). If Mes tumor cells,
potentially due to influence and/or availability of extra free
FAs from the surrounding stroma, import more free FAs, then
they will have more LA substrate to convert to AA by FADS2
and its downstream enzymes.

Indeed, co-culture with adipocytes results in an increased
FA import and FABP4 expression in OVC cells, and FABP4 is
increased in expression in metastases to the omentum (which
is composed mainly of adipocytes) over primary ovarian tu-
mors (Nieman et al., 2011). While the Mes subtype was not
assayed for increased adipocyte infiltration, increased FA
uptake has also been observed in cancer cells subjected to
hypoxic conditions (Kamphorst et al., 2013), indicating that a
change in the tumor microenvironment can influence FA
uptake in cancer cells.

Although we do not observe an increased FADS2 expression
in dataset [4], an increased metabolism of AA (for example by
COX-2) will position FADS2 as one critical contributor (in
addition to PLA2G4A-mediated phospholipid cleavage) to AA-
mediated proinflammatory responses by providing the substrate
for this signaling cascade. Note that the LA-AA-eicosanoid
pathway involves iron-binding proteins at each step, indicating
that iron chelation can abrogate or alter its activity.

SCD is another iron-binding desaturase and its expression is
increased in all the cell lines (Table 3). It catalyzes desaturation
of the saturated FAs stearic acid and palmitic acid to form oleic
acid and palmitoleic acid, respectively, which are both mono-
unsaturated FAs (MUFAs). The expression level of SCD has
been positively correlated with several different cancers, due to
the protumorigenic properties of MUFAs (Igal, 2010).

We hypothesize that the activity of the protumorigenic and
inflammatory pathways stimulated by AA and monounsatu-
rated FAs are partially mediated by iron-related genes, and
hence modulation of iron levels will reduce the activity of
these pathways (Fig. 3, relevant connections in purple).
While there have not been studies performed on the effect of
iron chelation on FADS2 or SCD activity in cancer, rats fed
an iron-deficient diet were found to have a decreased AA to
LA ratio in their hepatic phospholipids, a result that the au-
thors attributed to decreased FADS2 activity (Stangl and
Kirchgessner, 1998). In the same study, the authors also
found lower palmitic and oleic acid hepatic phospholipid
proportions and higher stearic acid proportions, indicating
decreased SCD activity.

Activity of SCD with respect to iron has been more ex-
tensively studied than FADS2: expression and activity have
been shown to be increased in liver and muscle during iron
overload (Pigeon et al., 2001; Rodriguez et al., 2007); it was
downregulated in livers of rats fed an iron-deficient diet
(Kamei et al., 2010), but it was downregulated in heart after
iron overload (Rodriguez et al., 2007). An experimental in-
vestigation into FADS2 and SCD activity in OVC, and how it
is impacted by iron chelation, would be an important first test
in examining the connection between iron and the FA desa-
turation pathways in OVC.

Discussion

In this work, we have synthesized heterogeneous data re-
presenting high-grade serous ovarian cancer (HGSOC) to
develop a network focusing on novel connections between
perturbed pathways in FA import and synthesis and iron,
which can serve to guide experimentalists and modelers in
developing and testing hypotheses related to the involvement
of iron and iron-related genes in perturbation of FA metab-
olism in HGSOC (Fig. 3).

Importantly, the network was developed using both HGSOC-
specific data and literature, as well as literature from sources
outside of OVC. Thus, it is possible that a subset of these results
and hypotheses will transfer to other cancers. Indeed, Hall et al.
(2016) developed a transgenic mouse model that showed that
activation of the Myc proto-oncogene in lung adenocarcinoma
resulted in an increase in AA and its derivatives (eicosanoids)
with concomitant activation of the AA metabolizing COX and
LOX enzymes, which are iron-related genes that we have
been identified as playing a role in increased activity of the
AA pathway in our network (Fig. 3).
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The authors showed that this effect was partly due to Myc-
mediated increase in cytosolic phospholipase (PLA2G4A)
activity, and expression of PTGS2 (COX-2) and ALOX5 (also
known as 5-LOX). When the COX and 5-LOX pathways were
blocked, tumor growth was reduced, as predicted by our
network. Notably, of the four datasets in our study, PLA2G4A
and PTGS2 were most significantly increased in the Myc-
transformed HGSOC stem cell line from dataset [4] (Table 3),
indicating that a similar process may occur in these cells.

