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Abstract: Loss or damage of cortical inhibitory interneurons characterizes a number of neurological
disorders. There is therefore a great deal of interest in learning how to generate these neurons from a
pluripotent stem cell source so they can be used for cell replacement therapies or for in vitro drug
testing. To design a directed differentiation protocol, a number of groups have used the information
gained in the last 15 years detailing the conditions that promote interneuron progenitor differentiation
in the ventral telencephalon during embryogenesis. The use of Hedgehog peptides and agonists is
featured prominently in these approaches. We review here the data documenting a role for Hedgehog
in specifying interneurons in both the embryonic brain during development and in vitro during the
directed differentiation of pluripotent stem cells.

Keywords: Sonic hedgehog; GABAergic interneurons; medial ganglionic eminence; pluripotent
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1. Introduction

Glutamatergic projection neurons and gamma-aminobutyric acid-containing (GABAergic)
inhibitory interneurons are the two major classes of neurons in the cerebral cortex. Despite
constituting only around 20%–30% of the total neuron population in the mammalian cortex, inhibitory
interneurons play a key role in modulating the overall activity of this region [1]. Reflecting
their various functions, the cortical interneuron population is extraordinarily diverse and can
be characterized by multiple measures. These include the expression profile of calcium binding
proteins parvalbumin (PV), calbindin (CB), calretinin (CR), and neuropeptides somatostatin (SST),
neuropeptide-Y (NPY), vasoactive intestinal polypeptide (VIP), their morphology, site of synapse
formation, and electrophysiological properties [2–4].

An impaired balance of excitatory and inhibitory activity, often due to the abnormal development,
loss of, or damage to the cortical interneuron population, characterizes the pathology of a broad
array of neurological disorders, including epilepsy, schizophrenia, autism spectrum disorders (ASD),
and Alzheimers Disease (AD) [5–8]. These observations have stimulated great interest in learning
when, where, and how GABAergic inhibitory interneurons are generated in the mammalian brain, and
in using this information to establish protocols for generating inhibitory interneurons from pluripotent
stem cells (PSCs). In the rodent, it is clear that cortical interneurons derive from transient embryonic
structures in the ventral telencephalon, the ganglionic eminences, and then migrate tangentially into
the cortex [2,4,9,10]. A variety of experimental approaches, including mutational analysis and lineage
tracing, have revealed that the medial ganglionic eminence (MGE) is the primary source of SST and
PV-expressing interneurons, whereas, with some exceptions, CR-positive cells arise predominantly in
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the caudal ganglionic eminence (CGE) [11–13]. As described below, Sonic hedgehog (Shh) plays a key
role in patterning the ventral telencephalon and establishing the distinct interneuron subtypes [14].

Based upon what has been learned about the extrinsic and intrinsic cues that establish the
interneuron lineages in the rodent brain [5,15], protocols have been designed to generate GABAergic
inhibitory neurons from PSCs [16–22]. The ability to generate inhibitory interneurons from a PSC
population opens up a number of promising avenues of research. Interneuron-related disease-specific
induced pluripotent stem (iPS) cells, isolated from patients or generated by gene editing strategies,
could be evaluated for their ability to differentiate into interneurons in culture [23]. These studies may
reveal specific deficiencies in interneuron survival, differentiation, or function that could in turn become
targets for drug design and help elucidate the cellular and molecular basis of the defect. iPS cells
generated from severe idiopathic ASD patients have recently been used to generate cerebral organoids,
three-dimensional aggregates that mimic germinal centers and allocation of cell types to specific layers
observed in the developing cortex [24]. These ASD patient-specific organoids are characterized by the
over-production, relative to control cell lines, of GABAergic inhibitory interneurons [25]. An excess of
inhibitory interneurons has also been observed in ASD patient postmortem tissue [26], supporting a
role for an imbalance in the ratio of GABAergic/glutamatergic neurons in ASD.

