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Abstract 

Background: Patients with colon adenocarcinoma (COAD) exhibit significant heterogeneity in overall survival. The 
current tumor-node-metastasis staging system is insufficient to provide a precise prediction for prognosis. Identifi-
cation and evaluation of new risk models by using big cancer data may provide a good way to identify prognosis-
related signature.

Methods: We integrated different datasets and applied bioinformatic and statistical methods to construct a robust 
immune-associated risk model for COAD prognosis. Furthermore, a nomogram was constructed based on the gene 
signature and clinicopathological features to improve risk stratification and quantify risk assessment for individual 
patients.

Results: The immune-associated risk model discriminated high-risk patients in our investigated and validated 
cohorts. Survival analyses demonstrated that our gene signature served as an independent risk factor for overall 
survival and the nomogram exhibited high accuracy. Functional analysis interpreted the correlation between our risk 
model and its role in prognosis by classifying groups with different immune activities. Remarkably, patients in the low-
risk group showed higher immune activity, while those in the high-risk group displayed a lower immune activity.

Conclusions: Our study provides a novel tool that may contribute to the optimization of risk stratification for survival 
and personalized management of COAD.
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Introduction
Colorectal cancer (CRC) is the second leading cause of 
cancer death worldwide [1]. Colon adenocarcinoma 
(COAD) is the most common subtype of CRC [2]. 
Despite the advancements in earlier diagnosis and treat-
ment over the past decades, the 5-year survival rate of 
CRC patients remains unsatisfactory [3]. The current 
prognostic model still relies on conventional clinical 
predictors such as age, gender, as well as tumor-node-
metastasis (TNM) staging [4]. This model results in an 
inaccurate prognosis due to the high heterogeneity of 
CRC [5]. Thus, the establishment and application of 
novel signatures or biomarkers for predicting the survival 
of CRC patients or instructing the therapy strategy are of 
great importance in this field. With the development of 
next generation sequencing (NGS), the high-throughput 
technology made it possible to screen significant signa-
tures for prognosis in a large scale and improve disease 
diagnosis, prognosis and treatment.

Tumor microenvironment (TME) is emerging to be 
related to prognosis in CRC [6]. The changes of TME are 

considered to be the complex result of multiple variables 
[6]. Still, the immune interaction was thought to play 
an important role in this process [7]. Notably, the infil-
tration of immune cells into CRC tumors was reported 
to be firmly associated with disease progression and 
patient survival [7]. Immune therapy for CRC patients 
was also taken in account as an emerging effective ther-
apy strategy [8]. During the process from tumorigenesis 
to treatment, involved immune cells, as a complex and 
multi-faceted role in cancer, take part in suppressing 
tumor initiation and progression as well as promoting 
proliferation, infiltration and metastasis [8]. The immune 
activity involved in tumorigenesis causes the transcrip-
tome changes in tumor cells, which makes it possible to 
develop an immune-associated signature that effectively 
responds to clinical outcomes [9]. In this study, we estab-
lished a risk model comprising 23 genes based on the 
modules identified from weighted correlation network 
analysis (WGCNA). The predictive power of the immune 
signature was identified by the stratification of risk score 
at the transcriptome level. The prognosis effect of the 
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genes is validated in a large independent cohort. Func-
tional enrichment and immune-activity deconvolution 
showed immune signatures’ change in risk score-strati-
fied groups.

Methods
Schematic diagram of this study design
In this study, to identify and investigate a risk model 
which can help improve the prognosis in colon cancer, 
we collected data on human patients with colorectal ade-
nocarcinoma (COAD) (Fig. 1A), which is categorized as 
transcriptome, clinical part and hallmark gene datasets 

(Additional file  1: Table  S1). Correlation modules are 
identified by weighted correlation network analy-
sis (WGCNA). Differentially expressed genes (DEGs) 
(adjusted p < 0.05, | log2(fold change) |> 1) were identified 
among genes of survival-correlated modules. Univariant 
Cox analysis was performed to predict the prognosis-
related module-derived DEGs. The risk model was estab-
lished by applying stepwise regression to multivariant 
Cox model and 23 genes (from 174 candidate prognosis-
related module-derived DEGs) were selected with coeffi-
cient defined for each target gene (Fig. 1B). A risk score 
was then calculated by summing up the multiplication 