AA-derived eicosanoids play a role in two of the hypoth-
eses generated by our network: the existence of a positive
feedback loop between PPARc and AA metabolism, and the
activation of the LA-AA-EA pathway. FADS2 and the COX/
LOX enzymes rely on iron to perform their enzymatic ac-
tivities, and thus targeting the iron dependence of these
proteins by chelation may be a mechanism to inhibit these
pathways at multiple sites. Importantly, the Hall et al. (2016)
result shows that the protumorigenic relationship between
iron-binding proteins and FA metabolism may be a phe-
nomenon that extends to a broader subset of cancers.

Due to the inherent difficulties in analysis, it is not
common that heterogeneous data are synthesized as in this
study. Nevertheless, we felt it an important goal to work
toward, since each dataset has both positive aspects and
drawbacks. Datasets [1] and [2] have large sample sizes, but
suffer from not including data from normal tissue or dis-
tinguishing between different cell types.

Indeed, while the Diff subtype expresses markers of ovarian
tumors known to be expressed by the tumors (MUC1 and
MUC16) as well as the secretory fallopian tube marker SLP1,
indicating that the majority of the cells in the Diff subtype rep-
resent bonafide tumor cells, higher expression of markers for
myofibroblasts (FAP), and microvascular pericytes (ANGPTL2
and ANGPTL1) in comparison to the other subtypes suggest that
there is a stromal infiltrate in the Mes subtype (Cancer Genome
Atlas Research Network, 2011).

The consistency among all the datasets in the changes in
expression of iron-related genes and the FA synthesis net-
work components indicates that the relationship between the
two may extend to cells of the tumor microenvironment.
Dataset [3] has a smaller sample size, but the laser micro-
dissection performed on the cells ensures that only epithelial
cells have been analyzed. While dataset [4] has the smallest
sample size, as an in vitro model, it is directly amenable to
experimental validation.

Since each dataset represents a different aspect of HGSOC,
an overlap in results between the different datasets may be
considered a measure of their robustness. We have attempted
to minimize heterogeneity by using data from similar gene
expression platforms (Affymetrix HGU-133A or -133plus2),
which allowed us to develop an analysis pipeline that was
identical for all data.

Mutual perturbation of the metabolism of xenobiotics by
cytochrome P450 (hsa00980) in the datasets indicates that
cytochrome p450 enzymes, which are heme proteins in-
volved in oxidation reactions, are altered in HGSOC. Since
these enzymes are involved in drug metabolism, their alter-
ations in cancer have been proposed to promote drug resis-
tance (Rodriguez-Antona and Ingelman-Sundberg, 2006).
Thus, it will be of interest to study how their activity may be
impacted both by increased intracellular iron found in cancer
cells and by iron chelation therapy.

The final mutually perturbed pathway, lysine degradation
(hsa00310), showed changes in expression of the PLOD genes
(Table S2). PLOD1, PLOD2, and PLOD3 are lysyl hydroxy-
lases that require iron as a cofactor and are critical for collagen
crosslinking, and can contribute to extracellular matrix depo-
sition during cancer development and progression (Xiong and
Xu, 2016). Thus, a further investigation of the impact of iron
on PLOD activity may lead to a connection between iron levels
and extracellular matrix (ECM) development, which may be of
special interest since the PLOD genes are upregulated by
hypoxia-inducible factor 1 (Gilkes et al., 2014), which also
plays a central role in intracellular iron homeostasis (Peys-
sonnaux et al., 2008).

There are a number of directions in which the network de-
veloped in Figure 3 can be further expanded. We provide some
potential avenues here. FA ß-oxidation (FAO), which occurs in
the mitochondria, has also been implicated in various cancers
(Carracedo et al., 2013). The classical consideration that FAO
and FA synthesis are mutually exclusive is giving way to a more
nuanced view that the processes may contribute to the other’s
activity, and/or act independently (Beloribi-Djefaflia et al., 2016;
Caro et al., 2012; Carracedo et al., 2013). Since FAO is regulated
by PPAR-associated pathways (Varga et al., 2011), one may
expand the network in Figure 3 to include FAO pathways.

Interestingly, carnitine, an ammonium compound that is
essential for the transport of FA into the mitochondria for
FAO (through the enzyme CPT1, carnitine palmitoyl-
transferase 1), can provide a potential link between iron and
FAO. Carnitine can be absorbed from the diet, or synthesized
in cells from lysine (one of the mutually perturbed pathways,
Table S2, and one of the top 25 KEGG pathways in which
iron-related genes are overrepresented, Table S9). Indeed,
two enzymes critical for its synthesis, BBOX1 and TMLHE,
use iron as a cofactor (Vaz and Wanders, 2002). Therefore,
iron may directly impact the activity of these enzymes, and
thus the availability of carnitine for FA transport. While we
did not observe consistent changes in BBOX1 or TMLHE in
the datasets, the impact of iron on their activity, and thus the
activity of CPT1, may be significant.

