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Abstract

Spatiotemporal variations in net primary productivity (NPP) reflect the dynamics of water
and carbon in the biosphere, and are often closely related to temperature and precipitation.
We used the ecosystem model known as the Carnegie-Ames-Stanford Approach (CASA) to
estimate NPP of semiarid grassland in northern China counties between 2001 and 2013.
Model estimates were strongly linearly correlated with observed values from different coun-
ties (slope = 0.76 (p < 0.001), intercept = 34.7 (p < 0.01), R = 0.67, RMSE =35 g C-m™=.
year, bias =-0.11 g C-m*Z.year). We also quantified inter-annual changes in NPP over
the 13-year study period. NPP varied between 141 and 313 g C-m™2.year!, with a mean of
240 g C-m?2.year'. NPP increased from west to east each year, and mean precipitation in
each county was significantly positively correlated with NPP—annually, and in summer and
autumn. Mean precipitation was positively related to NPP in spring, but not significantly so.
Annual and summer temperatures were mostly negatively correlated with NPP, but temper-
ature was positively correlated with spring and autumn NPP. Spatial correlation and partial
correlation analyses at the pixel scale confirmed precipitation is a major driver of NPP. Tem-
perature was negatively correlated with NPP in 99% of the regions at the annual scale, but
after removing the effect of precipitation, temperature was positively correlated with the
NPP in 77% of the regions. Our data show that temperature effects on production depend
heavily on recent precipitation. Results reported here have significant and far-reaching impli-
cations for natural resource management, given the enormous size of these grasslands and
the numbers of people dependent on them.

Introduction

Net primary productivity (NPP), or the increment (on a daily to yearly basis) in the amount of
carbon stored on land or in the oceans, is the balance between photosynthesis and respiration
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[1]. NPP thus reflects the net carbon input from the atmosphere to either the terrestrial or
marine biospheres [2]. Relations of NPP to basic climatic conditions can provide a basis for
theoretical and practical predictions of local-to-global carbon cycles [3,4]. Derived relation-
ships can also provide guidance for sustainable use of resources and realization of the produc-
tive potential of ecosystems [5-7,1]. Grasslands are important components of many terrestrial
ecosystems [8] and are widely studied due to their sensitivity to changing climates [9-11]. Pro-
cess models have been used to explore underlying biological processes in grasslands (such as
photosynthesis, respiration and transpiration) as well as mechanisms driving interactions
between these processes and environmental parameters [12,13].

In recent years, remote sensing data have been used in conjunction with models to estimate
regional and global NPP [14-17]. For example, the Carnegie-Ames-Stanford Approach
(CASA) has been used to estimate changes in the NPP of vegetation [18-20] as well light use
efficiency (via photosynthetically active radiation) [21]. A range of remotely sensed data pro-
vide inputs for CASA models. For example, thematic mapper (TM) [22] provides surface dis-
tribution of NPP at a relatively high spatial resolution, while the advanced very-high-
resolution radiometer (AVHRR) [23], and moderate resolution imaging spectroradiometer
(MODIS) [15,24] provide further data that can be used to help predict NPP over large areas.

Climate (temperature, precipitation, etc.) exerts critical control of vegetation growth in
most ecosystems [10,25,26] and relationships between NPP and climate are widely studied
using different methods [13,27]. For example, linear regression and covariance have been used
to assess relationships between aboveground NPP (ANPP) and temperature and precipitation
(annually and during the growing season) [3]. For grassland ecosystems in Inner Mongolia,
Zhang et al. [28] estimated the spatial distribution of NPP in the Balager River Basin of the
Xilingol Grassland using a light use efficiency model and analysed correlations among climate
factors, vegetation indices and NPP. They found that precipitation and monthly mean tempera-
ture both correlated well with NPP and that precipitation had a greater impact than temperature
[28]. Mu et al. [29] used remote sensing of the vegetation and the CASA model to reveal spatio-
temporal dynamics of NPP for different types of vegetation as well as their differences in NPP
responses to climate. Zhang et al. [30] used the CENTURY model to simulate changes in the
ANPP of grasslands in Xilinhot and their responses to climate change over the past 58 years.
They showed that the ANPP of typical Inner Mongolian grasslands was highly sensitive to cli-
mate change, with distinct variation due to changes in temperature and precipitation. Gao et al.
[31] found that NPP of semiarid grasslands of Inner Mongolia were significantly affected by
biomass allocation and precipitation use efficiency. Management impacts on NPP have also
been analysed [32]. Lkhagva et al. [33] found that excessive grazing reduced the distribution of
bryophytic vegetation, and encouraged the disappearance of frozen soils, and climate warming.