Fig. 1 Schematic diagram of the study design. A Data of human samples of colorectal adenocarcinoma were obtained from public databases 
(see Additional file 1: Table S1 and Supplementary Methods). B A risk model is established by integrating module analysis and Cox regression. C 
The risk model is evaluated by independent prognosis analysis and a nomo decision tree is established by integrating risk score and other clinical 
parameters. D The risk model is validated in another independent large cohort of colon cancer; molecular classification, therapy evaluation and 
pathway enrichment analysis of the risk genes is investigated. E Tumor microenvironment immune activity is correlated with the risk model
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of gene expression level and its coefficient. Risk assess-
ment and prognosis analysis were performed to evaluate 
the risk score in predicting survival in COAD patients 
as an independent parameter. In addition, a comprehen-
sive decision tree of nomogram was constructed based 
on the risk score and other clinicopathological param-
eters to improve risk stratification and assessment for 
individual patients (Fig.  1C). Then, further validation 
of the risk model was performed in another large inde-
pendent cohort of 562 samples of colon cancer. Evalua-
tion on the molecular classification, treatment response, 
pathway enrichment and function representation on the 
risk model were also applied to provide a deep insight 
into these risk model genes (Fig. 1D). Risk model genes 
showed a robust and putative functional role in indicat-
ing immune relevance. So, we tried to identify the cor-
relation between immune activity and risk score by 
deconvoluting the tumor immune microenvironment 
from the transcriptome (Fig.  1E), and showed that the 
immune cells and immune activity are indeed involved in 
tumor patients in the risk model.

Dataset preparation and data processing
The results here are in part based from data generated by 
the TCGA Research Network:  https:// www. cancer. gov/ 
tcga.

A cohort of 437 samples with clinical annotations and 
follow-up information were included in our study. Tran-
scriptome profiling data (HTSeq-FPKM files downloaded 
from The Cancer Genome Atlas TCGA, https:// portal. 
gdc. cancer. gov) were used as the main data set for risk 
model establishment and evaluation. All gene expression 
quantification files from the cohort were downloaded as 
txt format and further merged together in one file for 
downstream analysis.

The validation dataset of GSE39582 containing 566 
samples from 562 patients was downloaded from the 
research work of Laetitia Marisa et al. [10].

Hallmark gene sets were downloaded from Yin He et al. 
[11] (https:// www. ncbi. nlm. nih. gov/ pmc/ artic les/ PMC63 
10928/), which addressed immune functions in different 
detailed aspects.

CMS subtyping data and Kras/Braf mutation informa-
tion of the TCGA-COAD dataset are from the research 
work of Justin Guinney et al. [12].

Manual curation data of treatment and response infor-
mation in the TCGA-COAD dataset is from the work of 
Enrico Moiso [13].

The dataset containing both proteome and transcrip-
tome data is from the project CPTAC-2 prospective and 
is downloaded from cBioPortal database [14].

All the datasets are summarized in Additional file  1: 
Table  S1 and can be downloaded directly from the 

indicated websites. Datasets or custom scripts that are 
used in this research can be obtained upon request.

Data visualization and statistical analysis
R software (version 3.5.1, http:// www.r- pro- ject. org) was 
used to analyze data and plot graphs. Boxplot and point 
plot were generated with R package “ggplot2”, heatmap 
scaled by row was generated by R package “pheatmap” 
with a clustering distance of “euclidean”. Chord diagram 
was generated with R package ‘circlize’. DEG statistical 
analysis is performed by Wilcox test with R function “wil-
cox.test”. Welch’s t test (unpaired) or one-way analysis of 
variance was used to analyze differences between groups 
in variables with a normal distribution.

Gene co‑expression network construction
Co-expression networks were constructed by using 
WGCNA (v1.69) package [15, 16] in R. First of all, 
TCGA-COAD samples with clinical traits were selected 
after removing repetitions from the same patient (Addi-
tional file  1: Fig. S1A), then unqualified samples for 
WGCNA analysis are filtered by the function of “good-
SamplesGenes”, ending up with 288 COAD samples. 
Uncommon genes and those with counts less than 10 in 
more than 90% samples are removed from the WGCNA 
analysis. After sample clustering, five outliers are 
detected and removed in the downstream module analy-
sis with 283 remaining samples. A soft threshold (power) 
of 7 is chosen for network construction by function of 
“blockwiseModules” according to the scale-free topol-
ogy criterion which referred to the smallest value for an 
approximate scale free topology as WGCNA used the 
topological overlap measure (TOM) to represent proxim-
ity (Additional file 1: Fig. S1B). Based on the topological 
overlap matrix measured from a pairwise correlation-
based adjacency matrix, the neighborhood similarity 
among genes were estimated and the gene co-expression 
modules, which are distinguished with different colors, 
were then identified by average linkage hierarchical clus-
tering. Using the Dynamic Hybrid Tree Cut algorithm 
and a minimum module size of 30 genes, a total of eight-
een modules were identified. The correlation analysis 
of different modules is based on the module eigengenes 
(MEs) which represent the first principal component of 
the expression profiles in a given module (Additional 
file 1: Fig. S1C). Linear regression between MEs and clin-
ical traits is applied to identify the module-trait associa-
tions (Fig. 2A). Modules are linked to traits by function 
of “bicorAndPvalue”. Data visualization is performed by 
the built-in functions in WGCNA package. The visualiza-
tion of the network in module tan and turquoise is per-
formed by the software Cytoscape (v3.7.1) based on the 
connection information of topological overlap matrix 

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6310928/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6310928/
http://www.r-pro-ject.org
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from WGCNA analysis with an edge weight threshold of 
0.01, ending up with all the nodes (genes) in module tan 
(n = 78) and turquoise (n = 638) shown in the network.

