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Recent reports give insights into the role of the T-box transcription factors, T-bet and 
Eomesodermin (Eomes), in NK cell biology. In this mini-review, we recapitulate the initial 
reports that delineate T-bet and Eomes as master regulators of NK cell development, 
maturation, and function. We discuss how T-bet and Eomes expression is regulated 
during NK cell development and peripheral maturation. Furthermore, we summarize the 
current literature on the role of T-bet and Eomes in the transcriptional regulation of NK cell 
function and review possible effects of T-box transcription factor anomalies during aging, 
infection, cancer, and after hematopoietic stem cell transplantation. We discuss how 
the current data argue in favor of a model of T-bet and Eomes synergy in transcriptional 
regulation of NK cell function and identify T-box transcription factors as potential targets 
for therapeutic interventions.
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inTRODUCTiOn

The phylogenetically conserved family of T-box transcription factors, which share T-box DNA-
binding domains, is critically involved in developmental processes in vertebrates. The T-box protein 
in T cells (T-bet) is a tyrosine- and serine-phosphorylated protein encoded by the Tbx21 gene that 
is expressed only in cells of hematopoietic origin. T-bet was originally identified in T lymphocytes 
as the key transcription factor involved in interferon-gamma (IFN-γ) production that commits CD4 
T cells to the Th1 lineage (1). Eomesodermin (Eomes), another T-box transcription factor sharing 
homology with T-bet, was originally described as a key player in vertebrate embryogenesis (2). More 
recently, Eomes and T-bet have been reported to coordinate the differentiation of CD8 T cells into 
effector cells (3–5) as well as their transition to the memory cell pool (6, 7). T-bet and Eomes are 
therefore considered as master regulators of T cell function. The bulk of mature murine (6, 8, 9) 
and human (10–12) NK cells express high levels of T-bet and Eomes, but until recently, their impact 
on NK cell function was not known. In the present work, we summarize the current knowledge 
about the role of T-bet and Eomes in NK cell development, peripheral maturation, and function.

T-BeT AnD eOMeS in nK CeLL DeveLOPMenT

The first evidence for a role of T-bet in NK cell biology came from the observation that T-bet 
deficient (T-bet−/−) mice have slightly higher NK cell numbers in the bone marrow but reduced 
numbers of NK cells in spleen, liver, and peripheral blood (13). Because many NK cells in T-bet−/− 
mice expressed an immature CD27posCD11bpos phenotype, it was suggested that T-bet played 
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a role in NK cell maturation without being essential for the 
early stages of NK cell development. Because Eomes−/− mice 
die in an early embryonic stage, the role of Eomes in NK cell 
development has initially been assessed only in compound 
mutant Eomes+/− Tbx21−/− mice (6). Interestingly, Eomes+/− 
Tbx21−/− mice displayed a severely exacerbated defect in the 
NK cell compartment compared to mice only lacking T-bet, 
suggesting a distinct, but complimentary function for Eomes in 
NK cell development. Importantly, the loss of one allele of Eomes 
results in a severe downregulation of CD122 (6), the beta-chain 
of IL-2R and IL-15R, which is essential for IL-15 signaling and 
NK cell development. Chromatin Immunoprecipitation (ChIP) 
assays showed that Eomes regulated CD122 transcription (6) for 
which T-bet appeared to be unnecessary (13). More recently, the 
role of Eomes has been studied in mice harboring floxed alleles of 
Eomes and expressing hematopoietic-restricted Cre  recombinase 
under control of Vav regulatory elements (Eomesflox/floxVav–Cre+ 
mice), which restricts the Eomes-inactivation to cells of the 
hematopoietic lineage (8). Deletion of Eomes resulted in a 
severe reduction of NK cells in spleen and blood whereas only 
a modest reduction in NK cell numbers was observed in liver, 
lymph node, and bone marrow. Deletion of Eomes and T-bet 
in Tbx21−/−Eomesflox/floxVav–Cre+ mice resulted in complete 
absence of NK cells in all organs (8). Hence, T-bet and Eomes 
are essential for normal NK cell development, but in the absence 
of either T-bet or Eomes, an incomplete development may still 
occur suggesting that the two T-box transcription factors share 
several functions.

The analysis of the contribution of Eomes and T-bet to NK 
cell development also led to the identification of an ontologically 

distinct subset of innate lymphocyte (ILC) cells residing in the 
liver. Lymphocytes expressing NK cell markers in murine liver 
contain up to 40% of Eomes-negative cells that express high levels 
of T-bet (8, 9, 14). Hepatic EomesnegT-bethigh NK cells display an 
immature phenotype characterized by the expression of Trail and 
lack of expression of DX5 (TrailposDX5neg) (8). Initial experiments 
suggested that EomesnegT-bethighTrailposDX5neg cells represented an 
intermediate developmental stage that could differentiate into 
mature EomesposTrailnegDX5pos cells (8). However, experiments 
performed with Eomes-negative cells isolated from Eomes-GFP 
reporter mice demonstrated that EomesnegT-bethighTrailposDX5neg 
cells are in fact an ontologically and functionally different subset 
of ILCs differentiating in the liver (14).