Most previous studies have focused on NPP and its relationship to climate at either annual
scales, or during the growing season. We investigated these relationships at different scales,
and the synergistic interactions among climatic variables. We assessed the NPP dynamics of a
semiarid grassland (i.e., the Xilingol Grassland) between 2001 and 2013 using a light use effi-
ciency model in combination with spatial and temporal data. Correlations and partial correla-
tions between NPP and precipitation and temperature were analysed spatially at the pixel level,
and annual and seasonal temporal scales.

Materials and methods
General study area information

The Xilingol Grassland (115°13’-117°06’E and 43°02°-44°52’N) is located in the Xilingol Lea-
gue in the central Inner Mongolia Autonomous Region to the north of China (Fig 1). This
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grassland has a total area of 193,000 km?, a usable grassland area of 180,000 km? and can be
divided into five main types: typical grasslands, desert grasslands, meadow grasslands, sandy
grasslands and others. The study area has a northern temperate continental climate character-
ized by strong winds, as well as mostly arid conditions and cold temperatures. The mean
annual temperature is 0-3°C, and the multi-year mean precipitation is 295 mm. Precipitation
gradually decreases from the southeast to the northwest, and is mostly concentrated in July,
August and September.

Data sources and processing

Remote sensing data used in this study—the 500-mx500-m, 8-day, composite land surface
reflectance product (MODO09A1) from 2001-2013 for the Xilingol League—were obtained
from the Land Processes Distributed Active Archive Center of the United States Geological
Survey (https://Ipdaac.usgs.gov/). Normalized difference vegetation index (NDVI) data were
obtained by calculation.

Meteorological data (including the monthly mean temperature (°C), monthly precipitation
(mm) and sunshine duration (h) from 2001-2013) were obtained from nine national standard
meteorological stations of the China Meteorological Administration, namely, the East Ujimqin
Banner, Erenhot, Naranbulag (Abag Banner), Abag Banner, Sonid Left Banner, Jurh (Sonid
Right Banner), West Ujimqin Banner, Xilinhot and Duolun Meteorological Stations (Fig 1).
Raster meteorological data are required for models of the vegetation NPP, and they were
obtained by Kriging interpolation of data from the nine meteorological stations, using an
inverse distance-weighted routine of the open geographic information system (GIS) software
SAGA GIS version 2.2.7 [34]. Pixel size and projection type of the resulting raster data were
consistent with the NDVI data.

Measured NPP was based on 46 monitoring stations within the Xilingol in July of 2011, as
shown in Fig 1. Three pairs of 0.5mx0.5m sample plots were established at each monitoring
station. Plant species composition, height and coverage were measured in all plots, and then in
one of each pair, all vegetation was harvested (clipped) at the soil surface and dried at 75°C for
48 h prior to weighing. Aboveground biomass (AGB) was estimated by averaging the biomass
of the three harvested plots. Belowground biomass (BGB) was estimated using root augers of
8.9 cm diameter to a depth of 20 cm. Total biomass was calculated as the sum of AGB and
BGB. A coefficient 0.475 was used to convert biomass (g-m"z) to NPP (gC'm"2~a_1) [35].

We also collated data on livestock numbers in the nine counties in the Xilingol League
between 2001 and 2013, using the Statistical Yearbooks of the Xilingol League of 2002-2014
[36]. Our analysis included sheep and large livestock (cattle and horses). According to the
National Bureau of Statistics of the People’s Republic of China, since 2008 all recorded num-
bers of horses, cows and sheep are based on sampling survey. The method used by Li, 2007
[37] was used to convert the data to the unit of a standard sheep (1 head of large livestock (cat-
tle or horse) = 5 standard sheep).

NPP estimation model

We applied the CASA model first developed by Potter et al. (1993) [18] and Field et al. (1995)
[21] which is based on light use efficiency model. A modified version was developed by Zhu
et al [38], and was used in this study. The main equations for estimating NPP are as follows:

NPP(x,t) = APAR(x, t) x &(x,t) (1)

APAR(x,t) = SOL(x, t) x FPAR(x, ) x 0.5 2)
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Fig 1. Study area and locations of meteorological stations and observation locations in 2011.
https://doi.org/10.1371/journal.pone.0187678.9001

where SOL(x,t) represents the total solar radiation at pixel x in month t (MJ-m™*month™), and
FPAR(x,t) represents the fraction of the incident PAR absorbed by the vegetation. The value of 0.5
represents the fraction of total solar radiation that can be used by vegetation (0.38-0.71mm).

