
To analyze usage and availability of
sun protection devices, sun protection
scores (SPUS and SPAS) were created.
Points were given for subjects’
responses regarding usage of sunscreen,
sunglasses, hats/headgear, or shade
structures. Sporadic use received 0
points, occasional use received 1 point,
and routine use received 2 points.
For statistical analysis, independent

sample t-tests assuming unequal var-
iance and χ2 tests were used for group
comparisons when appropriate. Pear-
son’s correlation coefficient (r) was used
for correlation analyses. A multivariate
linear/logistic regression model was
designed and performed for sun protec-
tion use and for sunburns. Two-tailed
P-valueso0.05 were considered to
be statistically significant. Statistical
analyses were carried out using
Stata Statistical Software, version 12
(Statacorp, College Station, TX).
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Dual mTOR Inhibition Is Required to Prevent
TGF-β-Mediated Fibrosis: Implications for Scleroderma
Journal of Investigative Dermatology (2015) 135, 2873–2876; doi:10.1038/jid.2015.252; published online 6 August 2015

TO THE EDITOR
Transforming growth factor-β (TGF-β)
and platelet-derived growth factor (PDGF)
are central mediators of fibrosis, and
their overexpression contributes to
the pathophysiology of scleroderma,

chiefly by inducing the overproduction
of extracellular matrix proteins (ECM)
by dermal fibroblasts (Gay et al., 1989;
Sargent et al., 2010; Bhattacharyya
et al., 2012). TGF-β also promotes the
differentiation of dermal fibroblasts into

myofibroblasts, which are key mediators
of scleroderma (Abraham et al., 2007).
Thus, targeting this pathway is a
reasonable strategy to treat a variety of
fibrotic diseases including scleroderma,
for which current treatment options are
limited. Herein we explore the potential
of novel mTOR inhibition as a means to
block the pro-fibrotic effects of TGF-β.
Recent studies have suggested a func-
tional role of mTOR in fibrotic diseasesAccepted article preview online 2 July 2015; published online 6 August 2015

Abbreviations: ECM, Extracellular matrix; MTT, (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium
Bromide); NHDF, Normal human dermal fibroblasts; PDGF, Platelet derived growth factor; TGF-β,
Transforming growth factor-β
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and autoimmunity (Ong et al., 2007;
Fried et al., 2008; Su et al., 2009;
Raychaudhuri and Raychaudhuri,
2014). This pathway is initiated by
cytokines and growth factors that
induce phosphorylation of Akt(Thr308)

and its downstream mediators
mTORC1, p70S6K1, and 4E-BP1. In
addition to mTORC1, mTOR is now
known to comprise a second multi-
protein complex, mTORC2, which posi-
tively regulates the activity of mTOR
through phosphorylation of AktSer473

(Bhagwat et al., 2011). Blockade of
mTORC1 has already been attempted
as a treatment for scleroderma without
much understanding about its mole-
cular mechanism (Fried et al., 2008;
Su et al., 2009; Yoshizaki et al., 2010).
Such strategies focused only on
mTORC1 and did not account for the
contributions of mTORC2 (Bhagwat
et al., 2011). To increase the effect-
iveness of mTOR blockade, dual

inhibitors targeting both mTORC1 and
mTORC2 have now been developed
(Bhagwat et al., 2011). Herein, we
demonstrate that dual mTOR block-
ade can more effectively inhibit the
pro-fibrotic effects of TGF-β and PDGF.
These have therapeutic implications for
scleroderma and other TGF-β dominant
fibrotic diseases.

Antiproliferative effect of OSI-027, a dual
mTOR inhibitor
The antimitotic effects of mTOR
inhibition were evaluated using the
MTT (3-(4,5-Dimethylthiazol-2-yl)-
2,5-Diphenyltetrazolium Bromide)
assay. Normal human dermal fibro-
blasts (NHDFs) were incubated with
PDGF, a known NHDF mitogen, and
cultures were treated with either
OSI-027 or the mTORC1 inhibitor
rapamycin. OSI-027 was found to
be more effective at inhibiting
PDGF-induced NHDF proliferation

compared with rapamycin (Po0.05)
(Figure 1a).