DEG identification
Significant differentially expressed genes (adjusted 
p < 0.05, |log2(Fold Change)|> 1) are identified by com-
paring tumor samples (n = 398) with normal samples 
(n = 39) or risk-high group (n = 167) with risk-low group 
(n = 167) in the TCGA cohort. p-value is calculated 
by unpaired Wilcoxon test, p-value is adjusted by FDR 
method. Log2 fold change is calculated by mean expres-
sion (FPKM) of tumor versus normal group.

Prognosis analysis
By using the function ‘coxph’ in R package ‘survival’, a 
Cox proportional-hazards regression model was used 
to evaluate the significance of each parameter to overall 
survival, both survival time and state are considered as 
response parameters in this analysis.

Risk model construction
Univariant Cox analysis was first performed to predict 
the prognosis-related DEGs from module MEturquoise 
and MEtan. Risk model was then established by apply-
ing stepwise regression (‘step’ function in R) to multivari-
ant Cox model (‘coxph’ function in R) on 23 candidate 
prognosis-related genes in order to get an optimal sim-
ple model without compromising the model accuracy. 
The strategy used for stepwise regression is “sequential 
replacement”, which is a combination of forward and 
backward selections. It starts with no predictors, then 
sequentially add the most contributive predictors. After 
adding each new variable of candidate genes, remove any 
variables that no longer provide an improvement in the 
model fit. In this way, 23 risk genes were obtained in the 
risk model. By applying this method, a coefficient was 
predicted on each gene based on survival time and state 
of patients (Additional file 1: Fig. S2D). A risk value was 

then calculated by summing up the multiplication of gene 
expression level and its coefficient. Subsequently, we per-
formed risk analysis to evaluate the risk model. Low- and 
high-risk group are stratified by the median risk score in 
the TCGA-COAD cohort (n = 334).

Survival analysis
The Kaplan–Meier method was used to draw survival 
curves and the log-rank test was used to evaluate differ-
ences by using the function ‘coxph’ in R package ‘survival’. 
A Cox proportional-hazards regression model was used 
to evaluate the significance of each parameter to overall 
survival. Time-dependent receiver operating characteris-
tic (tROC) analysis was performed to measure the pre-
dictive power by the R package ‘survivalROC’ [17] with 
the parameter ‘method = “KM”’, and the areas under the 
curve at different time points [AUC(t)] of all the variables 
were compared.

Cox analysis on risk score and other clinical parameters
Univariant or Multivariant Cox proportional-hazards 
(Cox-PH) regression model was applied on the risk score 
(categorizing the patients in low-risk or high-risk) and 
other clinical parameters (age, gender, stage. T, M, N) 
using R package ‘survival’.

Nomogram analysis
A nomogram and a calibration curve were calculated 
and plotted using R function (cph, Survival, calibrate and 
nomogram) in the R package ‘rms’ [18] with the param-
eters ‘lp = F, maxscale = 100, fun.at = c(0.99,0.9,0.8,0.6,0.
4,0.2,0.1)’ for ‘nomogram’. Nomogram is a pictorial rep-
resentation of a complex mathematical formula. In the 
nomogram of this study, all the clinical variables, such as 
age, gender, stage, TNM phage and risk score were used 
to represent a statistical prognostic model that predicts a 
probability of cancer death. Basically, nomo score com-
ing from the nomogram analysis, is a comprehensive 
parameter for predicting cancer risk by integrating all 
the clinical variables that were put in. Nomo scores were 

(See figure on next page.)
Fig. 2 Module-trait relationships identified by WGCNA analysis from the transcriptome data of COAD patients. A Each colored module represents a 
network of genes with correlated expression built using TCGA-COAD samples after WGCNA quality filter and outliers’ removal (n = 283). “MEgrey” is 
unassigned gene sets which could not fit anywhere. Eight clinical traits (survival time, survival event, age, gender, stage, T, M, N) were evaluated for 
correlated gene expression networks. The correlation coefficients and p values are based on biweight midcorrelation. The correlation coefficients 
by modules and traits are shown at the top of each cell. The corresponding p-values for each module displayed at the bottom of each cell 
within parentheses. The rows are colored based on the correlation of the module with the indicating traits: red for positive and blue for negative 
correlation. Gene number and enriched biology process in each module of gene networks are displayed in the corresponding row on the right 
side. B Interaction network of module tan and module turquoise, adjacency threshold for including edges is 0.01 (nTan = 78; nTurquoise = 638). 
Connection strength between two genes is measured by the edge weight in the Topological Overlap Matrix, higher value refers to a stronger 
co-expression of genes, which is represented by the line transparency in the network. The network is organized by the force-directed layout, highly 
connected genes is centered in the network. The risk model genes (n = 23) is enlarged in the network
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Fig. 2 (See legend on previous page.)
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extracted by the function ‘formula_lp’ and ‘points_cal’ in 
R package ‘nomogramFormula’.

