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Abstract
Epidemiological data predict a dramatic increase in the prevalence of diabetes and of diabetic retinopathy (DR) – the most
common complication of diabetes-for which however we do not have so far effective tools for prevention and treatment. Since
hypovitaminosis D is very frequent in patients with diabetes and vitamin D (VD) has vascular protective properties, several
studies have addressed the association of VD deficiency with DR and its severity and progression, whereas the effects of VD
supplementation on its natural history are largely unknown. Here we review the available evidence that supports the possible
protective role of VD in DR and suggests to determine the VD levels in DR patients calling for a definitive randomized clinical
trial to ascertain whether VD supplementation could protect against DR.
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PTH Parathyroid hormone
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mVDR membrane-located vitamin D receptor
nVDR nuclear-located vitamin D receptor
NHANES National Health and Nutrition Examination
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T2DM type 2 diabetes mellitus
BMI Body mass index
RCTs Randomized controlled trials
HbA1c glycated hemoglobin
T1DM Type 1 diabetes mellitus
DED diabetic eye disease
OR odds ratio
YKL-40 tyrosine (Y), lysine (K) and leucine (L)-40
MCP-1 Monocyte chemoattractant protein-1
IL-6 Interleukin 6

HOMA-IR Homeostatic Model Assessment of Insulin
Resistence

RHI reactive hyperemia index
EC Endothelial cells
VSMC Vascular smooth muscle cells
eNOS Endothelial nitric oxyd synthase
NO Nitric oxide
MAO Monoamine oxidases
VEGF Vascular endothelial growth factor
PGI2 prostacyclin
PLCγ Phospholipase C-Gamma
PKC Phosphokinase C
ROS Reactive oxygen species
TXNIP Thioredoxin-Interacting Protein
NLRP3 (NOD)-like receptor protein 3
TNF-α Tumor necrosis factor α
IL-17A Interleukin 17A
CD3 Cluster-Defined 3
CD28 Cluster-Defined 28
LPS LipoPolySaccharide
C3 Complement 3
RAAS Renin-angiotensin aldosterone system
AGEs Advanced glycation end products
NFκB Nuclear factor-kappa B
RAGE Advanced glycation end product receptor
GLO1 glyoxalase I enzyme
ICAM-1 Intercellular adhesion molecule-1
ER Endoplasmic reticulum
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PERK protein kinase RNA-like
eIF2a eukaryotic initiation factor 2 alpha
ATF4 Activating Transcription Factor 4
CHOP C/Ebp-Homologous Protein
GRP78 Glucose-Regulated Protein, 78-KD
P I 3 K -
AKT

Phosphatidylinositol-3-Kinase and Protein
Kinase B

1 Introduction

Vitamin D (VD) is actually a steroid hormone produced in the
skin after exposure to sun irradiation in the form of cholecal-
ciferol. Diet contribution to daily VD requirement does not
exceed the 20% of total unless food is not systematically for-
tified with VD [1]. Hepatic and kidney hydroxylation in posi-
tion 25 and 1 respectively are necessary to produce active VD.
Kidney 1 alpha hydroxylase is under control of endogenous
PTH [1] (Fig. 1). Activated vitamin D, acts through its cognate
vitamin D receptor (VDR) that encompasses two subtypes: the
membrane-located mVDR, and the nuclear-located nVDR
which are expressed in the majority of mesenchymally de-
rived cells; mVDR regulates the non-genomic effects of VD,
which are exerted within seconds to minutes after its activa-
tion, and is mainly involved in secondary signaling mecha-
nisms implicated in channel responses, adipocyte metabolism,

insulinotropic effects, and antiapoptotic pathways.
Conversely, nVDR regulates the genomic effects of VD,
which are exerted within hours to days after its activation.
Once phosphorylated/activated, nVDR forms a trimer with
the retinoid X receptor; this complex then binds to the VDR
response element, leading to changes in transcription and ex-
pression of target genes [1]. Recently, it has also emerged the
role of circulating VD binding protein as a regulator of hor-
mone bio-availability to target tissue with a clinically preva-
lent inhibitory effect on VD activity [3].

