
entropy

Article

Heat Transport in a Spin-Boson Model at Low
Temperatures: A Multilayer Multiconfiguration
Time-Dependent Hartree Study

Chou-Hsun Yang and Haobin Wang *

Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
* Correspondence: haobin.wang@ucdenver.edu

Received: 8 September 2020; Accepted: 26 September 2020; Published: 29 September 2020 ����������
�������

Abstract: Extending our previous work, quantum dynamic simulations are performed to study low
temperature heat transport in a spin-boson model where a two-level subsystem is coupled to two
independent harmonic baths. Multilayer multiconfiguration time-dependent Hartree theory is used
to numerically evaluate the thermal flux, for which the bath is represented by hundreds to thousands
of modes. The simulation results are compared with the approximate Redfield theory approach,
and the physics is analyzed versus different physical parameters.
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1. Introduction

Electronic and optical processes are usually accompanied by heat generation and transport.
Very often, a central task in technology and engineering is to have such transport processes under
control. This is particularly useful in the exploration of new nano-size electronic and optical materials,
for example, nanoscale molecular junctions where molecules are connected to metal or semiconductor
electrodes. Heat transport is crucial for the stability of such junctions, that is, whether the heat
generated at such a scale can be released quickly and efficiently is an important characteristic for
a potential molecular electronic device [1–6]. It has been shown experimentally that the localized
Joule heating may induce a substantial temperature increase within a molecule–metal contact due to
inefficient heat dissipation [4]. Theoretical modeling and simulation of heat transport at the nanoscale
will thus provide valuable insight into the transport mechanisms, as well as offer interpretation of
experimental results and help design practical nanoscale electronic devices.

Heat transport through molecular junctions has been modeled by Segal and coworkers [7–9] using
a system–bath Hamiltonian where a subsystem (representing a junction) is linearly coupled to two heat
baths with different temperatures. When the junction is modeled by a harmonic oscillator, the overall
problem is trivially solvable. As soon as the junction becomes a two-level system, which can be viewed
as a minimal nonlinear model for the junction heat transport, the Hamiltonian becomes the well-known
spin-boson model and exhibits rich physics without closed-form solutions. In the weak system–bath
coupling regime, Redfield theory [10,11] can be used to provide an approximate description for the
heat transport process [7–9]. These studies reviewed possible new nano-devices such as a thermal
rectifier [7,8], a molecular heat pump [9] and an absorption refrigerator [12,13]. Since charge and
heat currents could be coupled, a nonlinear phonon-thermoelectric device was studied [14]. Recently
the interference effects in vibrational heat conduction across single-molecule junctions has also been
discussed [15].

The weak-coupling assumption in the Redfield theory is, however, often violated in realistic
situations. Improved approximations may be developed, e.g., an analog of the Meir–Wingreen
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formula [16], a nonequilibrium polaron-transformed Redfield equation for bridging the energy transfer
from weak to strong coupling regimes [17–22], and a full counting statistics combined with the
Keldysh nonequilibrium Green’s function, path integral, quantum-classical Liouville equation [23–26].
These theoretical development offered valuable insights into the heat transport processes.

To gauge the accuracy of these theoretical results it is important to develop numerically exact
treatment of the model, which can be used to study stronger coupling regimes and to provide
benchmark results for developing approximate theories. In our previous work [27], we have applied
the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory [28,29] to study the
dynamics of the spin-boson nanojunction model. In contrast to Redfield theory, our previous study
revealed a turnover behavior of the heat current with respect to the coupling strength between the
two-level system and the heat baths. As a consequence, the optimization of heat transport is possible
by choosing an appropriate set of physical parameters. In this work, we extend our simulation to the
low temperature regime where quantum effects are more pronounced. Section 2 discusses the model
and a few details of implementation of ML-MCTDH for studying heat transport in the spin-boson
model. Section 3 presents the results from the ML-MCTDH simulation at low temperature versus
several physical parameters. Section 4 concludes.