Gene ontology analysis
Gene ontology analysis is performed with differentially 
expressed genes in web application DAVID (https:// 
david. ncifc rf. gov) [19, 20]. All gene ontologies enriched 
significantly (p < 0.05, fisher’s exact test) are shown in the 
dot plot.

Immune cells deconvolution
CIBERSORTx (http:// ciber sortx. stanf ord. edu/) was 
implemented to deconvolute the composition of specific 
immune cells in the tumor microenvironment (TME) 
from the transcriptome data of TCGA cohort. Specifi-
cally, FPKM matrix of COAD patients is formatted as 
input file and uploaded to the web application of CIBER-
SORTx, then cell fractions are imputed in the module of 
“Impute Cell Fractions” with custom mode and default 
parameters (permutations for significance analysis is set 
to 100). The signature matrix file built in CIBERSORTx 
(LM22: 22 immune cell types) is used as the signature 
reference in this analysis.

Immune activity deconvolution
Single-sample gene set enrichment (ssGSEA) analysis 
(R package ‘gsva’ with parameters “method = ’ssgsea’, 
kcdf = ’Gaussian’, abs.ranking = TRUE”) was utilized to 
identify clusters with different immune activity referring 
the immune-activity hallmarks from Yin He et al. [11] in 
four different immune aspects: immune cells, immune 
and cytolytic activity, antigen presentation pathway, 
and  cytokine response. The enrichment scores of each 
hallmarks gene set were summed to generate the SIES 
(Sum of immune enrichment scores) for each sample.

‘Estimation of STromal and Immune cells in MAlig-
nant Tumours using Expression data’ (ESTIMATE) is a 
method that uses gene expression signatures to infer the 
fraction of stromal and immune cells in tumour samples. 
Stromal, Immune and Tumor scores were obtained by 
using R package of ESTIMATE [21]. The stromal score 
captures the presence of stroma in tumor tissue, immune 
score represents the infiltration of immune cells in tumor 
tissue. ESTIMATE score of each patient = immune score 
of each patient + the corresponding stromal score. As the 
higher the ESTIMATE score is, the lower the content of 
tumor cells is in the given tumor microenvironment. The 
tumor score was calculated by the following equation: 
Tumor score = maximal value of ESTIMATE score in 
TCGA-COAD cohort—ESTIMATE score of each colon 
cancer patient.

Correlation analysis between SIES and risk score
As outliers affect the correlation analysis a lot, that is 
especially serious in the risk model where extreme values 
exist, those outliers statistically away from normal dis-
tribution are filtered from TCGA-COAD cohort before 
correlation analysis. Maximum and minimum are tested 
and filtered in a stepwise way by the function of “grubbs.
test” until all the remaining risk scores fits a normal dis-
tribution. We end up with 313 samples from 334 samples 
in TCGA-COAD for downstream correlation in which 
unpaired two tailed t test are applied.

The comparison between our risk model with other 
prognosis models from different researches in the colon 
cancer
The performance comparison is performed between 
our risk model and other models from the researches 
of Huang et al. [22], Chen et al. [23], Sun et al. [24], and 
Liu et al. [25]. The comparison is based on the metrics of 
− log10(p-value) in the discovery and validation cohort 
respectively. p-value is calculated by the log rank test in 
the survival analysis. For those p values recorded already 
in the indicated cohorts in the corresponding researches, 
they were used directly without any change. For those p 
values not recorded in the corresponding researches, we 
calculated the p value in the indicated cohorts by two 
groups stratified according to the median value of gene 
expression or risk score as defined in the corresponding 
researches. For those models which indicated the gene 
expression in more than one gene, we used the gene 
which had the best prognosis in the discovery cohort in 
the comparison.

Results
Establishment of a module‑based gene signature 
for prognosis
In order to build a novel prognostic risk model from can-
cer transcriptome data, we downloaded RNAseq-based 
transcriptome data of the TCGA-COAD cohort (398 
tumor samples from 334 patients of COAD). Hierarchical 
and clustering analysis of gene expression data revealed 5 
samples clustering apart from all the others (Additional 
file  1: Fig. S1A). After exclusion of these 5 outlier sam-
ples, we performed weighted gene co-expression network 
analysis (WGCNA) to screen modules of highly corre-
lated genes associated with the clinical parameters [15]. 
After choosing the soft threshold (Additional file 1: Fig. 
S1B), the adjacency matrix describing the correlation 
strength of each pair of nodes based on Pearson’s corre-
lation of module eigengenes (MEs) is transformed into 
topological overlap measure (TOM), which quantitatively 
represents the similarity in genes by comparing connec-
tion strength of two genes’ adjacency with other genes. 

https://david.ncifcrf.gov
https://david.ncifcrf.gov
http://cibersortx.stanford.edu/
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Subsequently, 18 different gene co-expression modules 
are generated by conducting hierarchical clustering to 
classify genes with similar expression profiles based on 
TOM dissimilarity.