PSC-derived interneuron progenitors can also be used for cell transplantation therapies designed
to treat interneuron-associated disorders. Using rodent disease models, transplants containing
embryo-derived interneuron progenitors have led the way, and some success, characterized by
transplant integration and reversal of disease-specific deficits, has been reported for epilepsy,
schizophrenia, AD, Parkinson’s, and ASD (reviewed in [8]) [6–8,27]. It is unlikely, however, that
sufficient human fetal material would be available for clinical application, leading many groups
to turn to human PSC-derived interneuron progenitors as graft material, and disease-specific
immune-compromised mice as animal model hosts. One notable success documenting treatment
efficacy has been for temporal lobe epilepsy, in which loss of hippocampal interneurons is
associated with seizure activity and memory deficits [27]. A number of groups have noted
maturation of PSC-derived neural progenitors into interneuron subtypes following transplant to
the hippocampus, as well as acquisition of interneuron-specific firing patterns, and integration into
the host circuitry [20,21,28–30]. Most notably, a recent report has documented the ability of human
embryonic stem cell (ESC)-derived interneuron progenitors transplanted to the hippocampus of
temporal lobe epilepsy model mice to suppress recurring seizures and improve behavioral deficits [28].

It has long been proposed that the increased cognitive ability of human and non-human primates
is associated with an increased complexity of the cortical interneuron population [31,32]. A number
of recent observations suggest we cannot simply extrapolate from what has been learned about the
origin and diversity of cortical interneurons in rodents to the primate brain. The human fetal ventral
telencephalon contains the analogous ganglionic eminence structures observed in the rodent embryonic
brain, and they appear to be the major source of cortical interneurons [32,33]. However, the details
of interneuron production differ from what is observed in the rodent in a number of aspects [34,35],
and a major controversy has arisen over the existence of an additional primate-specific interneuron
germinal center located dorsally, in the cortex itself, that generates a subset of cortical interneurons [36].
Such a source could provide the increased abundance and heterogeneity of interneurons observed
in the primate brain. Direct comparison of the output of interneurons produced using directed
differentiation protocols of mouse versus human PSCs, including use of cerebral organoid protocols
that mimic cortical development [24], may be useful for elucidating the human-specific attributes of
interneuron production.

Hedgehog signaling plays an essential role in neurogenesis. Vertebrate Hedgehogs act by
suppressing the inhibitory effect of the Patched 1 (Ptch1) membrane protein on the effector Smoothened
(Smo), resulting in the positive action of Gli transcription factors. In the neurogenic niches of the
embryonic and adult central nervous system (CNS), Shh acts via primary cilia to promote the survival
and proliferation of neural stem cells [37–41]. Gradients of Shh pattern the developing neural
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tube, promoting ventral cell type identity in the spinal cord and brain [42,43]. In the developing
telencephalon, Shh is expressed at high levels ventrally, and as described below, plays a key role in
modulating the production of distinct interneuron subtypes in the embryo and can be used to direct
interneuron differentiation of PSCs.

2. The Importance of Shh in Specification of Cortical Interneurons in Vivo

The wide variety of GABAergic cortical interneurons in both rodent and primate models originate
predominantly in the MGE, CGE, and lateral ganglionic eminences (LGE) [34,35,44,45]. The MGE
is the major source of inhibitory interneuron progenitors, generating approximately 60%–70% of all
GABAergic cortical interneurons, with the CGE and preoptic area (POA) contributing 30% and 5%–10%,
respectively, during rodent corticogenesis [4,45–47]. The MGE begins to develop in mice at E10.5 as a
neuroepithelial bulge from the walls of the ventral telencephalon into the lateral ventricle, with NKX2.1
strongly expressed throughout this developing structure [12]. By E12.5, GABAergic interneuron
progenitors begin their tangential migration from the ganglionic eminences into the cerebral cortex
to undergo differentiation and maturation [4]. Expression of LHX6, a transcription factor regulating
neuronal migration and maturation, is extended from the MGE at E12.5 to both the striatum and
cortex by E14.5 [12]. Recent studies indicate species-specific differences between rodent and primate
models in the organization and developmental origins of cortical interneurons. Analysis of fetal
tissues collected at different gestational ages from lower primates and humans suggest a much larger
contribution of cortical interneurons generated from the CGE and dorsal LGE in primates compared to
rodents [34]. Nonetheless, expression patterns and transcription factors regulating the development of
the ventral forebrain are similar between primates and rodents, indicating that molecular mechanisms
involved in the genesis and maturation of cortical interneurons within the mammalian brain are highly
conserved [34,35].