2. Methods

2.1. Hamiltonian

As in the previous work [7–9,16,27] we use a spin-boson type Hamiltonian where two states of
the model molecular junction are coupled to two phonon baths, left (L) and right (R). The overall
Hamiltonian has three parts

H = HS + HB + HSB, (1)

where Hs describes the two-level subsystem

HS = E0|0〉〈0|+ E1|1〉〈1| = Ē +
ε

2
σz, (2a)

Ē =
E0 + E1

2
, ε = E0 − E1, (2b)

HB describes the two harmonic baths in mass-weighted coordinates

HB = HBL + HBR =
1
2 ∑

iL

(p2
iL
+ ω2

iL
q2

iL
) +

1
2 ∑

iR

(p2
iR
+ ω2

iR
q2

iR
), (3)

HSB describes the coupling between the two-level subsystem and the phonon baths

HSB = σx

(
∑
iL

ciL qiL + ∑
iR

ciR qiR

)
, (4)

and σx, σz are standard Pauli matrices

σx = |0〉〈1|+ |1〉〈0|, (5a)

σz = |0〉〈0| − |1〉〈1|. (5b)

In this Hamiltonian, the system–bath coupling is off-diagonal in the system states. A simple
transformation can be used to convert it to the more familiar spin-boson form [30]. Using the relation

UTσxU = σz, UTσzU = σx, (6a)
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where
U =

1√
2
(σx + σz) = UT , (6b)

Hs and HSB can be transformed to
UT HSU = Ē +

ε

2
σx, (7)

UT HSBU = σz

(
∑
iL

ciL qiL + ∑
iR

ciR qiR

)
. (8)

Thus, UT HU is the Hamiltonian used in the simulation.
The system–bath coupling strength parameters ci’s are determined by the bath spectral

densities [30]

S(ω) =
π

2 ∑
i

c2
i

ωi
δ(ω−ωi). (9)

In this model study, we choose identical spectral densities for the left and right bath, which is in an
Ohmic form with an exponential cutoff

S(ω) =
π

2
αω e−ω/ωc , (10)

where ωc is the characteristic frequency of the bath and the Kondo parameter α is related to the classical
reorganization energy λ (in the context of electron transfer theories [31] using the spin-boson model)
via the relation λ = 2αωc. In ML-MCTDH simulations the two continuous baths are discretized to
a finite number of modes [29], that is, casting the continuous form of Equation (10) to the discrete
form in Equation (9). This can be done using several strategies [32–35] and for a bath with complex
glassy spectral densities [33]. The number of bath modes is increased until convergence is achieved,
which will be illustrated in the next section.

2.2. Calculating the Heat Current

The heat current or thermal flux is defined as the time derivative of the collective total energy
for a heat bath. We can consider an idealized situation that at time zero the two baths are brought
into contact with the two-level subsystem. We denote the temperatures as TL and TR for the left and
right bath, respectively and, without loss of generality, impose the condition that the left bath has a
lower temperature, TL < TR. As time evolves the energy will start to flow among the two baths and
the two-level subsystem. The time-dependent energies of the left and right bath can be defined as
(we use atomic units where h̄ = 1)

〈HL/R(t)〉 =
1

tr[ρ]
tr[ρ eiHtHL/Re−iHt], (11)

where
HL =

1
2 ∑

iL

(p2
iL
+ ω2

iL
q2

iL
) + σz ∑

iL

ciL qiL = HBL + σz ∑
iL

ciL qiL , (12a)

HR =
1
2 ∑

iR

(p2
iR
+ ω2

iR
q2

iR
) + σz ∑

iR

ciR qiR = HBR + σz ∑
iR

ciR qiR , (12b)

represents the Hamiltonian for the left and right bath, respectively, and ρ is an initial density matrix of
the overall system. The specific choice of ρ affects the transient dynamics of the heat transport, but due
to the smallness of the subsystem it does not affect the steady-state heat current. So for convenience,
ρ is often chosen in a separable form

ρ = e−βL HBL e−βR HBR ρs, (13)
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where βL = 1/kBTL, βR = 1/kBTR with kB the Boltzmann constant, and ρs is an initial density matrix
for the two-level subsystem. In this work, we choose ρs to be the identity operator for the two-level
subsystem.