VD is crucial for the calcium and skeletal homeostasis in
physiological and disease states [1, 4, 5]. It also has many
systemic functions which are also known as extraskeletal ef-
fects [6] most of which are based on solid experimental evi-
dences and positive observational studies, but less frequently
on adequate randomized clinical trials [7]. Among the numer-
ous extraskeletal actions VD has been proposed to play a
pivotal role in the regulation of fundamental processes in-
volved in cardiovascular homeostasis [8], as well as in the
modulation of inflammation and tuning of the innate and
adaptive immunity systems, which appear to be relevant in
the response to respiratory viral infections [9–11]. Moreover,
several studies have addressed, without reaching to date an
univocal conclusion, the prevalence and role of
hypovitaminosis D in diabetes, as well as the impact of VD
supplementation on the natural history of diabetes, blood

Fig. 1 Metabolic pathways involved in the synthesis of VD, main external sources of VD and the potential mechanisms underlying widespread
hypovitaminosis D (defined according to Sempos et al., 2018 [2]
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glucose control, and prevalence and severity of its macro and
microvascular complications [6, 12].

Assessment of total 25OHVD is widely accepted as a
marker of the VD status [2, 12] and is used by several agencies
to support vitamin D dietary requirements and thresholds for
hypovitaminosis D in population surveillance [2, 13, 14]. In
fact, definition of VD deficiency is still an open issue, as
apparent from different recommendations from various scien-
tific bodies [15]. However, there is quite a strong agreement
among experts that 25OHVD levels below 12 ng/mL
(30 nmol/L) represent deficiency and levels above 30 ng/mL
(75 nmol/L) are clearly sufficient. Conversely, it is still un-
clear the clinical meaning of levels between 12 and 30 ng/mL
(30 and 75 nmol/L) with thresholds of sufficiency at 20 ng/mL
(50 nmol/L), [16] or ≥ 30 ng/mL (≥ 75 nmol/L) [17] according
to different guidelines. These discrepancies are at least in part
due to the lack of 25OHVD assay standardization [12].

In fact, due to progressive changes in lifestyle such as,
indoor work extremized by confinement due to COVID-19
pandemic [10, 11], or sun avoidance, hypovitaminosis D is
still widespread [17]. Implementing the <20 ng/ml
(<50 nmol/L) threshold [16], approximatively one third of
the world population is deficient with figures increasing to
40% in Europe [18, 19]. Severe VD deficiency, defined as
<30 nmol/l (or < 12 ng/ml), can be found in about 7% of the
global population [17]. According to the NHANES, a large
cross-sectional study on over 8000 subjects, 42% of the US
population display insufficient VD levels African-Americans
present the highest prevalence rate (82%), followed by
Hispanic-Americans [20]. Interestingly, epidemiological data
show that Italy is one of the Countries with the highest prev-
alence of VD deficiency in Europe [21]. A study from Isaia
et al. on 700 women aged 60–80 years in Italy found values of
25OHVD lower than 5 ng/ml in 27% and lower than 12 ng/ml
in up to 76% of enrolled subjects [22]. Moreover, another
Italian study found a winter prevalence of hypovitaminosis
D in as many as 32% of healthy postmenopausal women,
and to 82% in patients engaged in long-term rehabilitation
programs because of different neurological disorders [23].

As mentioned above, this widespread deficiency of circu-
lating VD [24] besides its detrimental skeletal effects [25] has
been linked to the development and progression of several
diseases such as cancer [26], obesity [27], and healthy aging
[28].

2 Vitamin D and diabetes

2.1 Hypovitaminosis D

In vivo studies have shown that T2DM rats display lower
levels of 1,25OHVD as compared to controls [29], likely

due to impaired hepatic and renal metabolism of VD [30].
Reduced 25OHVD levels have been hypothesized to be in-
volved in the pathophysiology of skeletal fragility of patients
with diabetes and in patients in whom diabetes may develop
due to glucocorticoid treatment or endocrine diseases [4,
31–33]. In fact, it has been consistently reported that patients
with T2DM had decreased circulating levels of 25OHVD [34,
35]. Interestingly, in an observational Italian study on 66
women with T2DM out of a sample of about 800 postmeno-
pausal women the prevalence of severe VD deficiency was
significantly higher in diabetic vs control subjects (39 vs.
25%, respectively) [35]. Recently, an association between
low levels of circulating VD with poor glycemic control in
patients with T2DM has also been reported [36]. Low levels
of circulating 25OHVD are very frequently found also in
obese non diabetic subjects, and are inversely correlated with
BMI and adiposity [37]. The Copenhagen City Heart Study, a
29 year long prospective cohort study on nearly 10,000 pa-
tients, showed an association between low VD levels and
increased risk of T2DM; in fact, the cumulative incidence of
T2DM increased with decreasing VD concentrations at base-
line, and when categorized by VD concentrations patients in
the lowest quartile had an hazard ratio (HR) of 1.35 (95% CI
1.0.9–1.66) of developing T2DM [38]. Moreover, a historical
prospective cohort study on over 100,000 subjects showed
that patients with levels of VD <25 nmol/L had increased odds
of transitioning from normal to impaired fasting glucose (OR
1.13, 95% 1.03–1.24), from normoglycemia to diabetes (OR
1.77, 95% 1.11–2.83), as well as from impaired fasting glu-
cose to diabetes (OR 1.43, 95% 1.16–1.76) [39].