Shh signaling is a requirement for the normal development and patterning of the telencephalon
and is one of the best-studied examples of a morphogen, regulating both the spatial arrangement and
control of cellular differentiation in numerous developing tissues. During early development of the
embryonic telencephalon, Shh establishes a reciprocal gradient with its transcriptional repressor Gli3,
bone morphogenetic protein (BMP) and WNT, which are all expressed at higher levels in the dorsal
telencephalon [48,49]. The expression of the homeobox transcription factor NKX2.1 is required for
the specification of the MGE, and is maintained by Shh throughout neurogenesis [12]. The induction
and maintenance of NKX2.1 expression by Shh in the MGE is critical for the specification of PV- and
SST-expressing interneurons [50,51]. As Shh functions upstream of NKX2.1, conditional knockout of
Shh in the telencephalon of postnatal day 12 mice results in a significant reduction in the number of
progenitors expressing NKX2.1 in the ventricular zone (VZ) of the MGE, and therefore a loss of PV and
SST interneurons observed in the postnatal cortex [38,52]. The loss of NKX2.1 expression in the ventral
telencephalon resulting from the downregulation of Shh signaling initiates dramatic morphological
and molecular changes to the MGE. During initial patterning of the MGE, in addition to maintaining
NKX2.1 expression, Shh antagonizes GSX2, a transcription factor that promotes the specification of
the vertically oriented, bipolar CR-expressing interneurons derived mainly from the CGE [13,53].
The inactivation of Shh signaling in the developing forebrain results in the concomitant upregulation
of GSX2, virtually eliminating S-phase neural progenitor cells that express NKX2.1 in the ventral
telencephalon [14]. The constitutive loss of NKX2.1 results in a ventral-to-dorsal re-specification, as the
MGE acquires markers characteristic of LGE and CGE derivatives [12,14]. In contrast, RT-PCR analysis
of human radial glial cells (RGCs) dissociated from the dorsal telencephalon and supplemented with
exogenous Shh in vitro shows upregulated expression of downstream Shh target genes, Gli1 and
Ptc1 [54]. This conversion of PV- and SST-expressing interneurons to CR and VIP-interneuron subtypes
that predominately originate from the CGE, and the reprogramming of dorsal to ventral telencephalic
identity after Shh exposure, illustrate the plasticity of interneuron fate specification and the role played
by Shh within the ventral subpallium.
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While the gradient of Shh, highest ventrally, is essential in establishing the dorso-ventral axis
within the rodent forebrain, there is evidence suggesting this gradient is reversed in the MGE in mouse
embryos at embryonic day 13.5 (Figure 1A; [55]).
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Figure 1. Sonic hedgehog (Shh)-dependent in vivo and in vitro cortical interneuron progenitor
specification and maturation. (A) Schematic illustration of interneuron fate specification in vivo in the
rodent and primate model. Shh signaling is highest in the developing ventral forebrain in contrast to a
reversal in this gradient within the medial ganglionic eminence (MGE). Black solid arrows represent
established tangential migrations of inhibitory progenitors derived from the MGE and dashed arrows
indicate a proposed dorsal niche generating a subset of GABAergic progenitors that move radially to
the neocortex. The shaded pink area represents NKX2.1 expression within the ventral telencephalon;
(B,C) mouse (mPSC) and human pluripotent stem cells (hPSC) differentiation timelines (in days (D))
for deriving GABAergic interneurons in vitro.

RNA profiling using GeneChip arrays determined that expression of a number of genes implicated
in the Shh signaling pathway, including Gli1/2, Ptch-1, and Hedgehog-interacting protein 1 (Hhip1),
is enriched in the dorsal relative to the ventral MGE [55]. Transplantation of S-phase progenitors
dissected from the dorsal, as compared with the ventral MGE, yielded an almost 4:1 bias in the
generation of SST-positive interneurons. Conversely, transplanted progenitors from the ventral MGE
were more than twice as likely to develop into PV-positive interneurons [44,55]. These results strongly
suggest that a gradient of Shh signaling generates distinct domains with defined differences in gene
expression within the MGE that biases the production of SST or PV-expressing interneurons.