The existence of the system–bath coupling makes the definition of the energy for each bath
somewhat ambiguous. Here we have used HL/HR of Equation (12) to define the energy and
subsequently the heat current of the left/right bath. On the other hand, the Hamiltonians of the
bare baths, HBL /HBR of Equation (3), could also be used

〈HBL/R(t)〉 =
1

tr[ρ]
tr[ρ eiHtHBL/R e−iHt]. (14)

For simulation purposes, both definitions give the same long time limit of the steady-state heat
current [27], defined as the time-derivative of the bath energy. The use of Equation (12) reduces the
magnitude of the transient current and is thus preferred in the simulation. Thereby, the heat current
is defined as the energy flux of the left or the right bath (note that we have chosen TL < TR, so the
steady-state energy flow will be from the right to the left)

JL ≡ lim
t→∞

JL(t) = lim
t→∞

d〈HL(t)〉
dt

= lim
t→∞

1
tr[ρ]

tr{ρ eiHti[H, HL]e−iHt}, (15a)

JR ≡ lim
t→∞

JR(t) = − lim
t→∞

d〈HR(t)〉
dt

= − lim
t→∞

1
tr[ρ]

tr{ρ eiHti[H, HR]e−iHt}. (15b)

Based on Equations (1), (7), (8), and (12), the commutators are given as

i[H, HL/R] = −2σyε ∑
iL/R

ciL/R qiL/R , (16)

where σy is the third Pauli matrix
σy = i(|0〉〈1| − |1〉〈0|). (17)

The short time transient behavior of JL(t) is different from that of JR(t) [27]. Their average

J ≡ lim
t→∞

J(t) = lim
t→∞

1
2
[JL(t) + JR(t)], (18)

generally minimizes the large transient characteristic [27], and will be used to calculate the heat current
in our simulation.

The quantum mechanical trace in the the expressions above is evaluated via Monte Carlo average
using an importance sampling technique [29,36–38]. Unlike some reduced properties such as the
system population or a reduced density matrix for a particular degree of freedom, calculating the
heat current involves all degrees of freedom for a bath. The statistical average and the finite-mode
representation of the bath sometimes may cause J(t) to oscillate versus time. This is similar to a
quantum reactive scattering calculation in the presence of a scattering continuum where, with a finite
number of basis functions, an appropriate absorbing boundary condition is added to mimic the correct
outgoing Green’s function [39–42]. In a previous work [27], we employed such a strategy to regularize
the heat current at longer time

Jreg = lim
η→0+

∫ ∞

0
dt

dJ(t)
dt

e−ηt, (19)

where the regularization parameter η resembles the formal convergence parameter in the definition of
the Green’s function in terms of the time evolution operator

G(E+) = lim
η→0+

(−i)
∫ ∞

0
dt ei(E+iη−H)t, (20)
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and is chosen in a similar way as the absorbing potential used in quantum scattering calculations [39–42]:
large enough to accelerate the convergence but still sufficiently small in order not to affect the correct
result. This regularization scheme was used in our previous work [27] to mainly compensate for the
finite-mode representation of the bath. In this work, however, the numbers of bath modes are sufficiently
large to render this effect unimportant. On the other hand, we found oscillations in J(t) due to the Monte
Carlo integration of an oscillatory integrand, which is indicated from the observation that the amplitude
of the oscillations decreases roughly versus the inverse of the square root of the statistical samples/initial
wave functions. We could average out such oscillations by significantly increasing the numbers of samples,
which would be too expensive. Instead, we have used time averaging, which is an effective approach for
reducing such oscillations in J(t). Thereby, the time-averaged J(t > t0) is defined as

Javg(t > t0) =
1

t− t0

∫ t

t0

dτ J(τ)dτ, (21)

where t0 is the cutoff time when the time averaging starts. We found this approach simpler to
implement and it allows us to achieve convergence with a reasonable number of statistical samples.
The performance will be discussed in the result section.

2.3. Multilayer Multiconfiguration Time-Dependent Hartree Theory

The simulation of the heat current in Equations (15)–(18) involves the evaluation of a quantum
mechanical trace and real time propagation for each wave function. The quantum mechanical trace for
evaluating the physical observables has the general form

〈A(t)〉 = 1
tr[ρ]

tr[ρ eiHt Ae−iHt]. (22)

In case that the initial density matrix ρ can be diagonalized, i.e.,

ρ = ∑
N

pN |ΨN〉〈ΨN |, (23)

Equation (22) reduces to a simple summation

〈A(t)〉 = 1
∑N pN

∑
N

pN〈ΨN |eiHt Ae−iHt|ΨN〉, (24)

which can be carried out by Monte Carlo importance sampling methods [29,36–38]. On the other hand,
when ρ cannot be trivially diagonalized, more sophisticated methods are available to cast Equation (22)
into a sum of wave functions with proper weight [37,38]. In this work, each result is obtained from
averaging over a few hundred to a few thousand samples/wave functions.