Expression of α-SMA, collagen I, and III
Apart from proliferating more, in
response to TGF-β, NHDFs are known
to differentiate into myofibroblasts and
increase their production of ECM
proteins. Thus, the expression of
α-SMA (a marker of myofibroblasts)
and the ECM-collagen I and III was
determined by immunofluorescence
microscopy (IF) following incubation
with TGF-β (Abraham et al., 2007). In
comparison with rapamycin, OSI-027
was more effective at inhibiting TGF-
β-induced α-SMA (Po0.01), collagen I
(Po0.01), and collagen III (Po0.05)
expression (Figure 1b and c). Simi-
larly, by quantitative PCR (qPCR),
OSI-027 was found to be more effec-
tive at inhibiting TGF-β-induced upre-
gulation of ACTA2 (Po0.005),
COL1A1 (Po0.005), and COL3A1
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Figure 1. Comparative antifibrotic potential of OSI-027 and rapamycin. NHDFs were pre-treated with OSI-027 (5 uM) or rapamycin (10 nM) for 2 hours
followed by an addition of PDGF (40 ngml−1) or TGF-β (5 ng ml−1) and incubated for 3 days. Proliferation was determined by the MTT assay (n= 11).
Immunofluorescence microscopy (IF, n= 6) and qPCR (n=6) were conducted to determine the expression of α-SMA, collagen I, and collagen III at protein and
mRNA level, respectively. (a) Scatter plot showing the antimitotic effect of OSI-027 and rapamycin on PDGF-stimulated NHDFs. OSI-027 showed significantly
more antimitotic effect compared with rapamycin. (b) Representative image showing the effect of OSI-027 and rapamycin on expression of α-SMA, collagen I,
and collagen III. (c) Bar diagram comparing the inhibitory effect of OSI-027 and rapamycin on TGF-β-induced expression of α-SMA, collagen I, and collagen III.
(d) Bar diagram showing the effect of OSI-027 and rapamycin on α-SMA (ACTA2), collagen I, and collagen III genes. OSI-027 showed more inhibitory effect on
these genes compared with rapamycin. (e–g) Phosphorylation of mTOR kinases with PDGF and TGF-β. Luminex-based cell signaling assay was performed with
treated and untreated cell lysates to determine molecular mechanism of mTOR inhibitors as antifibrotic agent (n=5). Data are represented as adjusted median
fluorescence intensity (MFI)=MFI of phospho protein/MFI of total protein. Bar diagram showing significant upregulation of pAktSer473 (represents mTORC2
activity), pmTORSer2448 wilth PDGF, and TGF-β and a significant inhibition of TGF-β-induced pSmad2 with OSI-027. Data are represented as Mean± SEM. All
experiments were performed in triplicate. The Mann–Whitney U-test was performed to determine statistical significance. Scale bar=100 μm. MTT, 3-(4,5-
Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide; NHDF, normal human dermal fibroblast; PDGF, platelet derived growth factor; qPCR, quantitative PCR.
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(Po0.05) gene expression. OSI-027
was also able to reverse TGF-β-
induced downregulation of MMP1
(Po0.05) (Figure 1d).

Phosphorylation of mTOR kinases and
Smad2
The ability of PDGF and TGF-β to
alter mTOR signaling was confirmed
using a luminex-based cell-signaling
assay. Figure 1e and f demonstrated
that TGF-β and PDGF were able to
induce significant phosphorylation
of AktSer473 (representing mTORC2
activity) and mTORSer2448. As Smad
signaling is critical for TGF-β-
mediated induction of ECM
(Bhattacharyya et al., 2012), we
determined the effect of OSI-027 on
phosphorylation of Smad2. We found
that TGF-β-induced phosphorylation
of Smad2 was effectively inhibited by
OSI-027 (Po0.05) (Figure 1g). This
provides an underlying molecular
mechanism for the antifibrotic effects
of dual mTOR inhibition.

Expression of mTOR kinases in
scleroderma
On the basis of the in vitro data, we
sought to evaluate whether mTOR was
expressed in lesional skin of scleroderma
patients. Immunohistochemical staining
(Figure 2a) demonstrated elevated
expression of pAktSer473, pmTORSer2448,
and their respective total proteins in
scleroderma compared with normal skin.
Quantification of pAktSer473 was used as

a surrogate for mTORC2 activity
(Bhagwat et al., 2011).
Although there are few studies sug-

gesting the antifibrotic properties of
rapamycin, chiefly a mTORC1 inhibitor
(Ong et al., 2007; Fried et al., 2008; Su
et al., 2009; Yoshizaki et al., 2010;
Tamaki et al., 2014), to date, there have
been no detailed mechanistic studies on
mTOR’s role in TGF-β-mediated fibrotic
pathways. Moreover, in cancer biology,
it is becoming increasingly evident that
targeting only mTORC1 does not com-
pletely inhibit this cascade (Figure 2b).
To overcome this deficiency, dual
mTOR (mTORC1/mTORC2) inhibitors
have been developed––e.g. OSI-027
(Bhagwat et al., 2011)––and are currently
being evaluated in a phase I trial for solid
cancers (https://clinicaltrial.gov/ct2/show/
NCT00698243?term=OSI-027&rank=1).
Herein using an in vitro system, we
demonstrated the ability of dual
mTOR inhibition to reverse TGF-β and
PDGF-mediated fibrotic processes more
efficiently compared with rapamycin
and elucidated the underling molecular
mechanism. Considering the crucial role
of PDGF and TGF-β in the pathogenesis
of scleroderma, our results support the
development of dual mTOR inhibitors
for scleroderma and other TGF-β-
mediated fibrotic diseases.