The functional modules were compared for the patient 
prognosis traits (survival and survival time) to identify 
prognosis-related gene signatures in a systematic way. 
Cluster 1 (MEtan, MEgreen, MEpurple and MEsalmon) 
showed a negative correlation with either survival 
event or survival time, while cluster 3 (MElightgreen, 
MEgrey60, MEturquoise and MEyellow) showed a posi-
tive correlation with survival time (Fig.  2A and Addi-
tional file  1: Fig. S1C). Clusters 1 and 3 are enriched in 
immune-associated pathways and translation/tran-
scription respectively, that may indicate the extrinsic 
and intrinsic factor in affecting the survival of COAD 
patients. Interestingly, cluster 4 (MEpink, MEblack and 
MEgreenyellow), which is positively correlated with tra-
ditional clinical parameters (Stage, M, and N), is enriched 
in cell proliferation, migration and biosynthetic pro-
cesses, suggesting the important and complex role of 
these cellular activities in tumor progression (Fig. 2A).

As module MEturquoise and MEtan showed the high-
est absolute correlation with survival time and event 
respectively (0.22 and − 0.12), we further established 
the risk model based on the genes in these two modules 
(module-derived genes). DEG (differentially expression 
genes) analysis comparing tumor and normal samples 
in the TCGA cohort identified 96 upregulated and 78 
downregulated genes in cancer from the 716 genes of 
the MEturquoise and MEtan modules (Additional file 1: 
Fig. S2A). These DEGs are strongly enriched in innate 
immune response pathways, adaptive immune response 
(B cell regulation and immunoglobulin production), and 
phagocytosis process (Additional file 1: Fig. S2B). It sug-
gested that the immune response occurred in tumor may 
induce a different survival on COAD patients. We then 
applied univariant Cox regression on the module-derived 
DEGs and ended up with 23 genes that are correlated 
with prognosis (p < 0.05). Most immunoglobulin genes 
(IGHG, IGHV, IGLC, IGLV), GABARAP, MARCKS, and 
SOX4 are identified with a hazard ratio (p-value < 0.05) 
of more than 1 in univariant Cox regression (Additional 
file  1: Fig. S2C). Stepwise multivariant Cox regression 
was applied to establish the risk model based on the 23 
prognosis genes (Additional file 1: Fig. S2D). In the risk 
model, NCOA7 comes up with the biggest coefficient. A 
risk score was calculated in each sample by summing up 
the multiplication of gene expression level and its coef-
ficient in the 23-genes risk model. Network construc-
tion showed immunoglobulin genes in the risk model 
are connected in module tan and the other 15 genes are 
connected in module turquoise with BID, TMEM147, 

ETHE1 and TMEM54 highly interacted in the center, 
while NCOA7 established only a small amount of connec-
tions in this module (Fig. 2B). Since the molecular classi-
fication of COAD had been intensively investigated and 
CMS (consensus molecular subtypes) is a comprehensive 
parameter representing different molecular signatures 
[12], we checked the risk score in different CNS groups 
in the TCGA dataset and found CMS4 group, which was 
known to represent a worse overall survival and relapse-
free survival [12], had a significantly larger risk score 
than other subtypes (Additional file  1: Fig. S2E). CMS 
subtyping is consistent with the prognosis effect that the 
risk model represents. In addition, the risk score in the 
Kras-mutated group is larger than the Kras-non-mutated 
group while it is lower in the Braf-mutated group than 
the Braf-non-mutated group in the TCGA-COAD cohort 
(Additional file 1: Fig. S2F and S2G). We didn’t observe 
a significant correlation between the risk score and Kras 
expression (p = 0.29) or MSI (p = 0.14) in the TCGA-
COAD cohort (n = 334, data not shown). Other than 
that, no significant correlation was observed between the 
risk score and nonsynonymous mutation counts (n = 318, 
p = 0.18, data not shown, nonsynonymous mutation 
counts are from cBioPortal) in the TCGA-COAD cohort. 
We also analyzed risk score in patients after chemother-
apeutic treatment and we observed that the responders 
to the FLUOROURACIL + LEUCOVORIN + OXALI-
PLATIN treatment exhibited lower risk score than the 
non-responders (Additional file 1: Fig. S2H), which indi-
cated the potential relevance of the risk model to clinical 
treatments.