The time evolution for each wave function of the sample, |ΨN(t)〉 = e−iHt|ΨN〉, is achieved
by employing the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory [29].
ML-MCTDH is a variational method to propagate a wave function of a large system with many degrees
of freedom. In this approach a recursive, layered expansion is used to represent a wave function |Ψ(t)〉

|Ψ(t)〉 = ∑
j1

∑
j2

... ∑
jp

Aj1 j2...jp(t)
p

∏
κ=1
|ϕ(κ)

jκ (t)〉, (25a)

|ϕ(κ)
jκ (t)〉 = ∑

i1
∑
i2

... ∑
iQ(κ)

Bκ,jκ
i1i2...iQ(κ)

(t)
Q(κ)

∏
q=1
|v(κ,q)

iq (t)〉, (25b)

|v(κ,q)
iq (t)〉 = ∑

α1

∑
α2

... ∑
αM(κ,q)

C
κ,q,iq
α1α2...αM(κ,q)

(t)
M(κ,q)

∏
γ=1

|ξκ,q,γ
αγ (t)〉, (25c)
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...

where Aj1 j2...jp(t), Bκ,jκ
i1i2...iQ(κ)

(t), C
κ,q,iq
α1α2...αM(κ,q)

(t) and so on are the expansion coefficients for the first,

second, third, ..., layers, respectively; |ϕ(κ)
jκ (t)〉, |v(κ,q)

iq (t)〉, |ξκ,q,γ
αγ (t)〉, ..., are the single particle functions

(SPFs) for the first, second, third, ..., layers. The multilayer hierarchy terminates at the bottom level by
expressing the SPFs in this layer in terms of (contracted) primitive basis functions. The variational
parameters within the ML-MCTDH framework are dynamically optimized through the use of
Dirac–Frenkel variational principle [43]

〈δΨ(t)|i ∂

∂t
− Ĥ|Ψ(t)〉 = 0, (26)

which results in a set of coupled, nonlinear differential equations [28,29,44–46]. The equations of motion
can be effectively propagated using a singular value decomposition (SVD)-based algorithm [47,48].
The ML-MCTDH theory has been generalized to treat identical particles explicitly by employing the
second quantized representation [49]. A review of this topic can be found in a recent publication [50].
Furthermore, ML-MCTDH can also be used for calculating energy eigenstates [34,35] or equilibrium
reduced density matrices [51].

The form of the ML-MCTDH wave function in Equation (25) has also received much attention
recently in applied mathematics [52–54]. The original single-layer MCTDH [55–58] obeys the so-called
Tucker form [59] of tensor decomposition. ML-MCTDH [28,29] is then naturally called the hierarchical
Tucker (H-Tucker) form and is in fact acknowledged as the first occurrence of the H-Tucker tensor
format [52–54]. Sometimes it is also called the tree tensor network, although this term or the H-Tucker
format usually refers to a binary tree branching structure [53]. Most times a balanced tree is constructed
for an ML-MCTDH wave function. For a binary-splitting tree, an n−layer representation holds 2n

bottom layer SP groups (in our accounting the root node wave function |Ψ(t)〉 does not count as a
layer, the first layer comes from the next level). There is also a special skewed tree structure called the
tensor train format in mathematics and the matrix-product states in physics [54].

In this work, we adopted a semi-binary tree structure. There are three SP nodes in the first layer,
one for the two-level system, one for the left bath, and another one for the right bath. The tree node
for the two-level group terminates at the first layer, whereas each node for the left- and right-bath
generates two nodes at the next level (the second layer). This binary branching continues until all
the bath degrees freedom can be included in the bottom layer. We have used mode combination and
basis function contraction [36], under which each bottom-layer SP group may hold up to five bath
degrees of freedom. As a result, we have used 6–10 layers in this work to study heat transport where
each bath is discretized by a few hundred to a thousand modes. The choice of this semi-binary tree
is for convenience and is due to the simplicity of the bath spectral density. For a model with many
intramolecular modes, a more complex tree structure may be used [60].