Normal human dermal fibroblast (NHDF)
Third to sixth passage NHDFs (ATCC
PCS-201-012) were cultured at 37 °C
per 5% CO2 in DMEM containing 10%

FBS and 1% antibiotic-antimycotic.
Cells were incubated in the presence
or absence of PDGF (40 ngml− 1), TGF-
β (5 ngml−1) with or without rapamycin
(10 nM), and OSI-027 (5 uM) for 3 days,
which corresponded to their optimal
concentrations. To measure prolifera-
tion, the MTT reagent was added and
incubated at room temperature for 2
hours. Plates were read at 570 nm
(Datta-Mitra et al., 2013).

Immunofluorescence microscopy (IF)
NHDFs were processed for IF as
described (Luna et al., 2011). The data
are represented as adjusted integrated
density using Image J (NIH, Bethesda,
MD).

Luminex assay
Expression of pAktSer473, pmTORSer2448,
pSmad2Ser465/467, corresponding total
proteins, and β-actin was determined
using the Bio-Plex Pro cell signaling kit
(Bio-Rad) (Lang and Sandoval, 2014).
The phospho-proteins were normalized
to respective total-proteins and repre-
sented as adjusted median fluorescence
intensity (MFI).

Quantitative PCR
RNA was extracted using the RNeasy
plus mini kit (Qiagen) and integrity
determined by Agilent 2200 TapeSta-
tion. Total RNA was reverse transcribed
using iScript, and qPCR was performed
using customized PrimePCR plates
(Bio-Rad, Hercules, CA). Reference
genes used for normalization were
GAPDH and HPRT1. Data were ana-
lyzed using the Bio-Rad CFX manager
software (Bio-Rad) and expressed as
fold change.

Skin biopsy
After obtaining IRB approved written
informed consent, punch biopsies were
obtained from three scleroderma
patients with diffuse disease, and nor-
mal skin samples were obtained from
discarded surgical skin.

Immunohistochemistry
Serial sections were deparaffinized and
rehydrated and then immersed in 10mM
sodium citrate buffer. After antigen retrie-
val, endogenous peroxidase activity was
blocked, and 10% BSA was used to
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Figure 2. Differential expression of mTOR kinases in scleroderma and normal skin. (a) Representative
image showing the differential expression of mTORC1 (pmTOR) and mTORC2 (pAktSer473) in scleroderma
and normal skin. Serial sections of scleroderma and normal skin tissues were stained with H&E, Masson's
trichrome, pAktSer473, pmTORSer2448, Total Akt, and Total mTOR. Tissues were counterstained with
toludine blue. Black arrow indicates the positively stained cells. (b) Schematic diagram depicting the
underlying molecular mechanism of mTOR inhibitors as antifibrotic agents. Scale bar= 100 μm.
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inhibit nonspecific binding. Sections were
stained with antibodies with the following
specificities––pAktSer473, total Akt,
pmTORSer2448, and total mTOR. Stained
tissues were incubated with a secondary
antibody followed by ABC reagents and
DAB (Vector Lab, Burlingame, CA). Tolu-
dine blue was used to counterstain.
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A Deep-Intronic FERMT1 Mutation Causes Kindler
Syndrome: An Explanation for Genetically Unsolved Cases
Journal of Investigative Dermatology (2015) 135, 2876–2879; doi:10.1038/jid.2015.227; published online 16 July 2015

TO THE EDITOR
Kindler syndrome (KS) is a distinct type
of epidermolysis bullosa (EB) defined
by variable levels of skin cleavage and
a progressive phenotype comprising
skin blistering, photosensitivity, poikilo-
derma, mucocutaneous scarring, and

malignancies (Has et al., 2011). KS is
caused by mutations in FERMT1, the
gene encoding kindlin-1 (Jobard et al.,
2003). The particular features of KS may
rely on the functions of kindlin-1, which
is a member of the protein family of
kindlins, essential integrin activators.

Kindlin-1 is engaged in integrin β1 adhe-
sion complexes, the focal adhesions,
and regulates β1 activation, dyna-
mics, and adhesion turnover (Harburger
et al., 2009; Margadant et al., 2012).
Besides, it acts as a linker between
cell adhesion and regulation of the cell
cycle (Patel et al., 2013) and controls
Wnt and transforming growth factor-β
availability to regulate stem cell prolife-
ration (Rognoni et al., 2014).Accepted article preview online 17 June 2015; published online 16 July 2015

Abbreviations: bp, base pair; EB, epidermolysis bullosa; FERMT1, gene coding for kindlin-1; KS, Kindler
syndrome
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