2.2 VD supplementation

2.2.1 Glycometabolic control

A recent study and a meta-analysis of RCTs showed that VD
supplementation in T2DM patients can improve HbA1c, in-
sulin resistance, and insulin secretion in short-term interven-
tion [40, 41]. Another meta-analysis of RCTs showed, a
favourable effect of VD administration on fasting glucose on-
ly in patients with poorly controlled diabetes [42]. In a recent
meta-analysis of interventional studies in obese non diabetic
patients no clear evidence for a beneficial effect of VD sup-
plementation on weight loss or cardio-metabolic parameters
was reported [43]. This may at least in part due to a VD
“resistant state” which is consistently reported in obesity
[44, 45].

2.2.2 Prevention of diabetes

In a recent multicenter, randomized, placebo-controlled trial
involving more than 2.400 subjects at high risk for T2DM not
necessarily VD deficient, VD3 supplementation did not

717Rev Endocr Metab Disord (2021) 22:715–727



significantly lower the risk of diabetes when compared to
placebo, after a median follow-up of 2.5 years [46].
However, in a post hoc analysis of the same study data from
subjects with a baseline 25OHVD less vs greater than 12 ng/
mL (30 nmol per liter) the hazard ratio favoured VD treatment
[46]. In the Tromsø VD and T2DM Trial on 511 subjects with
prediabetes a slightly but not significantly lower risk of pro-
gression to diabetes was observed in the VD vs placebo treat-
ed groups [47]. Both trials were not powered to detect the10–
15% observed reduction of diabetes risk among persons at risk
for diabetes. Moreover, as many other VD trials the enroll-
ment of large number of VD sufficient subjects likely heavily
impacted on the conclusions [48].

2.2.3 Macrovascular complications

Data on the effects of VD on cardiovascular risk and
complications of diabetes are controversial. A recent
RCT on over 25,000 patients found that VD supplemen-
tation for five years had no cardiovascular protective ef-
fect (HR 0.97, 95% CI 0.85–1.12; p = 0.65) [49];. howev-
er, these results may have been affected by selection bias
of subjects without VD deficiency [7]. Indeed, other re-
ports led to different results. In fact, meta-analyses show
that hypovitaminosis D could reduce cardiovascular risk
[50, 51]. Moreover, clinical studies showed that VD defi-
ciency is linked to surrogate parameters of cardiovascular
damage such as endothelial dysfunction, assessed as flow
mediated dilation at the brachial artery [52], as well as
with carotid intima-media thickness [53]. Mechanistic
studies show that VD played a pivotal role in vascular
protection and regeneration [54, 55], and that normaliza-
tion of VD levels may significantly improve indexes of
vascular function [56–58]. VD has also been reported to
have protective roles against cerebrovascular complica-
tions [59].

2.2.4 Microvascular complications

Diabetic nephropathy is one of the most common causes of
chronic kidney disease. Microalbuminuria and proteinuria are
characteristic markers of this complication [60, 61]. In a meta-
analysis of 9 RCTs a positive but not significant trend towards
a VD mediated reduction in albuminuria and its possible role
in slowing progression of diabetic nephropathy has been hy-
pothesized [62]. A significant difference in 25OHVD levels in
patients with painful diabetic peripheral neuropathy, has been
recently consistently reported [63]. Treatment with VD in pa-
tients with painful diabetic neuropathy has also been associat-
ed with a significant decrease in the symptoms of the disease
[64].