3. Results and Discussion

In this work, we focus on studying heat transport dynamics of the spin-boson model at low
temperatures: the left bath has zero temperature TL = 0 whereas the temperature of the right bath
is a physical parameter. Other physical parameters include the reorganization energy λ = 2αωc and
the characteristic frequency ωc in Equation (10), chosen to be the same for the two baths, as well as
the energy spacing ε in Equation (7) for the two-level system. The relative error for the simulations
were controlled to be less than 10% based on estimates from repeated ML-MCTDH convergence tests
by varying the numbers of primitive basis functions, SPFs, bath degrees of freedom, and statistical
samples. Some of these are discussed below. In a typical production run, a total of 1000–2000 bath
(left + right) modes were required. This number is greater than that used in the previous work [27],
primarily due to the low temperatures. This is because a large density of states is needed to model the
condensed phase environment within a finite time of simulation. At lower temperature this translates
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to more modes. For all the bath modes the number of primitive basis functions ranges from three
(for high-frequency modes) to a few tens (for low-frequency modes). A total of 6–10 layers were used
in ML-MCTDH simulations. Overall, it appears that the statistical uncertainty is the bottleneck of the
calculational error.

Figure 1 shows the convergence of the time-dependent heat current versus two set of simulation
parameters, different configuration space settings and different numbers of the bath modes.
The physical parameters are as follows: the reorganization energy λ = 500 cm−1 and the characteristic
frequency ωc = 500 cm−1 (the same for the two baths), the system energy spacing ε = 20 cm−1, and the
temperatures are TL = 0 and TR = 5 K. Figure 1a shows a typical variation of J(t) versus configuration
settings when the configuration space is large enough. As mentioned earlier, we adopted a semi-binary
tree structure. There are three SP nodes at the first layer, one for the two-level system, one for the left
bath, and another one for the right bath. Each tree node for the left- and right-bath generates two
nodes at the next level and so on until all the bath degrees freedom can be included in the bottom layer.
In this case, there are 500 modes for each bath, and seven layers are used in the simulation. The results
are within a few percent of each other, so any setting will do. For most of the results shown in this
paper, we used settings similar to configuration C, that is, 16 SPFs (256 configurations under the link
node) for the top half number of layers, and 8 SPFs (64 configurations under the link node) for the
bottom half layers. It should be noted that although the steady state (averaged) current is converged to
within a few percent, this configuration set may not be sufficient for some other purposes. For example,
it does not produce a perfect plateau, but a line with a small slope. Using a larger configuration set
removes this artifact but at a considerably high cost.

Figure 1b shows the necessity of using a sufficient number of bath modes to obtain accurate
heat current. With 200 modes for each bath, both the transient and the steady-state currents have
relatively large deviations from the converged results. For results discussed in this paper, we used
500–1000 modes for each bath. The resulting error in J(t) is estimated to be a few percent.

Next we show the effect of time averaging in Equation (21) on J(t). Figure 2a illustrates J(t) for
the same set of physical parameters as in Figure 1 where 1000 modes were used for each bath in the
simulation. The steady-state plateau for the heat current is established in a relatively short time, so the
time averaging can start relatively early, any time between 200 and 500 fs (here we use t0 = 500 fs) in
Equation (21). As shown in Figure 2a, the time-averaged J(t) removes the small oscillations at longer
time, and gives a more stable value of the steady-state heat current. In this case, time averaging was
not really necessary if one is only interested in the steady-state current already established earlier.
On the other hand, Figure 2b illustrates a situation where J(t) establishes a plateau in a much later time.
In this case, longer time propagation was needed with J(t) displaying larger amplitude oscillations.
The starting time for time averaging is later, at t0 = 1000 fs in Equation (21). Figure 2b shows that
time averaging works quite well for providing a sensible steady-state current. Thus, for the results
discussed below the time-averaged J(t) will be used.