More generally, the results established herein may be
furthered to identify connections between iron-related genes
and perturbed pathways not considered in this work. For
example, one may look at potential relationships between the
mutually perturbed pathways—since they share the similarity
of being perturbed in multiple datasets, and each contain
several differentially expressed iron-related genes.

For example, it has been shown that human vascular en-
dothelial cells respond to PPAR ligand treatment by upre-
gulating heme oxygenase 1 (HMOX1), an essential enzyme in
heme catabolism that is part of the KEGG mineral absorption
pathway. HMOX1 was found to have two PPAR-responsive
elements in its promoter (Krönke et al., 2007). Appropriately,
HMOX1 is significantly upregulated (data not shown) in all
the dataset comparisons performed. This indicates that, while
we have discussed the influence of iron and iron-related
proteins on PPARc activity, PPARc and other PPARs may
also act to alter iron metabolism.

Conclusion

We have identified several novel connections between iron,
iron-related genes, FA synthesis and import, and HGSOC.
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With the development of a network incorporating all these
factors (Fig. 3), as well as several hypotheses derived from
it, we aim to stimulate inquiry into the interdependence
between iron and FA metabolism HGSOC and other can-
cers. This will enhance not only understanding of the basic
biology of HGSOC but also potentially identify vulner-
abilities that can be exploited therapeutically.
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Röhrig F, and Schulze A. (2016). The multifaceted roles of fatty
acid synthesis in cancer. Nat Rev Cancer, 16, 732–749.

Sankaranarayanan R, and Ferlay J. (2006). Worldwide burden
of gynaecological cancer: The size of the problem. Best Pract
Res Clin Obstet Gynaecol 20, 207–225.

Sayanova O, Shewry PR, and Napier, JA. (1999). Histidine-41
of the cytochrome b5 domain of the borage delta 6 fatty acid
desaturase is essential for enzyme activity. Plant Physiol 121,
641–646.

Schoonjans K, Staels B, and Auwerx, J. (1996). Role of the
peroxisome proliferator-activated receptor (PPAR) in medi-
ating the effects of fibrates and fatty acids on gene expression.
J Lipid Res 37, 907–925.

Shaheen NJ, Silverman, LM, Keku T, et al. (2003). Association
between hemochromatosis (HFE) gene mutation carrier status
and the risk of colon cancer. J Natl Cancer Inst 95, 154–159.

Sherman AR. (1978). Lipogenesis in iron-deficient adult rats.
Lipids 13, 473–478.

Siegel RL, Miller KD, and Jemal A. (2017). Cancer statistics,
2017. CA Cancer J Clin 67, 7–30.

Smyth GK. (2004). Linear models and empirical bayes methods
for assessing differential expression in microarray experi-
ments. Stat Appl Genet Mol Biol 3, Article3.

Stangl GI, and Kirchgessner M. (1998). Different degrees of
moderate iron deficiency modulate lipid metabolism of rats.
Lipids 33, 889–895.

TCGA Data Portal. (2014). https://tega-data.nci.nih.gov Ac-
cessed on 10/26/14.

Thomas PD. (2017). Expansion of the gene ontology knowl-
edgebase and resources: The gene ontology consortium.
Nucleic Acids Res 45, D331–D338.

Tone AA, Begley H, Sharma M, et al. (2008). Gene expression
profiles of luteal phase fallopian tube epithelium from BRCA
mutation carriers resemble high-grade serous carcinoma. Clin
Cancer Res 14, 4067–4078.

Torti SV, and Torti FM. (2013). Iron and cancer: More ore to be
mined. Nat Rev Cancer 13, 342–355.

Tothill RW, Tinker AV, George J, et al. (2008). Novel mo-
lecular subtypes of serous and endometrioid ovarian cancer
linked to clinical outcome. Clin Cancer Res 14, 5198–5208.

Tyagi S, Gupta P, Saini AS, et al. (2011). The peroxisome
proliferator-activated receptor: A family of nuclear recep-
tors role in various diseases. J Adv Pharm Technol Res 2,
236–240.