3 Diabetic retinopathy

A recent meta-analysis on 35 prevalence studies as well as on
4 incidence studies of diabetic eye disease (DED) among in-
dividuals with diabetes in Europe has recently been published
[65]. Any diabetic retinopathy (DR) was prevalent in 25.7%
(95% CI 22.8–28.8%) being significantly higher in persons
with T1DM as compared to persons with T2DM (54.4% vs.
25.0%). The pooled mean annual incidence of any DR in
patients with T2DM was 4.6% (95% CI 2.3–8.8%). Authors
estimated that persons with diabetes affected by any DED in
Europe will increase from the current 6.4 million to 8.6 mil-
lion in 2050, of whom 30% require close monitoring and/or
treatment. It is noteworthy that currently there are no widely
effective interventions that can be used to prevent and/or to
treat DR in addition to optimization of glucose control and
blood pressure. Large epidemiological studies have shown
that the threshold for the appearance of DR is at HbA1c levels
of 6.5%, just above the upper limit of normal [66]. However,
this biochemical target is not often reached despite intensive
follow-up and residual hyperglycemia exposes to an increased
risk of DR as well as of other serious complications [67].
Further intensification of treatment to maintain HbA1c below
6% with the modalities available today poses severe risks of
hypoglycemia in T2DM patients with increased mortality
[67]. In this perspective, local and systemic treatments with
biological compounds as well as with the somatostatin analog
octreotide [68–70] are promising additional tools.

4 Vitamin D in diabetic retinopathy

4.1 Clinical aspects

4.1.1 Hypovitaminosis D

In 2000, Aksoy et al. found an inverse relationship between
presence and severity of DR, and VD concentrations, being
the lowest in proliferative DR and the highest in diabetic pa-
tients without DR [71]. In 2011, a cross-sectional study on
over 500 patients showed that VD deficiency was associated
with increased prevalence of DR in T1DM patients; in this
study, the prevalence of DR was double in VD deficient
vs.VD sufficient patients (18% vs 9%, respectively; p =
0.02); and in logistic regression, DR was associated with
VD deficiency (OR 2.12 [95% CI 1.03–4.33]) [72].
Similarly, a retrospective cross sectional study on nearly
1000 patients from the NHANES showed that the prevalence
of severe and mild DR were higher in poorly controlled pa-
tients with hypovitaminosis D vs. VD sufficient patients; in
addition, a multivariate ordinal regression analysis on this da-
tabase showed an association between VD deficiency and DR
severity (OR 2.22, 95% CI: 1.36, 3.65) [73] (Table 1). These
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data were confirmed bymeta-analyses. One was performed on
over 17,000 subjects from fifteen observational studies, and
showed that T2DM patients with VD deficiency had an in-
creased risk of DR (OR = 2.03, 95% CI: 1.07, 3.86); further-
more, patients with DR displayed a decrease in VD levels of
1.7 ng/mL (95% CI: −2.72, −0.66) [79]. Another was per-
formed on over 10,000 participants from fourteen observa-
tional studies, and showed a significant association between
DR and VD deficiency (OR = 1.27, 95% CI: 1.17, 1.37; P =
0.001); furthermore, patients with DR displayed a decrease in
VD of 1.32 ng/mL (95% CI: −2.50, −0.15) [80]. In addition, a
multitude of cross-sectional studies also very recent [74] per-
formed in different populations – such as Italian [75], japanese
[76], chinese [77], and african-american [78] – reported con-
sistent data (Table 1). The high reproducibility of the findings,
and their cross-ethnicity, strengthened the hypothesis of an
association of VDwith DR, and attenuated the concerns raised
by two studies in this regard. In fact, a prospective observa-
tional study showed that VD deficiency independently pre-
dicted all-cause mortality, but not the development of micro-
vascular complications [81]. Moreover, a sub-analysis of the
Veteran Affairs Trial reported that VD status had no impact on
the incidence of vascular events in high-risk veterans with
diabetes [82]. Noteworthy, a sub-analysis of the Field Study,

a placebo-controlled trial on nearly 10,000 T2DM patients,
showed that subjects with hypovitaminosis D had a higher
cumulative incidence of microvascular events; in fact, a
50 nmol/L difference in VD levels was associated with a
18% (p = 0.007) increase in risk of microvascular complica-
tions [83]. More recently, a sub-analysis of the Rotterdam
Study, a prospective cohort study on over 5500 patients,
showed that patients with hypovitaminosis D were at in-
creased risk for DR, independently of the presence of cardio-
vascular risk factors [84].