The POA, situated in the rostral forebrain, is an additional source of cortical GABAergic
interneurons, producing different classes of interneurons that populate the cerebral cortex in mice.
Similar to the MGE, virtually all POA progenitors express Shh and NKX2.1 [44,56]. Lineage
tracing experiments in mice further classified progenitors originating from specific subdomains
within the POA, expressing either NKX5.1 or DBX1, that undergo a similar tangential migration
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to the neocortex [46]. However, further experiments are needed to determine whether comparable
populations of POA-derived GABAergic interneuron progenitors exist in lower primates and humans.

Apart from the NKX2.1-expressing neurogenic niches of the MGE and POA, the CGE, and to a
lesser extent the LGE, generate the remaining fraction of cortical interneurons. The CGE, a subcortical
domain of the ventral telencephalon that does not express NKX2.1, generates a number of distinct
interneuron subtypes that preferentially populate the superficial layers of the cortex and express the
type 3 serotonin receptor 5-HT3AR [9,57]. The two largest groups of interneurons derived from the
CGE are the bipolar CR and VIP subpopulations [13,53]. Recent data suggest that in addition to a
CGE origin, there is a subpopulation of CR-positive interneurons that are derived from the dorsal
MGE that co-express SST [58]. Moreover, immunocytochemical analysis of human fetal brain tissue at
midgestation detected a population of neurons double-labeled for CR and NKX2.1 distributed within all
layers of the cortex, further implying an MGE origin for a subset of CR-expressing interneurons [36,58].
The different origins of CR-positive interneurons may contribute to both the diversity of this population
as well as additional sources of this subtype for the deep cortical layers of the developing neocortex.

In contrast to rodents, where PV-positive cells represent the majority of the interneuron population
and CR-positive cells are much less abundant, several studies suggest that this ratio is reversed
in humans as CR becomes the dominant interneuron subtype, accounting for at least 50% of all
cortical GABAergic interneurons [33,59]. The significant increase in CR-expressing interneurons
may be attributed to the proliferative expansion of the upper cortical layers of the neocortex,
unique to primates and humans, that are populated by the later-born CR interneurons derived
from the CGE and dorsal MGE [57]. Recently, establishing the origins of cortical interneurons in the
human cortex has garnered much interest. The issue of whether the cortical ventricular (VZ) and
subventricular (SVZ) zones are also a source of GABAergic inhibitory interneurons in addition to the
ganglionic eminences remains controversial. By analyzing the expression patterns of progenitor
cells using several key transcription factors associated with fate specification in the developing
human and monkey telencephalon, Hansen et al. [34] and Ma et al. [35] concluded that the majority
of interneuron progenitors are derived from the ganglionic eminences, with no evidence for a strong
pallial contribution. In contrast, Radonjic et al. [36] observed Shh-expressing proliferative neural
progenitor niches that are NKX2.1-positive in the cortical VZ and outer subventricular zone (oSVZ) in
the cerebral cortex of monkeys and humans at midgestation. Additional reports propose a cortical
origin for GABAergic neurons in the primate system, with the pallial progenitor pool primarily
producing later born subpopulations, such as CR-expressing interneurons [60,61]. The inability to
conduct definitive lineage tracing experiments within the human cortex makes it difficult to establish
definitively whether these dorsally-derived progenitors are a source of cortical interneurons.