FPAR can be expressed based on relationships between FPAR and NDVT as well as Simple
Ratio (SR), which are calculated from Eqs 3 to 6:

FPAR(x,t) = [FPAR(x, t) g + FPAR(X, t) sl /2 (3)

(NDVI(x,t) — NDVI,, )
(NDVIL,,,. — NDVI,

z,min)

FPAR(.X', t)NDVI = X (FPARmux - FPARmm) + FPARmm (4)
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(SR(x,t) — SR ;)

FPAR(x,t)g, = R SR

x (FPAR,, — FPAR,,) + FPAR, (5)

SR(x,t) = [1 + NDVI(x, )] /[L — NDVI(x, t)] (6)

Where NDVI; ., and NDVI, ..., are maximum and minimum values of NDVI, and corre-
spond to different plant types (obtained from Land Cover Products of China, Environmental
and Ecological Science Data Center for West China, National Natural Science Foundation of
China) (http://westdc.westgis.ac.cn) [39]. FPAR,,;, was 0.001 and FPAR,,,,, was 0.95, both of
which are independent of vegetation type. SR; ., and SR; ,,.;,, represent the 95% and 5% of
NDVI respectively, for the different vegetation types.

The algorithm for light use efficiency can be expressed as follows:

e(x,t) = T, (x, 1) X Ty(x,1) X W,(x, 1) X &, (7)

where T, (x,t) and Tgy(x,t) are the temperature stress coefficients, which reflect the reduction
of light-use efficiency caused by temperature [21]. W(x,t) is a moisture stress coefficient
which is derived from the reduction in light use efficiency caused by moisture stress [21], and
€max 18 the maximum light use efficiency under ideal conditions (which can be set to different
constant parameters for different vegetation types). The value of &,,,,, for grassland is 0.542
gC-MJ " and for shrubs is 0.429 gC-MJ " in this study. &, is clearly an important parameter
when applying the CASE model. The values used in this manuscript were previously tested by
Zhu,et al [38], using a modified, least squares function and based on NOAA/AVHRR remote
sensing and field-observed NPP. These &,,,,, values have been used to estimate NPP at different
spatial scales—including the whole of China, Inner Mongolia, and Xilingol grasslands. All the
above estimates of NPP have been shown to be reliable [29,38,40,41]. A more detailed descrip-
tion of this algorithm is available [38,42].

Yearly and seasonal NPP

Yearly and seasonal NPP are presented to illustrate spatio-temporal variation in our study
area. Yearly NPP was calculated as the sum of NPP from January to December. However, in
the CASE model, as shown in Egs 2 to 7, the temperature stress coefficient (that depends on
air temperature) and moisture stress coefficient (that depends on precipitation) dictate that in
winter (from December to February of the following year), NPP was effectively zero. Similarly,
NDVI based on remote sensing, was positive only after plant emergence in early spring,
remaining so until late autumn. Consequently, NPP were not estimated (assumed zero) for the
months of December to the following February. Annual NPP in this study is thus equivalent to
growing season NPP.

Method for verifying NPP estimation results

We used R version 3.4.0 [43] and R Studio version 1.0.143 [44] for statistical analyses, includ-
ing linear regression and coefficients T-text, F-test, bias, time series autocorrelation analysis
[45], the determination coefficient (R*) and the root-mean-square error (RMSE) of the linear
fit (goodness-of-fit):

RMSE =
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where P; and O; represent the estimated and observed values, respectively (i = 1, 2,. . ., n, where
n represents the number of samples).

Correlation and partial correlation analyses between the NPP and
climate

Pixel-based correlation coefficients and partial correlation coefficients between derived NPP
and temperature and precipitation data were calculated at annual and seasonal scales to assess
correlations between NPP and temperature and precipitation.

Correlation coefficients (R) were calculated as follows:

S 166 - %05 — )

R =

n
i=

> =9 -y

i=1

where x and y represent two variables; Xand yrepresent the mean values of x and y, respec-
tively; R, represents the correlation coefficient between x and y; and n represents the number
of samples.