Risk score serves as a risk factor for overall survival 
in the cohort
To evaluate the risk score as a risk factor in progno-
sis, the COAD patients were divided into two equal 
parts as low-risk group and high-risk group according 
to the median risk score in the cohort and supporting 
the validity of the risk model, more dead cases were 
enriched in the high-risk group (Fig.  3A, upper pan-
els). Of the 23 genes used to calculate the risk score, 
20 genes were statistically differentially expressed 
between low- and high-risk groups with the major-
ity of them being downregulated in high-risk group 
(Fig.  3A, bottom panel, genes with asterisks). Survival 
probability was significantly higher in low-risk group 
(p = 3.56e−07), with the probability of 5-year survival 
in low-risk group being 0.861 [95% CI 0.722–1] com-
pared with 0.427 [95% CI 0.297–0.613] in high-risk 
group (Fig. 3B). AUC (area under the roc curve) of the 
risk model on predicting 5-year survival reaches 0.763 
as the highest among all the clinical stratifications 
(Stage: 0.751, N-phase: 0.748, T-phase: 0.643, M-phase: 
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0.617, Age: 0.581, Gender: 0.532) (Fig. 3C). Both univar-
iant (HR = 5.3, p < 0.001) and multivariant Cox analysis 
(HR 4.4, p < 0.001) showed the risk score could predict 
prognosis as an independent factor (Fig. 3D). Multivar-
iant Cox regression modeling demonstrated that risk 
score and age are the only significant independent risk 
factors for overall survival among various clinicopatho-
logical variables (p < 0.05, Fig. 3D). In order to quantify 
the risk assessment for individual COAD patients, a 
nomogram was built by integrating the risk score to all 
the other clinicopathological features (Additional file 1: 
Fig. S3A). As expected, the nomo score was the most 
powerful and stable parameter in survival prediction 
across the whole-time course from 1 to 5 years (average 
AUC > 0.8). The nomo score 1 based on both our risk 
score and all the other clinical parameters was higher 
than the nomo score 2 which is only based on the clini-
cal parameters, indicating our risk model can increase 
the prognosis effect of the traditional parameter system 
(Additional file 1: Fig. S3B). Risk score and stage exhib-
ited similarly good prediction in the first 3-year sur-
vival (Additional file  1: Fig. S3B). Expression changes 
of the 23 risk genes grouped by clinicopathological fea-
tures were summarized in Table S2 (Additional file 1). 
NCOA7 which showed decreased expression in dead 
cases, also exhibited decreased expression in later stage 
phased by stage, T, M, and N (Additional file  1: Fig. 
S3C–G). The correlation between NOCA7 and clini-
cal phase may partially explain its biggest contribution 
in the risk model (Additional file 1: Fig. S2D). Further-
more, we checked the NCOA7 expression in the TCGA 
dataset and found NCOA7 increased expression in the 
tumor samples and low-risk group had a larger NCOA7 
expression than high-risk group (Additional file 1: Fig. 
S3H). The difference of NCOA7 expression between 
low-risk group and high-risk group was also confirmed 
in the validated dataset (GSE39582; Additional file  1: 
Fig. S3I). Further validation of NCOA7 is performed 
by using its protein level (project CPTAC-2 prospec-
tive database), in agreement with the result obtained 
using the RNA expression, it showed a negative corre-
lation between NCOA7 expression level and risk score 

(Pearson correlation, R = − 0.56, p = 1.9e−05; Addi-
tional file  1: Fig. S3J). Interestingly, NCOA7 (Nuclear 
Receptor Coactivator 7) has been reported to have 
gene polymorphisms associated with breast cancer 
development [26, 27] and it has also been identified as 
a potential biomarker in oral squamous cell carcinoma 
[28]. In addition, the engagement of NCOA7 by 3-HAA 
(3-hydroxyanthranilic acid) enhances the activation of 
AhR (aryl hydrocarbon receptor) in immunoregulatory 
dendritic cells [29].

To validate the prognosis effect of our risk model, 
survival analysis was performed in another independ-
ent cohort of colon cancer (GSE39582). Despite the fact 
that the study of GSE39582 employed a different meth-
odology to profile the cancer transcriptome (Microarray 
instead of RNAseq), the survival probability was signifi-
cantly increased in low-risk group with the probability 
of 5-year survival in low-risk group being 0.736 [95% CI 
0.682–0.795] compared with 0.608 [95% CI 0.548–0.674] 
in high-risk group (Fig. 3E). These data strongly indicate 
that the risk score, obtained by using the identified 23 
genes, has a robust prognosis value.