3. Shh Treatment for the Derivation of Interneurons from PSCs

Considerable advances in our understanding of the development, migration, and differentiation
of cortical GABAergic interneurons in both rodent and primate brains have influenced in vitro
studies aimed at generating cortical interneurons from PSCs. Numerous studies demonstrated neural
induction from PSCs under serum-free conditions, producing cell types from both the dorsal and
ventral forebrain [62–65]. Further manipulation of in vitro culture conditions of mouse ESCs showed
that inhibition of Hedgehog signaling using cyclopamine resulted in a high percentage of excitatory
pyramidal neurons at the expense of interneurons [62]. This provided the first clues that, as observed
in vivo, Hedgehog signaling is important for interneuron specification in vitro. While loss of Shh
activity results in regional cell fate conversion from MGE to CGE in vivo [14], inhibition of Shh
signaling in PSC-derived cultures results in pallial cell specification and production of excitatory
neurons [66]. This discrepancy could be because Shh knockouts in vivo remove function after the
pallial versus subpallial fate is established, whereas loss of function approaches in PSC cultures act
earlier, before this decision is made. Alternatively, pallial cell fate conversion in vitro could result from
the use of proteins and/or small molecules, like the activin receptor-like kinase inhibitor SB431542 used
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in the dual SMAD neural differentiation protocol, that inhibit CGE differentiation [67]. The addition of
exogenous Shh to differentiating cultures was sufficient to decrease expression of genes involved in
specifying dorsal forebrain cell fates, while increasing the expression of ventral forebrain inhibitory
interneuron progenitor genes like NKX2.1 [63,65]. Using homologous recombination, Goulburn and
colleagues generated an NKX2.1:GFP human ESC reporter cell line, allowing for live readout of cells
committed to the MGE-like interneuron progenitor lineage [18].

The establishment of Shh as an important morphogen in the derivation of interneurons from
PSCs has led many research groups to investigate the concentrations and duration of Shh treatment
required for the specification of distinct interneuron subpopulations [17,19–22,64,66]. Increasing
the concentration of Shh between 0 and 1000 ng/mL in vitro resulted in a significant increase in
the percentage of NKX2.1-positive neural progenitors that subsequently went on to express the
inhibitory neurotransmitter gamma-aminobutyric acid (GABA) [17,29]. In addition to Shh treatment,
supplementation with Wnt inhibitors significantly increased the population of forebrain specific
MGE-like NKX2.1-positive progenitors [19–21]. Varying the window and duration of Shh treatment
from differentiation day 2–18 to differentiation day 10–18 boosted the proportion of NKX2.1-positive
cells co-expressing the forebrain marker FOXG1 to over 90% [20]. Notably, cells treated from day 10 to
18 of differentiation had an observable increase in the population of ventral forebrain NKX2.1-positive
cells co-expressing FOXG1 and OLIG2, characteristic of MGE-like interneurons, when compared to
cells treated from days 6–18 [20], highlighting the importance of timing and duration of Shh treatment
in regional specification of interneuron progenitors. Treatment with the Smoothened (Smo) agonist
purmorphamine (Pur) from differentiation day 0 to 35 induced 90% NKX2.1:GFP expression [21].
Addition of the Smo agonist SAG between differentiation day 0 and day 25 produced approximately
28% NKX2.1-positive neural progenitors [19]. Gene expression profiling of NKX2.1-positive neural
progenitors following treatment with Shh and/or Smo agonist treatment yielded enriched expression
of forebrain specific, neuronal, GABAergic and MGE-like genes with very little dorsal telencephalic,
LGE, CGE, dopaminergic or glutamatergic marker expression [20,21]. Mouse PSCs can also be specified
to MGE derivatives using Shh treatment. Supplementation of differentiating mouse ESCs with 10nM
Shh biased cultures toward subpallial cell fates as seen through expression of GAD67, Dlx2, and
Gsh2 [66]. Despite subpallial cell specification, the presence of significant NKX2.1-positive progenitors
was only achieved following treatment with a higher concentration of 30nM Shh from days 3 to 9 of
differentiation [66]. By changing the concentration, exposure time and length of culture in the presence
of Shh, Tyson and colleagues generated enriched populations of SST or PV expressing interneurons [22].
Prior to transplantation into the mouse brain, PV biased neural cells required up to 17 days of culture
in the absence of exogenous Shh, whereas SST biased cultures required a shorter culture duration of
12 days in the presence of exogenous Shh [22]. Ventralized progenitors expressing forebrain GABAergic
interneuron markers can also be generated from murine and human fibroblasts without the use of
Shh peptides or Smo agonists using a direct transcription factor reprogramming approach [68–70].
This outcome is likely due to the use of transcription factors acting downstream of NKX2.1, thus
bypassing the need for Shh addition.