We now discuss the dependence of the heat current on some physical parameters. Figure 3
illustrates the dynamics of J(t) with respect to two parameters, the characteristic frequency of the
bath ωc and the system–bath coupling strength λ (the bath reorganization energy), chosen to be the
same for the left and the right bath. The remaining physical parameters are the same as in Figure 1,
and 1000 modes are used to represent each bath. The dependence on the bath characteristic frequency
ωc is quite pronounced. As shown in Figure 3a, the steady state current decreases as ωc decreases,
and almost diminishes at ωc = 250 cm−1. While our result reveals that a transport blockade occurs at
ωc < 250 cm−1 for this set of physical parameters, it does not mean that along the opposite direction
the heat current keeps increasing with respect to characteristic frequency ωc. Instead, for a larger ωc,
J(t) does not reach a well-defined plateau within a simulation time of 4 ps, suggesting long transient
coherent behavior.
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Figure 1. Convergence of J(t) for the set of physical parameters: λ = 500 cm−1, ωc = 500 cm−1,
ε = 20 cm−1, TL = 0, TR = 5 K, and versus: (a) different configuration settings with 500 modes for each
bath, where Configuration A: 20× 4 and 10× 3 (meaning 20 single particle functions (SPFs) for each SP
group of the top four layers, and 10 SPFs for each SP group of the bottom three layers); Configuration B:
20× 3 and 10× 4; Configuration C: 16× 4 and 8× 3; Configuration D: 16× 3 and 8× 4; Configuration
E: 16× 2 and 8× 5; and (b) different numbers of bath modes for each bath.
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Figure 2. Cont.
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Figure 2. Effect of time averaging on J(t): (a) for the same set of physical parameters as in Figure 1,
with the starting time t0 = 500 fs in Equation (21); (b) for almost the same set of physical parameters as
in Figure 1 except ωc = 550 cm−1, with the starting time t0 = 1000 fs in Equation (21).
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Figure 3. Dependence of J(t) on: (a) the characteristic frequency of the bath, ωc and (b) the reorganization
energy of the bath, λ. The remaining physical parameters are the same as in Figure 1.

In a previous study [27], we have found a turnover behavior of the heat current with respect to
the system–bath coupling strength λ that resembles the Kramers turnover for the rate constant [61,62].
As shown in Figure 3b, this turnover behavior does not show up with the current set of parameters
and at low temperatures. A similar observation has been made for the rate constants at low



Entropy 2020, 22, 1099 10 of 16

temperatures [37]. Figure 3b shows the ML-MCTDH simulated steady-state heat current monotonically
decreases when the coupling strength λ increases, and is essentially blocked as the coupling reaches a
certain level. Again, this does not mean that along another direction the heat current continuously
increases as λ decreases. For a small λ, J(t) exhibits long transient coherent behavior and does not
reach a well-defined plateau within the simulation time.

Figure 4 illustrates the dynamics of J(t) versus the energy spacing of the two-level system ε.
The remaining physical parameters are the same as in Figure 1, and 1000 modes are used to represent
each bath. This dependence on ε is what one would expect from a Fermi golden rule approximation
treating ε as the perturbation parameter, i.e., J ∝ ε2, but not from the Redfield theory where the
system–bath coupling is the perturbation parameter. Given the value of ε = 20 cm −1, it is reasonable
to assume that the golden rule approach is more appropriate.
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1×10
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Figure 4. Dependence of J(t) on the the energy spacing of the two-level system ε. The remaining
physical parameters are the same as in Figure 1.

The last physical parameter is illustrated in Figure 5, which shows the dependence of the
steady-state heat current J on the temperature of the right bath, TR, while the left bath is at zero
temperature and the remaining physical parameters are the same as in Figure 1. As expected, the heat
current increases as TR increases.
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Figure 5. Dependence of the steady-state heat current J on the temperature of the right bath, TR.
The remaining physical parameters are the same as in Figure 1. The line serves as a guide to the eye.