We used partial correlation (R;,) analysis where:

Rp _ 1o _2 13793 _ (10)
(1- 713)(1 —135)

and r;,, ;3 and 7,3 represent the correlation coefficients between variables X; and X,, between
variables X; and X; and between variables X, and X, respectively. R, represents the partial cor-
relation coefficient between X; and X, when X; is the control variable.

The partial correlation equation above was used to calculate partial correlation coefficients
between NPP and temperature when precipitation was the control variable, as well as partial
correlation coefficients between NPP and precipitation when temperature was the control
variable.

Results
Verification of NPP estimates

Monitoring data from 46 monitoring stations were compared with simulated NPP for 2011
(Fig 2). Estimated NPP was the sum of NPP from January to July. Correlations between simu-
lated and measured values were based on geographic coordinates of each station (Fig 1).

Statistical data indicate a reasonably strong, linear relationship between estimated and
observed values. On this basis, we used estimates from the CASA model to further analyse spa-
tiotemporal changes in NPP, as well as assess relationships to climate.

Inter-annual changes in the NPP, precipitation and temperature

Fig 3(A) shows annual mean NPP, and NPP anomalies, for the vegetation in the Xilingol Lea-
gue between 2001 and 2013. Mean NPP varied between 141 and 313 g C-m *-year', with a
13-year mean of 240 g C-m>.year '. Total NPP exhibited an increasing but insignificant (r* =
0.11, p = 0.274) trend with time. Between 2001 and 2013, differences between annual NPP and
long-term (13 year) means exhibited a sinusoidal shape. Time series autocorrelation analysis
Fig 3(B) shows interannual NPP were not significantly related.
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Fig 2. Correlation between estimated and observed NPP. The slope of the linear regression equation is 0.76 (p < 0.001, n = 46, significantly different
from 1) while the intercept was 34.7 (p < 0.01, n = 46, significantly different from 0). The calculated F-statistic was 87.4 (p< 0.0001, n = 46) with a correlation
coefficient (R?) of 0.67 (P<0.0001). Calculated bias of observation and estimation NPP is -0.11 g C-m2.year while the RMSE was 35 g C-m2.year™.

https://doi.org/10.1371/journal.pone.0187678.9002

Precipitation generally increased during the study period and was greatest (361 mm) in
2012, some 58% greater than the multi-year mean (Fig 3(C)). Precipitation totals for 2001 and
2005 were relatively low, some 29% and 28% less than multi-year mean precipitation, respec-
tively. Mean annual temperatures varied between 4.58°C in 2007 and 1.62°C in 2012, with a
period mean of 3.36°C (Fig 3(D)). Overall, mean annual temperature declined during the
study period (r* = 0.279, p = 0.06).
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Fig 4 shows the spatial distribution of NPP in the Xilingol League between 2001 and 2013.
NPP in most regions was <500 g C-m*year"'. NPP in Abag Banner, Sonid Left Banner and
Jurh in the western Xilingol League was between 100 and 300 g C-m-year™, but was < 100 g
C-m*.year ™" in some regions of Erenhot. NPP significantly increased from west to east, and in
West Ujimgqin Banner and East Ujimqin Banner, NPP was between 300 and 700 g C-m>-year .

Analysis of relationships among NPP, precipitation and temperature

Temperature and precipitation exert critical control of vegetation NPP in most ecosystems
[10,25,26]. Temperature and precipitation were used to calculate NPP via the CASE model.
We note that Hashimoto et al. [46] showed the CASE model to be sensitive to variation in
shortwave radiation and NDVL.

NPP, precipitation and temperature for each county were averaged according to season.
Correlations between precipitation and temperature and NPP are shown in Table 1.
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Annual NPP was mostly positively correlated with annual precipitation (Table 1). Strong
correlations were observed for East Ujimqin Banner, Naranbulag (Abag Banner), Abag Ban-
ner, Jurh (Sonid Right Banner), Xilinhot and Duolun. Conversely, NPP was generally
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negatively correlated with mean temperature, albeit not significantly. These overall patterns
were not always borne out at regional and seasonal scales. For example, Spring temperatures
were much more influential of Spring NPP than annual temperatures were of annual NPP.
Similarly, Summer precipitation was particularly important to summer NPP (Table 1). There
were regional exceptions. NPP for Erenhot, Sonid Left Banner and West Ujimgin Banner were
seldom well predicted by either precipitation or temperature and only Spring temperatures
had significant predictive power for NPP in these counties.