4.1.2 Vitamin D supplementation

The active form of VD calcitriol supplementation has been
shown to attenuate ex vivo and in vivo choroidal vasculature
angiogenesis [85]. However, despite the reasonable rationale
provided by the above discussed association data prospective
studies on the effect of VD administration on DR in humans
are lacking. In fact, although treatment of DR is often associ-
ated with the administration of dietary supplements [86] only
very few studies specifically supplementing VD in patients
with DR have been published so far [87–89]. These were short
term studies mainly focusing on biochemical, immunological
and inflammatorymarkers of vascular damage in patients with

Table 1 Summary of the main retrospective cross-sectional studies with the evidence of association between VD levels and diabetic retinopathy

Author (Ref) #Pts VDD definition (ng/ml) Main finding OR (95% CI)

Aksoy [71] 66 DM/20C 1,25OHVD VDD associated with DR/severity NA

Kaur [72] 517T1DM 25OHVD< 20 DR 18% VDD vs 9% VDS 2.12 (1.04–4.33) *1

Long [73] 842 T2DM 25OHVD <20 mDR/pDR > in uncontrolled VDD vs.VDS 2.226 (1.359–3.648) *2

Afarid [74] 60T2DM 25OHVD< 20 VD < in pts. with vs without DR NA

Zoppini [75] 715T2DM 25OHVD< 30 VD < in n DR vs mDR vs pDR 0.758 (0.607–0.947) *3

Shimo [76] 75T1DM 25OHVD <20 VDD associated with DR 3.45 (1.11–10.6)*4

He [77] 1520T2DM 25OHVD< 20 DR/stDR > VDD vs VDS DR 1.93 (1–23-2.15) stDR 2.42 ((1.61–3.63) *5

Millen [78] 1339T2DM 25OHVD <20,
<30,
>30,

VDD associated with DR 0.77(0.45–1.32)
0.64 (0.37–1.10)
0.39 (0.20–0.75) *6

*1 Multivariate analysis VDD with DR

*2 Ordinal regression in poorly controlled DM

*3 Multiple logistic regression analysis of association of serum 25OHD levels with composite microvascular end point, inclusive of diabetic retinopathy
and/or nephropathy; OR for each SD increase in 25OHD level (ie, 13 ng/mL)

*4 Multivariate regression analysis of factors independently associated with DR

*5 Association of VDD with DR/stDR in a logistic non adjusted regression model

*6 Logistic regression for DR by categories of season-adjusted 25OHD trend for participants with 25OHD of 12- < 20, 20- < 30, and ≥ 30 ng/ml,
respectively

VDD Vitamin D deficiency, VDS Vitamin D sufficiency

mDR mild diabetic retinopathy, pDR proliferative diabetic retinopathy

stDR sight threatening diabetic retinopathy

OR Odds ratio

CI Confidence intervals

NA not applicable
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DR showing marginal effects of the VD supplementation on
these parameters [87–89]. YKL-40 and Monocyte
chemoattractant protein-1 (MCP-1) may have relevant role
in diabetes and its microvascular complications. In a 12 weeks
controlled randomized trial 48 patients with T2DM received
either VD or placebo. VD supplementation significantly re-
duced serum YKL-40 levels (−22.7 vs. -2.4 ng/ml; (p value =
0.003)) and MCP-1 (−45.7 vs. -0.9 pg/ml; (p = 0.001)).
Furthermore, there was a significant decrease in IL-6, fasting
insulin and HOMA-IR in intervention group after 3 months
supplementation [90]. Finally, interim results of a small and
short-term (6 months) ongoing non-randomized clinical study
[91] provided encouraging results. However, the short dura-
tion of follow-up, uncontrolled nature and small number of
patients are important limiting factors and do not allow any
inference on the possible protecting role of VD supplementa-
tion on DR in humans with or without VD deficiency.

4.2 Pathophysiological aspects

4.2.1 General mechanisms of VD vascular protection
in diabetes

VD protects vessels against diabetes via several intertwined
mechanisms. Al Mheid et al. showed that VD status is indepen-
dently associated with digital reactive hyperemia index (RHI), a
marker of microvascular function, in healthy subjects; notably,
the authors also found a significant increase in RHI in VD defi-
cient patients after 6 months of VD oral supplementation [56].
Similarly, a study reported the association between VD and
microvascular function, measured as RHI, in healthy women
[92]. In addition, an association between VD and vascular func-
tion has been described in patients with diabetes [93]; moreover,
a report described improved vascular function parameters in
patients with diabetes, after VD oral supplementation [94].
Furthermore, in patients with diabetes and VD deficiency re-
duced endothelium-dependent microvascular function, assessed
by iontophoresis of acetylcholine, when compared to patients
with diabetes and non-deficient VD levels [95].