Molecular signature of the risk model genes is represented 
in immune response
To better understand the function of the 23 genes of the 
risk model, we compared tumor samples with normal 
samples; all the 23 genes were differentially expressed 
between normal and cancer tissue, with 10 genes down-
regulated and 13 upregulated (Fig.  4A). As expected, 
these genes were strongly enriched in innate immune 
response, B cell-related pathway, phagocytosis, adap-
tive immune pathway, and immunoglobulin components 
(Fig.  4B and Additional file  1: Fig. S4A). DEG analy-
sis between the risk-high group and the risk-low group 
in the tumor samples identified 166 upregulated genes 
and 508 downregulated genes in the risk-high group 
(Fig.  4C). These DEGs are mainly enriched in “immune 
response”, “immunoglobulin production” and “adaptive 
immune response”, indicating a difference of the immune 
responses stratified by the risk model (Fig.  4D). To fur-
ther characterize our risk model, we evaluated the tumor 

Fig. 3 Survival and Hazard ratio analysis based on risk model genes. A Panels above: ranked patients by risk score and relative survival visualization. 
Panel below: heatmap of expression level of 23 risk model genes is shown in the indicated ranked patients. Risk groups are identified by the median 
risk score. *Differentially expressed between low-risk group and high-risk group (p-value is calculated by Wilcoxon test, FDR-adjusted p < 0.05). 
B Kaplan–Meier survival analysis in low- and high-risk group categorized by risk score in TCGA-COAD cohort (n = 334). C AUC (area under the 
ROC curve) of five-year survival predicted by risk score and all the other clinical parameters. TNM staging system is used to describe the amount 
and spread of cancer in a patient’s body. T: the size of the original (primary) tumor and whether it has invaded nearby tissue; N: spread of cancer 
to nearby lymph nodes; M: distant metastasis (spread of cancer from one part of the body to another). D Forest plot of Hazard ratios with 95% 
confidence intervals of the indicated risk factors is obtained with both univariant (above) and multivariant (below) Cox regression method. E 
Kaplan–Meier survival analysis in another independent cohort of colon cancer (GS39582E, n = 562)

(See figure on next page.)
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microenvironment (TME) enrichment by estimating the 
tumor, stromal and immune contribution to the sam-
ple’s transcriptome by using the software ESTIMATE. 
Immune enrichment score was significantly higher in 
low-risk group patients, while no significant enrich-
ments were observed for the ESTIMATE, the tumor 
and the stromal score (Fig. 4E and Additional file 1: Fig. 
S4B). Complementary analysis performed by using the 
software CIBERSORTx, aimed to estimate the cell popu-
lations ratio within the sample, showed a larger ratio of 
CD8 T cells and Neutrophils in low-risk group compared 
to high-risk group while no significant changes were 
observed for the other inferred cell populations (Fig. 4F 
and G). Taken together, these analyses indicated the rel-
evance of the immune activity within the tumor for the 
performance of our risk model.

Risk score was correlating with immunosuppressive TME 
in COAD
To further investigate the role of risk score in the process 
of immune regulation as a prognosis factor and its associ-
ation with the tumor immune environment, single-sam-
ple gene set enrichment analysis (ssGSEA) was executed 
on immune-associated gene sets. Enrichment scores of 
various gene sets related to immune system were cal-
culated from transcriptomes of the COAD patients and 
hierarchical clustering together with heatmap visuali-
zation showed two distinct categories (Fig.  5A). Sum of 
immune enrichment scores (SIES, defined as the sum of 
the enrichment scores from all the immune-associated 
gene sets in Fig. 5A) is higher in cluster1 than in cluster2 
(Fig. 5B).

To confirm the immune characteristics of these two 
clusters, we further assessed the SIES with the stromal 
score, immune score and tumor score inferred from 
the software ESTIMATE (that estimates the stromal/
immune/tumor contribution to the tumor transcrip-
tome). SIES was positively correlated with ESTIMATE 
score (r = 0.8), stromal score (r = 0.61) and immune 
score (r = 0.89), while negatively correlated with tumor 
score (r = − 0.8) (Additional file 1: Fig. S5A), suggesting 
that SIES correlates accurately with the immune activ-
ity and that a higher immune activity is present in clus-
ter1 with respect to cluster2. Cluster1 exhibited a lower 
risk score than cluster2 (Fig.  5C) and the expression of 

immunoglobulin genes (IGHG, IGHV, IGLC, IGLV) are 
significantly decreased in cluster 2 (Additional file 1: Fig. 
S5B), indicating immunoglobulin expression can bona 
fide reflect the immune activity. Finally, COAD patients 
of risk score-inferred low-risk group have a higher SIES 
than those of high-risk group (Fig. 5D).

SIES consists of various immune aspects, which allow 
us to deconvolute the immune activity represented by 
SIES (Fig. 5E). In particular, gene sets related to dendritic 
cells, neutrophils and T cells (Th1 cells, T helper cells, 
TIL, CD8 T cells) and to a minor extent to some types 
of T-cells (e.g., Th2 cells, Treg, Tfh) are overrepresented 
in low-risk group (Fig. 5E and Additional file 1: Fig. S6). 
Not only immune cells but also immune cytolytic activity 
antigen presentation pathway and CCR response (Addi-
tional file 1: Fig. S6) were all increased in low-risk group, 
indicating a stronger innate (dendritic cells, neutrophils) 
and adaptive (T cells) immune response in the low-risk 
patients, which could partially explain the prognosis 
effect reflected by risk model.