Spatial relationships between the annual NPP and precipitation and
temperature

To further analyse spatial relationships between NPP and precipitation and temperature, we
calculated correlation coefficients (R, Eq 4) and partial correlation coefficients (R, Eq 5)
between the annual NPP of each pixel of the study area and annual precipitation and annual
mean temperature between 2001 and 2013 (Fig 5).

Using temperature as the control factor (Fig 5(A)), there were no significant spatial or
quantitative differences between R and R, for the relationship between NPP and precipitation.
In most regions in the Xilingol League, NPP was significantly positively correlated with precip-
itation, with R ranging from 0.6 to 1.0. NPP was negatively correlated with precipitation in
only 0.32% of regions in the Xilingol League, with a mean correlation coefficient of 0.34. After
the effect of the temperature was removed (R, Fig 5(B)), there was almost no change in the
relationship between the precipitation and the NPP in the study area.

Fig 5(C) and 5(D) show negative correlations in most regions (99%) between NPP and tem-
perature, before the removal of the precipitation effect. R ranged from -0.8 to 0. In around 1%
of the regions in the study area, NPP was positively (but not significantly) correlated with
annual mean temperature. After the effect of the precipitation was removed, 77% of regions
showed a positive partial correlation between NPP and annual temperature (Fig 5(D)).

Pixel-scale seasonal relationships between NPP and precipitation and
temperature

Owing to snow cover and lack of growth in Winter, our study was restricted to Spring, Sum-
mer and Autumn. For an even greater level of spatial detail, we calculated R and R;, for

Table 1. Correlation coefficients (r) between annual and seasonal NPP and climate variables.

Station Names of stations

Correlation coefficients between NPP and climate variables

Annual NPP Spring NPP Summer NPP Autumn NPP
AP AMT SpP SpMT SuP SuMT AuP AuMT
East Ujimqin Banner 0.594* -0.126 0.632* 0.560* 0.531 -0.3 0.826** 0.073
Erenhot 0.135 0.131 0.303 0.777** 0.281 -0.336 0.558* 0.137
Naranbulag (Abag Banner) 0.828** -0.452 0.618* 0.654* 0.803** -0.174 0.732** -0.079
Abag Banner 0.775%* -0.383 0.657* 0.610* 0.699** -0.416 0.761** -0.287
Sonid Left Banner -0.042 0.402 0.54 0.808** 0.094 -0.255 0.337 0.326
Jurh (Sonid Right Banner) 0.690** -0.126 0.582* 0.759** 0.665* -0.054 0.605* 0.079
West Ujimgin Banner 0.465 -0.107 0.382 0.762** 0.534 -0.251 0.275 0.267
Xilinhot 0.682* -0.304 0.453 0.751%** 0.53 -0.525 0.738** -0.089
Duolun 0.778** -0.284 0.151 0.701** 0.646* -0.467 0.748%* -0.331

AP = annual mean precipitation; AMT = annual

mean temperature; SpP = spring precipitation; SpMT = spring mean temperature; SuP = summer

precipitation; SUMT = summer mean temperature; AuP = autumn precipitation; AuUMT = autumn mean temperature.

* indicates a significant correlation at the 0.05 level (two-tailed).

** indicates a significant correlation at the 0.01

https://doi.org/10.1371/journal.pone.0187678.t001

level (two-tailed).
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relationships between NPP and climatic variables (precipitation and temperature) from 2001
to 2013 at the pixel scale. Fig 6(A)-6(F) shows that R and R;, for NPP and precipitation

changed little across spring, summer and autumn. NPP was mostly positively correlated with
precipitation. Negative relationships between NPP and precipitation were only significant in
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Spring, mostly after the effect of temperature was removed, and were largely confined to the
south-west portion (Fig 6(A) and 6(B)).