Experimental studies have shown that VD improves endo-
thelial dysfunction and promotes vascular regeneration through
the activation of VDR, that in turn regulates the expression of
numerous genes involved in fundamental processes of potential
relevance to cardiovascular function [96]; in fact, the suppres-
sion of VDR in endothelial cells (EC) alters vascular homeo-
stasis [1, 97]. It is noteworthy that VDR is expressed in EC,
pericytes, and vascular smooth muscle cells (VSMC).

4.2.2 Specific putative mechanisms of VD protection in DR

Here we will review a selection of the putative mechanisms
possibly involved in specific VD protective effects against DR
(Fig. 2).

VD increases eNOS-dependent NO production VD promoted
NO production in EC [93]; in addition, in endothelial-specific
VDR−/− mice reduced endothelial NO synthase (eNOS) ex-
pression was reported [1]. In the presence of oxygen, NADPH
and other co-factors, eNOS catalyzes the oxidation of L-
arginine to form L-citrulline and NO. NO is a gas that easily
diffuses across the cell membrane to the adjacent VSMC
where it leads to a cascade of events, resulting in VSMC
relaxation and thereby dilation of the vessel. In addition, NO
is known to exert vasculo-protective activities, such as en-
hancement of endothelial cell survival [98] and inhibition of
platelet aggregation. Finally, NO has key role in the pathogen-
esis of DR [99] and its modulation byVDmay have protective
effects in DR.

VD reduces oxidative stress In diabetic mice VD mitigates
oxidative stress through a multitude of intertwined mecha-
nisms, such as enhancing the antioxidant defence systems
[100], preserving mitochondrial function [100], restoring
eNOS function (see above), and reducing the activation of
monoamine oxidases (MAO) [101]. Interestingly, a recent
study demonstrated that exposure to a high level of glucose
caused upregulation of pro-inflammatory cytokines and a de-
crease in anti-oxidant enzyme expression both in vitro and
in vivo. VD treatment increased cell viability, reduced reactive
oxygen species production and caspase-3/7 activities in high-
glucose-treated retinal pigmented epithelial cells suggesting
that VD can protect the retina from high-glucose-induced ox-
idative damage and inflammation [102].

VD enhances vascular endothelial growth factor (VEGF) syn-
thesis and release VEGF has a key pathogenetic role in pro-
liferative DR [103]. VD induces up-regulation of VEGF and
of its receptors, by direct binding of VDR to two areas of the
VEGF promoter [104]. VEGF primarily exerts its effect in DR
through the production of vasodilatory mediators. In addition,
VEGF signalling through its cognate receptor, increases
eNOS – indirectly via calmodulin, directly via phosphoryla-
tion of eNOS, and via increase of eNOS levels – and thereby
increases NO; moreover, VEGF promotes production of the
vasodilatory prostanoid prostacyclin (PGI2) through activa-
tion of phospholipase A2 via PLCγ/PKC, and plays a pivotal
role in vascular regeneration [105]. Interestingly, VDR ago-
nists were found to have significant and selective retinal anti-
angiogenic properties modulating expression of VEGF in
zebrafish [106] and in diabetic rats [107].