One may be curious about the performance of Redfield theory that was initially used in the study
of heat transport in the spin-boson model [7–9,16,27]. The following discussions compare the Redfield
approximation with our ML-MCTDH simulations. First shown in Figure 6 is the dependence of the
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heat current on the characteristic frequency. Not only are the Redfield currents much bigger than
our simulation results, but also the trend is different: while our ML-MCTDH simulation predicts
an increase in the heat current as the characteristic frequency increases, Redfield theory predicts the
opposite—that J decreases upon increasing ωc. The disagreement can be rationalized by noting the
value of the system–bath coupling, λ = 500 cm−1, which is not in the weak coupling regime that
Redfield theory operates. In addition, the steady-state Redfield theory used here [7–9] assumes that
heat transfer is dominated by resonance energy transmission and that dephasing processes are fast,
neither is satisfied for the set of physical parameters in the low-temperature heat transport processes
studied here.
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Figure 6. Dependence of the steady-state heat current J on the characteristic frequency of the bath
ωc: (a) Redfield results, and (b) multilayer multiconfiguration time-dependent Hartree (ML-MCTDH)
results. The remaining physical parameters are the same as in Figure 1.

Figure 7 shows both Redfield approximation (Figure 7a) and our ML-MCTDH simulations (Figure 7b)
where the system–bath coupling λ is varied. Again, Redfield theory gives too large current values,
and also an opposite trend for J versus λ in comparison with the simulation results. As discussed in
a previous work [16], Redfield theory is no long a good approximation as the system–bath coupling
increases. A turnover behavior of the heat current with respect to the system–bath coupling strength
will be observed [27] and is best described by some improved theories [16,17,22]. On the other hand,
Figure 7b does not show a turnover behavior at low temperatures. As discussed earlier, this is because
the steady-state current is not well defined (at low temperatures) for a weak system–bath coupling λ,
where J(t) exhibits long time coherent behavior instead of reaching a well-defined plateau. In this weak
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coupling regime, it is an interesting future task to study transient dynamics and possibly how to use this
information to extract the steady-state current at very long time.
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Figure 7. Dependence of the steady-state heat current J on the reorganization energies of the bath, λ:
(a) Redfield results, and (b) ML-MCTDH results. The remaining physical parameters are the same as in
Figure 1.

For most of the parameter sets considered in the paper, the ML-MCTDH simulated heat currents
are almost two orders of magnitude smaller than the Redfield theory results. Thus, the comparisons
were made in separate plots in Figures 6 and 7. Our final comparisons between Redfield theory and
the ML-MCTDH simulations are illustrated in Figure 8, in which the results are overlaid. Figure 8a
shows the dependence of the steady-state current J on the level spacing ε of the two-level system.
Redfield theory shows a quick drop in the current as ε increases, which is a manifestation of low
temperatures in the Redfield expression. On the other hand, the ML-MCTDH simulation shows an
approximate quadratic increase for the heat current as ε increases, J ∝ ε2, consistent with the golden
rule approximation where ε is the perturbation parameter. This behavior will eventually breakdown
when ε becomes too large, and will be an interesting subject for the future. Finally, Figure 8b shows the
temperature dependence of the steady-state current. In this case, Redfield theory predicts the correct
qualitative trend, that J increases as T increases. Its values are, however, too big as compared with the
simulation results.
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Figure 8. Dependence of the steady-state heat current J on (a) the energy spacing of the two-level
system ε and (b) the temperature of the right bath, TR. The solid line is from Redfield theory and the
dashed line with circle is from ML-MCTDH simulation (the dashed line serves as a guide to the eye).
The remaining physical parameters are the same as in Figure 1.

4. Conclusions

In this paper, we have employed the ML-MCTDH theory to simulate heat transport processes in a
spin-boson junction model at low temperatures. Compared with our previous work [27], more bath
modes are needed to represent the continuum at low temperatures, thus requiring more layers for
the tensor contraction in ML-MCTDH. Time averaging is also a useful technique for obtaining the
steady-state current. Dependence of the heat current has been investigated versus several physical
parameters, i.e., the energy spacing for the two-level system, the characteristic frequency of the
bath, the system–bath coupling strength, and the temperature difference between the two baths.
Comparisons have also been made with the Redfield theory approximation. Interesting behavior at
low temperature has been observed, primarily of strong quantum origin.

The ML-MCTDH benchmark results will be helpful for developing physical theories to study
heat transport processes at low temperatures. This is of both theoretical interest and practical use
for designing small devices under extreme conditions. A particularly interesting question, which is
beyond this work but worth studying in the future, is whether a steady-state heat transport can ever
be established at low temperatures. Under such conditions, the quantum coherence effect may be
prominent. Even a steady-state current can be reached at infinite time in theory, finite-time transient
dynamics of J(t) may be dominant for determining practical heat transport.
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