Vang R, Shih I-M, and Kurman RJ. (2009). Ovarian low-grade
and high-grade serous carcinoma: Pathogenesis, clinicopath-
ologic and molecular biologic features, and diagnostic prob-
lems. Adv Anat Pathol 16, 267–282.

Varga T, Czimmerer Z, and Nagy L. (2011). PPARs are a
unique set of fatty acid regulated transcription factors con-
trolling both lipid metabolism and inflammation. Biochim
Biophys Acta 1812, 1007–1022.

Vaz FM, and Wanders RJ. (2002). Carnitine biosynthesis in
mammals. Biochem J 361, 417–429.

Vercellini P, Crosignani P, Somigliana E, et al. (2011). The
‘‘incessant menstruation’’ hypothesis: A mechanistic ovarian
cancer model with implications for prevention. Hum Reprod
26, 2262–2273.

Verhaak RGW, Tamayo P, Yang J-Y, et al. (2013). Prog-
nostically relevant gene signatures of high-grade serous
ovarian carcinoma. J Clin Invest 123, 517–525.

Vignati S, Albertini V, Rinaldi A, et al. (2006). Cellular and
molecular consequences of peroxisome proliferator-activated
receptor-gamma activation in ovarian cancer cells. Neoplasia
8, 851–861.

Wilson CL, and Miller CJ. (2005). Simpleaffy: A BioConductor
package for Affymetrix Quality Control and data analysis.
Bioinformatics 21, 3683–3685.

Xiong GF, and Xu R. (2016). Function of cancer cell-derived
extracellular matrix in tumor progression. J Cancer Metasta
Treat 2, 357–364.

Xue X, and Shah YM. (2013). Intestinal iron homeostasis and
colon tumorigenesis. Nutrients 5, 2333–2351.

512 KONSTORUM ET AL.



Yamamoto Y, Ning G, Howitt BE, et al. (2016). In vitro and
in vivo correlates of physiological and neoplastic human
fallopian tube stem cells. J Pathol 238, 519–530.

Yu L, Zhen L, and Dinauer MC. (1997). Biosynthesis of the
phagocyte NADPH oxidase cytochrome b558. Role of heme
incorporation and heterodimer formation in maturation and
stability of gp91phox and p22phox subunits. J Biol Chem
272, 27288–27294.

Zhang B, Kirov S, and Snoddy J. (2005a). WebGestalt: An
integrated system for exploring gene sets in various biological
contexts. Nucleic Acids Res 33(Web Server issue), W741–
W748.

Zhang GY, Ahmed N, Riley C, et al. (2005b). Enhanced ex-
pression of peroxisome proliferator-activated receptor gamma
in epithelial ovarian carcinoma. Br J Cancer 92, 113–119.

Address correspondence to:
Anna Konstorum, PhD

Center for Quantitative Medicine
UConn Health

Farmington, CT 06030

E-mail: konstorum@uchc.edu

Abbreviations Used

AA ¼ arachidonic acid
CLOVAR ¼ classification of ovarian cancer

DFO ¼ desferrioxamine
FA ¼ fatty acid

FA-coA ¼ fatty acyl-CoA
FAO ¼ FA ß-oxidation
FCS ¼ functional class scoring

FTPb ¼ fallopian tube epithelial cells from subjects
without known BRCA mutations (as
pertaining to study (3))

FTPn ¼ fallopian tube epithelial cells from subjects
without known BRCA mutations (as
pertaining to study (3))

FTstem ¼ primary fallopian tube stem cell culture
(as pertaining to dataset [4])

FTtr ¼ FTstem cells that have been immortalized
with h-TERT, SV40 large T antigen, and
c-Myc (as pertaining to dataset [4]). The
‘tr’ stands for transformed.

GAGE ¼ Generally Applicable Gene-set Enrichment
GO ¼ gene ontology
HH ¼ hereditary hemochromatosis

KEGG ¼ Kyoto Encyclopedia of Genes and Genomes
LA ¼ linoleic acid
lfc ¼ log-fold change

Lipid-OOH ¼ lipid peroxide
LPA ¼ lysophosphatidic acid
LPL ¼ lipoprotein lipase

MUFA ¼ monounsaturated FA
NOX ¼ NADPH oxidase
ORA ¼ overrepresentation analysis
OVC ¼ ovarian cancer

PL ¼ phospholipid
PPAR ¼ peroxisome proliferator-activated receptor

PPP ¼ pentose phosphate pathway
ROS ¼ reactive oxygen species
TAG ¼ triacylglycerol

TCGA ¼ The Cancer Genome Atlas Research
Network

TFRC ¼ transferrin receptor
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