Despite the relative ease with which GABAergic progenitors can be produced from PSCs,
efficiently promoting their maturation into interneuron subtypes remains a challenge, particularly for
human PSCs. Human PSC-derived NKX2.1-positive neural progenitors take an extended time, up to
several months, to mature (reviewed in Tyson and Anderson, [71]). Co-culture in vitro with mouse
cortical cells or astrocytes can promote differentiation into a variety of interneuron subtypes expressing
GAD65/67, GABA (Figure 2A,B), SST (Figure 2C), CB (Figure 2D), CR (Figure 2E), PV, Reelin, VIP,
or nNOS [17,19–21,28,54].
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Figure 2. Comparison of protocols used to generate gamma-aminobutyric acid-containing GABAergic
inhibitory interneurons from a PSC source. (A–E) NKX2.1-positive progenitors give rise to various
interneuron subtypes in a co-culture system with mouse cortical astrocytes. Significant NKX2.1:GFP,
MAP2, and calretinin (CR) protein expression observed after 10 weeks of co-culture and robust calbindin
(CB), neuropeptide somatostatin (SST), and gamma-aminobutyric acid (GABA) expression seen after
17 weeks in vitro; (F) comparison of published protocols for the in vitro generation of GABAergic
interneurons showing the time window of Sonic hedgehog (Shh) and Smoothened (Smo) agonist
treatment, as well as additional exogenous compounds used in promoting neural differentiation. Scale
bars: A = 10 µM, B–E = 20 µM. hESC = human embryonic stem cells, iPSC = induced pluripotent stem
cells, mESC = mouse embryonic stem cells, Pur = purmorphamine.

While the presence of numerous subtypes has been detected in vitro, the percentages of cells
expressing specific neurochemical profiles varies greatly amongst the different protocols, with GABA
expression ranging between 65% and 90%, SST from 2% to 50%, PV from <1% to 40%, CB from 25% to
65%, CR from 2% to 90%, and NPY from 0% to 10%. Discrepancies in the percentage of interneuron
subtypes reported may be due to variation in the specific conditions and cell lines used by different
groups (Figure 2B). Despite variability in the profile of subtypes produced, mature interneurons derived
from these approaches are capable of making both excitatory and inhibitory connections in vitro [20].
Two months following transplantation of FACS isolated human PSC-derived GABAergic neural
progenitors into the mouse brain, approximately 80% of the cells continue to express the migratory
neuroblast marker doublecortin (DCX) [21]. These progenitors mature into SST, CR, PV and CB positive
interneurons two to six months after transplantation [21,28,30]. Additionally, mouse ESC-derived
interneurons displayed mature electrophysiological properties and morphologies similar to that of
endogenous GABAergic interneurons [30]. Others demonstrated spontaneous postsynaptic currents
(sPSC) [19,21] and the ability to induce or inhibit neuronal activity using optogenetic stimulation of
GABAergic interneurons both in vitro and post transplantation [21,28].

4. Challenges to Future Clinical Applications Using PSC-Derived Interneurons

4.1. Human PSC-Derived Interneurons Require an Extended Maturation Timeline

In contrast to mouse PSC-derived interneuron progenitors, human-derived PSCs take an extended
time to mature into functional interneurons, both in vitro and following transplantation. (Figure 1A,B,
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reviewed in Tyson and Anderson, [71]). Studies using disease-specific induced pluripotent stem
cells (iPSCs) to model interneuron-related disorders and test therapeutic interventions in culture are
dependent upon the in vitro protocols described (reviewed in Tyson and Anderson, [8]). The protracted
time required for differentiation makes these studies challenging and costly. Therefore, approaches
promoting accelerated maturation of interneurons would be extremely valuable in advancing the field.
Cerebral organoid cultures may prove useful in developing appropriate strategies [24]. The several
months required to observe mature interneuron phenotypes following transplantation into the rodent
brain represents a concern for the development of interneuron-based transplantation therapies. Patients
receiving transplants of PSC-derived interneuron progenitors will likely need to wait several months
before experiencing any potential positive effects. To speed up the time required for therapeutic
efficacy, grafting of more mature cells or addition of factors that promote terminal differentiation
post-transplantation may be required.