Temperature effects on NPP were more variable (Fig 6(G)-6(L)). Mostly positive relation-
ships in Spring were replaced by negative or neutral relationships in Summer (especially) and
Autumn. High summer temperatures are clearly detrimental to NPP for much of the study
area. Most of the temperature effects were strongly mitigated by rainfall (contrast R and R,, in
summer).
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Discussion

Our data for NPP in the study region are quantitatively similar to those reported using other
approaches. For example, Li and Ji [47] simulated NPP of grasslands throughout Inner Mon-
golia using the AVIMia model (Atmosphere-Vegetation Interaction Model and an impact
assessment) and found that the multi-year mean NPP ranged from 223 to 315 g C-m*-year .
Results of Zhu et al. [40] suggested that NPP of meadows, plain grasslands and desert grass-
lands was 383 g C-m *-year ™, 226 g C-m-year ' and 103 g C-m *-year ', respectively. Our data
suggest NPP of the Xilingol Grassland increased slightly over the 13-year study period. Zhang
[48] analysed the dynamics of Xilingol Grassland in the growing season (April-October)
between 2003 and 2012 using NDVI data and noted a similar trend, consistent with results
obtained by Jiang et al. [49] through experimentation at fixed locations. The analysis provided
here, via integration of validated modelling with remote sensing, offers opportunity to extend
such studies to other grassland regions in China, and globally.

Precipitation and temperature effects on grassland productivity have been reasonably well
studied [50,51], with the former being especially significant in arid regions [9,52]. It is particularly
important to understand the potential influence of climate change on ecosystems within this area,
given its large population [53]. Meta-analysis showed that reductions in precipitation have signifi-
cant influence on aboveground NPP (ANPP). Conversely, increased precipitation can promote
ANPP, belowground NPP (GNPP) and NPP [50]. The results of this study support such a general
interpretation; positive correlations between annual NPP and precipitation in most regions of the
study area demonstrate the strength of control. In addition, negative correlations between temper-
ature and NPP were mostly conditional upon precipitation. These effects are seen most clearly via
the differences between R and R, for the relationships of precipitation and temperature to NPP
(Fig 5(A) and 5(B) and Fig 6(A)-6(F)). Moreover, most research shows that seasonal precipitation
has large impact on the NPP of grassland ecosystems worldwide [54-56]. Our results (see S1(A),
S1(C), S1(E) and S1(G) Fig) show that removing temperature had no effect on the distribution
ranges of correlation coefficients for the relationship between NPP and precipitation. In simple
terms, temperature had no impact on the relationship between precipitation and NPP, whether
annual or seasonal (spring, summer and autumn). Conversely, temperature effects were clearly
precipitation-dependent. For example, at the annual scale, when precipitation effects were
included, NPP in the study area was negatively correlated with temperature in 99% of regions (Fig
5(C) and S1(B) Fig). However, when precipitation was removed (Fig 5(D) and S1(B) Fig), there
was a positive correlation in 77% of regions. This pattern is clearly related to the biology of plant
growth. Growth is stimulated by increased temperatures when water is readily available [57,58].
Under drought conditions, high temperatures can severely reduce growth [59]. Consequently,
correlations and partial correlations between NPP and temperature were consistently positive in
Spring (Fig 6(G) and 6(H) and S1(D) Fig) and mainly negative in Summer (Fig 6(I) and 6(]) and
S1(F) Fig) and autumn (Fig 6(K) and 6(L) and S1(H) Fig).

As is commonly recognized, aside from precipitation and temperature, NPP is also subject
to influence by other environmental/climate factors and human activities [60,61]. For example,
Zhao [62] found that high temperatures and droughts between 2000 and 2009 were primary
causes of reduced global NPP, and Han et al. [63] found that precipitation and temperature
contributed almost 60% of the variation in the total biomass. Nonetheless, human activities
remain one of the main reported causes of grassland degradation [64-66]. Our assessment is
that numbers of grazing livestock declined between 2001 and 2013, and were not significantly
related to NPP (S2 Fig). In contrast, using a NDVI-based method alone, Li et al. [67] con-
cluded that human activities (grazing) were the main driver of changes in the vegetation
between 1981 and 2006.
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Supporting information

S1 Fig. Histograms of the correlation coefficients (dark green) and partial correlation coef-
ficients (light yellow) between the NPP and the precipitation and temperature. (a) Annual
NPP and precipitation. (b) Annual NPP and temperature. (c) NPP and precipitation in spring.
(d) NPP and temperature in spring. (e) NPP and precipitation in summer. (f) NPP and tem-
perature in summer. (g) NPP and precipitation in autumn. (h) NPP and temperature in
autumn.

(EPS)

S2 Fig. (a) Number of livestock (solid red line) and change in the NPP (broken blue line) and
(b) the correlation between the number of livestock and the change in the NPP.
(EPS)
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