VD modulates inflammation and the immune system
Immune and inflammatory mechanisms also associated with
diabetic gut microbiota dysbiosis [108–110] may play a role
in the pathogenesis of DR. VD on the one hand reduces chron-
ic inflammation [111] by inhibiting the activation of the ROS/
TXNIP/NLRP3 inflammasome pathway [112], and by
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suppressing the nuclear factor-κappaB (NF-κB) signalling
pathway [113]. On the other hand, VD plays major role in
the immune-system vascular activities: in fact (a) it increases
the activity of myeloid angiogenic cells, by restoring their
function and by enhancing their recruitment [54, 55]; (b) it
modulates the immune system [114], by promoting the innate
immune response and inhibiting the adaptive immune re-
sponse [9], and by regulating regulatory T cells and immature
dendritic cells, and thereby halting the progression of
angiopathy [115]; and (c) it decreases the number and activa-
tion of macrophages and dendritic cells in the retina [116].
Interestingly, VD decreased diabetes-induced ROS and
exerted protective effects against retinal vascular damage
and cell apoptosis in association with inhibition of the ROS/
TXNIP/NLRP3 inflammasome pathway in diabetic rat and in
human retinal cells [116]. Furthermore, patients with prolifer-
ative DR were reported to have decreased serum level of
1,25OHVD and increased production of IFN-γ, TNF-α, IL-6,
and IL-17A, by anti-CD3 and anti-CD28 antibodies activated
PBMCs whereas 1,25OHVD significantly inhibited the prolif-
eration of PBMCs, as well as the secretion of IFN-γ, TNF-α,
IL-6, and IL-17A [117].

VD reduces transforming growth factor-β (TGF-β) production
Pre-treatment of mesothelial cells with VD inhibits high glu-
cose and LPS-induced TGF-β production [118]. Accordingly,
diabetic rats receiving VD showed lower levels of TGF-β in
the retina, when compared to non-VD treated diabetic controls
[107]. In addition, VD has been shown to reduce urinary
TGF-β levels as well as albuminuria in diabetic patients in

both a prospective clinical study [63], as well as in a random-
ized double-blind controlled study [119]. TGF-β plays a piv-
otal role in retinal microvascular homeostasis [120]. Indeed,
TGF-β regulates the production of extracellular matrix, the
replication and survival of EC, the interactions of EC and
pericytes to ensure vessel stability, and the remodelling of
vessels [121, 122]. When TGF-β signalling in vascular cells
is increased vessels in the retina may show excess extracellu-
lar matrix, tortuosity, and aneurysms [123]. In fact, TGF-β
has been suggested to be one of the possible biomarker of
DR [124, 125].

VD regulates the activation of the complement cascade VD
reduces circulating C3 by modulating liver inflammation and
by decreasing C3 secretion from adipocytes [126]. It is note-
worthy that in diabetes complement dysregulation plays a role
in the pathogenesis of diabetic retinopathy [127]; in fact,
microvessels from animals and patients with short duration
of diabetes display terminal products of complement activa-
tion, whereas healthy controls do not [128]. These alterations
lead to increased presence and size of microthrombi, that are
topographically associated with apoptotic cells, and that can
contribute to capillary obliteration and retinal ischemia [129].

VD inhibits the renin-angiotensin aldosterone system (RAAS)
High blood pressure is known to be associatd with DR [130]
and upregulation of RAAS has been reported among the path-
ogenetic mechanisms of DR [131]. Several clinical studies
have reported an inverse relationship between circulating
VD levels and plasma renin activity [132]. In addition, VD
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Fig. 2 A model for mechanisms of Vitamin D vascular protection.
Vitamin D shields vessels against diabetes via several intertwined
pathways: it enhances the activities of NO, VEGF, SDF-1, and
antioxidant systems, while downregulating AGEs, TGF-β, RAAS, C3,
ER stress, and apoptosis. Altogether, Vitamin D leads to a complex anti-
inflammatory, anti-adhesive, anti-apoptotic, vasculo-protective

phenotype. Abbreviations: VD, vitamin D; NO, nitric oxide; VEGF,
vascular endothelial growth factor; AGEs, advanced glycation end-
products; TGF-β, transforming growth factor-β; RAAS, renin-
angiotensin aldosterone system; SDF-1, stromal cell-derived factor 1;
C3, C3 complement factor; ER, endoplasmic reticulum; EC, endothelial
cells; MAC, myeloid angiogenic cells
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suppresses renin transcription by a VDR-mediated, but not
calcium-dependent, mechanism [133]. Indeed, RAAS has
pro-inflammatory and pro-fibrotic effects at cellular and mo-
lecular levels; in addition, RAAS induces vascular remodel-
ling via modification of the extracellular matrix composition,
that causes structural and functional changes in blood vessels
[130, 131],

VD reduces the detrimental effects of advanced glycation end
products (AGEs) VD supplementation in T2DM patients
down-regulates the levels of AGEs and the gene expression
of its cognate receptor (RAGE); these mechanisms appear to
be at least in part mediated by glyoxalase I enzyme (GLO1) –
an enzyme involved in the degradation and removal of AGEs
– as VD supplementation tends to increase its expression
[134]. In addition, VD modulates the vascular effects of
AGEs by reducing the diabetes-induced increase of IL-6 and
of NFκB-p65 DNA binding activity, both key mediators of
AGEs signalling [135]. AGEs and RAGE are among the ma-
jor pathways involved in the pathophysiology of diabetic
complications and of DR [136], as their interaction induces
the translocation of NF-κB, and the subsequent transcription
of endothelial dysfunction biomarkers, such as intercellular
adhesion molecule-1 (ICAM-1), endothelin-1, and E-selectin
[137].