Discussion
It has been acknowledged that tumor microenvironment 
plays an important role in the development of colorectal 
cancer as an extrinsic factor [30]. The immune system has 
been found to be involved in both preventing and pro-
moting tumor development [31]. It is known that there 
is wide crosstalk between epithelial cells and resident 
immune cells in colon through cytokines to maintain 
homeostasis and to coordinate appropriate responses 
to disease [32]. Understanding the immune processes 
involved in colorectal cancer helps us to establish novel 
markers for prognosis and expedite the progress of 
immune-based therapeutics [8]. The exploration of a 
robust immune-involved signature related to the prog-
nosis of colorectal cancer would provide targets for treat-
ment or other treatment paradigms for colorectal cancer. 
Some efforts on colon cancer had been made to explore 
prognosis-related signatures based on the TCGA data-
set, most of them were based on the prior knowledge, 
resulting in a bias on the final selected gene sets [23–25, 
33]. Other researches in this field were either focused on 
the relevance of individual genes’ expression [22, 23] or 
lacking robust validation and investigation [22, 23, 33], 
that could not exclude the possibility of an overfitting 

Fig. 5 Risk score is correlating with immunosuppressive tumor microenvironment in COAD patients. A Hierarchical cluster and heatmap of the 
enrichment scores of the various gene sets related to immune functions on the COAD patients (n = 334). B Boxplot indicating the sum of the 
immune enrichment scores (SIES) in cluster1 and clsuter2. p-value is calculated by unpaired two tailed t test. C Boxplot indicating the risk score 
of COAD patients in cluster1 and cluster 2 (n = 313). p-value is calculated by unpaired two tailed t test. D Boxplot indicating the SIES in patients 
of low- and high- risk (according to the risk score stratification). p-value is calculated by unpaired two tailed t test. E Dot heatmap of the Pearson 
correlation between risk score and enrichment score of the various gene sets related to immune functions. Dot size indicate the correlation extent

(See figure on next page.)
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from the algorithm [33]. Furthermore, few established 
immune-associated signatures have been integrated with 
traditional prognostic systems in order to optimize the 
clinical routine.

In this study, we integrated the unbiased systematic 
analysis and clinical information to construct a com-
prehensive risk model related to prognosis in colorectal 
cancer. An immune-associated signature of 23 module-
derived genes was selected in the risk model to generate 
a risk score by assigning different weights of each target 
gene. Prognosis analysis on the risk model suggested 
that risk score could provide an accurate risk stratifica-
tion as an independent prognosis factor. Validation of the 
risk model on another large independent cohort of colon 
cancer proved that the indicated immune signature could 
work as robust integrated markers in COAD prognosis. 
As a way to improve the risk model, nomogram provided 
a more powerful decision than the traditional prognostic 
system. By comparing our risk model with other prog-
nosis models from different researches of Huang et  al. 
[22], Chen et al. [23], Sun et al. [24], and Liu et al. [25], no 
overlap is observed between our risk model with all the 
other models in the gene level, indicating the uniqueness 
of our risk model (Additional file  1: Fig. S7A). Our risk 
model also outperformed all the other models both in the 
discovery cohort and in the validation cohort in the sur-
vival analysis of colon cancer (Additional file 1: Fig. S7B).

Function representation analysis on the risk model 
indicated a large relevance between risk genes with 
immune response. Further investigation on the immune 
activity and its deconvolution identified the composition 
of immune cells and immune activity in tumor micro-
environment (TME) of COAD patients, a low immune 
activity in the high-risk group may be responsible for the 
bad prognosis in patients with COAD. In summary, we 
identified a totally novel risk model, consisting of a com-
prehensive and new immune signature derived from sys-
tematic analysis. The risk model is proven to be robustly 
relevant for the prognosis of COAD patients in two (dis-
covery and validation) independent cohorts. We also per-
formed a complete investigation of the risk model and 
the immune activity.

Despite these promising results, more work needs to 
be done. Firstly, due to the limitations of retrospective 
studies, the prognostic robustness and clinical value of 
the risk model require further validation in larger, pref-
erably prospective trials. Secondly, further experimental 
research could be undertaken to investigate the immune-
associated biological functions underlying the risk genes 
in COAD, especially the immune mechanism of NOCA7 
in COAD prognosis, which played a pivotal role in the 
risk model.

Conclusion
In summary, we established a novel, validated immune-
associated and module-derived gene signature to dis-
criminate low-risk and high-risk patients with COAD in 
an unbiased way by applying systematic analysis. Inte-
grating this with clinicopathological features, we con-
structed a nomogram to quantify risk assessment for 
individual patients. The robust immune gene signature-
based model could be an effective tool to select high-risk 
patients who may benefit from targeting therapies and 
thus facilitate personalized management of COAD.
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