4.2. Selective and Efficient Generation of Interneuron Subtypes

PSC-derived interneuron progenitors differentiate into a variety of interneuron subtypes in vitro
or following transplantation into the rodent brain. For human PSCs in particular, it has proven difficult
to direct production of specific interneuron subtypes. Interneuron-based disorders can be characterized
by the loss of particular interneuron subtype(s), and therefore protocols that are subtype-specific would
most accurately provide in vitro disease models or produce desired cell-based therapies. For example,
selective loss or damage to PV and SST interneurons characterizes temporal lobe epilepsy. Production
of abundant PV-expressing interneurons from human PSCs has been challenging, perhaps due
to the observation that their maturation is activity dependent [72–74]. Consequently, GABAergic
progenitors might require co-culture with excitatory cell types to successfully induce PV expression.
Tyson et al. investigated the production of PV- versus SST-expressing interneurons from mouse
ESCs and observed that endogenous levels of Shh in differentiating cultures is sufficient to generate
primarily PV expressing interneurons, while the addition of exogenous Shh biased cultures towards
SST expression [22]. It remains to be seen whether conditions for low and high Shh signaling support
the balance between PV and SST interneurons from human PSCs. Apart from deriving PV and
SST interneuron subtypes, there is considerable interest in generating CR cortical interneurons from
human PSCs based upon the high percentage of CR-expressing cells in the human cortex, and their
vulnerability in diseased states [75]. The serotonin receptor 5-HT3R has been identified as a marker
for CGE-derived interneurons in rodents, and may prove useful in identifying PSC-derived CR
interneurons [76].

4.3. Genetic Modification of Cell Lines Used for Clinical Applications

Enrichment of interneuron progenitors for long-term differentiation and transplantation studies
has largely been achieved using fluorescence activated cell sorting (FACS) of genetically modified
cell lines expressing fluorescent reporters [17,20,21]. However, the use of genetically modified lines
poses a major barrier for use in clinical applications. An alternative FACS-based approach is the use
of antibodies against cell surface antigens specific for MGE-like interneuron progenitors. To date,
there are no known cell surface antigens that characterize MGE-like GABAergic neural progenitors.
For example, antibodies directed against polysialylated-neural cell adhesion molecule (PSA-NCAM),
a cell surface marker present on mature migratory neural cells, have been utilized to isolate neural
progenitors for transplantation [19,28]. Enrichment of NKX2.1:GFP and PSA-NCAM double positive
cells allowed for selection of more mature cells for transplantation, which greatly reduced the formation
of neural tumors [21]. Identification of an MGE-specific cell surface molecule would facilitate designing
a useful interneuron-selection protocol.
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5. Conclusions

Protocols for generating cortical interneuron progenitors from PSCs are now well established
and involve the measured use of Shh agonists. Future goals include fine-tuning and extending these
approaches to promote selective production of mature interneuron subtypes in vitro. These advances
would further our understanding of interneuron-based diseases and potential therapeutic approaches
by providing PSC-based assays for interneuron differentiation, maturation, and function that could
also be used as a drug screening platform. PSC-derived interneurons are also being used for cell-based
therapies designed to replenish supplies of GABAergic cells in animal models of interneuron disorders.
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Abbreviations

The following abbreviations are used in this manuscript:

CNS Central nervous system
SST Somatostatin
PV Parvalbumin
CR Calretinin
CB Calbindin
NPY Neuropeptide-Y
VIP Vasoactive intestinal peptide
GABA Gamma-Aminobutyric acid
GABAergic Gamma-aminobutyric acid-containing interneurons
GAD Glutamic acid decarboxylase
nNOS Neuronal nitric oxide synthase
ASD Autism spectrum disorders
AD Alzheimer’s disease
MGE Medial ganglionic eminence
CGE Caudal ganglionic eminence
LGE Lateral ganglionic eminence
PSCs Pluripotent stem cells
Shh Sonic hedgehog
Smo Smoothened
SAG Smoothened agonist
VZ Ventricular zone
SVZ Subventricular zone
oSVZ Outer subventricular zone
POA Preoptic area
FACS Fluorescence activated cell sorted
iPS Induced pluripotent stem
iPSC Induced pluripotent stem cell
ESC Embryonic stem cell
sPSC spontaneous postsynaptic currents
DCX Doublecortin
PSA-NCAM Polysialylated-neural cell adhesion molecule
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