VD reduces endoplasmic reticulum (ER) stress VD decreases
the expression of the classical ER stress pathway PERK-
eIF2a-ATF4-CHOP, by modulating the activity of GRP78 –
a master regulator of ER stress [138]. Moreover, VD-
sufficient patients showed lower ER stress in monocytes as
compared to VD deficient patients [139]; in addition, the de-
letion of the VDR in macrophages from T2DM patients acti-
vated ER stress, and induced a pro-adhesive phenotype in
monocytes. Indeed, diabetes promotes the expression of en-
dogenous biomarkers of ER stress, among which GRP78, a
member of the heat shock protein family. Interestingly, also
ER stress has been related to DR [140, 141].

VD regulates apoptosis of endothelial cells VD induces an
overall pro-survival transcriptional program characterized by
upregulated expression of anti-apoptotic genes and downreg-
ulated expression of pro-apoptotic genes [142]; in addition,
VD determines the non-genomic activation of the PI3K-Akt
survival kinase pathway [143], it also reduces apoptosis of EC
by increasing NO production (see above).

Other possible mechanisms Based on the body of evidences
presented above it is reasonable to hypothesize that VD could
exert its vascular protective activities also by regulating dia-
betic leukostasis, and/or by improving the myogenic response
of microvessels. Diabetic leukostasis is a phenomenon ob-
served in diabetic retinal vessels, which has been proposed

to be implicated in the pathogenesis of DR [144]. Even though
there are currently no data on the effect of VD on leukostasis,
it can be hypothesized that VD may co-orchestrate the re-
sponse of immune cells to the stressed microvessels, thereby
modulating neighbouring leukocytes, repairing cellular dam-
age/alterations, and maintaining vascular homeostasis. In con-
trast, the myogenic response is the constriction of the afferent
arterioles to increases in perfusion pressure, in order to damp-
en the transmission of pressure to capillaries and parenchyma.
Thus, the impaired myogenic response induced by diabetes
appears as a mechanism for accelerating microangiopathy
[145]. To date, there are no evidences on the effect of VD
on the impaired myogenic response in diabetes. However,
the molecular actions described above, coupled with its activ-
ities on VSMC function [146, 147], suggest the hypothesis
that VD could protect retinal microvessels against diabetes
at least in part via restoring the myogenic response.

5 Conclusions

The above reviewed clinical and pathophysiological aspects
suggest that VD deficiency may be implicated in the develop-
ment and progression of DR. Since hypovitaminosis D is
widespread and heavily impacts in the whole world [13],
and is related also to development and natural history of
T2DM, it can be suggested to determine the levels of VD in
DR patients. Moreover, it can be suggested to integrate VD
with cholecalciferol in patients with DR and severe VD defi-
ciency, as well as in the general population [148].

Over the last years the quest for adjunct drugs for the pre-
vention and treatment of DR has made little progress; in fact,
so far prevention and treatment attempts of DR mainly
consisted of drugs that target the pathways of glucose toxicity
or discrete molecular abnormalities caused by diabetes [149].
The theoretical added value of VD could be to provide a broad
protection to vascular cells enhancing vascular repair, revers-
ing endothelial dysfunction, decreasing inflammation, and/or
oxidative stress. All the above considerations provide a strong
rationale for a well-designed, placebo-controlled, randomized
clinical trial to learn whether VD supplementation protects
against DR onset and/or progression. Knowing that VD pro-
tects retinal microvessels against diabetes and exerts benefi-
cial effects on endothelial dysfunction may be of high clinical
relevance. In fact, since VD deficiency is extremely common,
particularly in patients at increased cardiovascular risk [7], and
its supplementation is both safe and low-cost [148], it could
have the potential to represent a new strategy for the preven-
tion and treatment not only of DR but of other diabetic vas-
cular diseases.
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