According to the current model, type 1 ILCs differentiate 
into two developmentally distinct lineages, type 1 helper innate 
lymphoid cells (hILC1s) and conventional NK cells (cNKs), 
which can be discriminated by the T-box transcription factors 
expressed (Figure 1). hILC1 differentiate in the liver when T-bet 
is upregulated and Eomes transcription is suppressed (14). 
Conversely, Eomes expression directs ILC1 development toward 
bone marrow-derived conventional NK cells that express rela-
tively low levels of T-bet (15). Whether similar developmental 
pathways exist in human NK cells is still unknown (Figure 2). 
A recent study identified a T-betposEomesneg CD49apos NK cell 
subset in human liver, absent from hepatic venous or peripheral 
blood, with a CD56brightCD16negCD57negperforinneg phenotype 
that may represent the human equivalent of murine T-betpos 
intrahepatic hILC1 (16).

In recent years, other ontologically distinct tissue residing 
NK cell subsets have been identified in salivary glands, skin, and 
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uterus. Similarly to liver residing cells, NK cells isolated from 
these tissues display an immature CD49aposDX5neg phenotype 
associated with the expression of markers of tissue residency. 
However T-box transcription factors expression varies with 
the tissues the NK cells reside in, which may point at distinct 
developmental pathways. Skin residing NK cells do not express 
Eomes and strictly depend on T-bet for their development (17), 
suggesting a developmental relationship with liver residing NK 
cells. Conversely, salivary gland (18) and uterine (17, 19–21) NK 
cells express high levels of Eomes and are T-bet-independent for 
their development and appear therefore to be a more distinct NK 
cell lineage (Figure 1).

Little is known on the mechanisms that induce cells to 
upregulate or repress T-box transcription factors in different 
organs. By contrast, several cell intrinsic mechanisms regulat-
ing Eomes and T-bet expression have been elucidated to date. 
First, T-bet and Eomes regulate each other’s expression during 
NK cell development, and levels of Eomes expression correlate 
inversely with levels of T-bet in developing NK cells suggesting 
that active repressive mechanisms regulate the balance of T-bet/
Eomes expression (14). This hypothesis has been confirmed by 
showing that T-bet−/− NK cells express high levels of Eomes 
whereas transgenic NK cells overexpressing T-bet display low 
levels of Eomes (14). In addition, expression of T-bet and 
Eomes has been shown to be strictly related with expression 
of other transcription factors crucial for NK cell development. 
T-bet expression is induced by the transcription factors ETS1 
(V-Ets Avian Erythroblastosis Virus E26 Oncogene Homolog 1) 
(22), TOX1 (thymocyte selection-associated HMG box protein 

TOX-1) (23), and TOX2 (24). Conversely, Eomes expression 
depends on the bZIP transcription factor Nfil3 (Nuclear factor, 
interleukin 3 regulated, also known as E4BP4), which binds 
to the regulatory regions of the Eomes gene to promote its 
transcription (25). Nfil3 deficiency interferes with the devel-
opment of the EomesposTRAILnegDX5pos bone marrow-derived 
NK cells while hepatic TbetposEomesnegTRAILposDX5neg cells are 
unaffected (17, 26, 27). Interestingly, tissue-resident Eomespos 
NK cells localized in salivary glands and in the uterus can 
develop in the absence of Nfil3 (17, 18, 20, 27), suggesting the 
existence of alternative molecular mechanisms for the induction 
of Eomes transcription.

The only direct available information about the impact 
of T-box transcription factors deficiency on human NK cell 
development comes from a study describing a patient with a 
rare autosomal recessive microcephaly syndrome related to a 
translocation between chromosomes 3p and 10q leading to the 
silencing of the Eomes transcript (28). The fact that the infant 
displayed a normal distribution of T, B, and NK cells suggests 
that human NK cell development is possible in the absence of 
Eomes, although no information is available about the patient’s 
NK cell functionality.

T-BeT AnD eOMeS in nK CeLL 
PeRiPHeRAL MATURATiOn

Upregulation of T-bet and Eomes expression during development 
is maintained by most peripheral NK cells in mice (6) as well as 
in humans (10). Indeed, sustained expression of T-bet and Eomes 
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in the periphery is necessary to maintain the NK cell maturation 
status while deletion of both T-box transcription factors results 
in reversion into an immature phenotype (8). T-bet expres-
sion is upregulated, and Eomes expression is downregulated 
during maturation of CD11bposCD27pos murine NK cells to 
the CD11bposCD27neg stage (14) (Figure  1). Importantly, T-bet 
appears to be essential for completion of this final maturation 
step as it controls the repression of CD27 and c-kit expression 
as well as the upregulation of S1P5 and KLRG1 (8, 13, 29–31). 
Therefore, bone marrow-derived EomesposTRAILnegDX5pos NK 
cells can develop in the absence of T-bet, but are unable to 
undergo the terminal stages of maturation. Part of this terminal 
maturation process seems to be mediated by T-bet induction of 
the PR domain zinc finger protein 1 (Blimp-1) (30) and the zinc 
finger E-box-binding homeobox 2 (ZEB2) (32) transcription fac-
tors. Conversely, Forkhead box protein O1 (FOXO1) inhibits NK 
terminal maturation through repression of T-bet (33). Similar 
patterns of T-bet and Eomes expression exist in human NK 
cells that also upregulate T-bet and downregulate Eomes during 
peripheral maturation (Figure 2). Cytokine-producing CD56bright 
NK cells express higher levels of Eomes and lower levels of T-bet 
than cytotoxic CD56dim NK cells (10–12, 34, 35). Moreover, 
terminally differentiated CD57posCD56dim NK cells express the 
highest levels of T-bet and the lowest levels of Eomes (11, 12). 
Accordingly, upregulation of Killer-cell immunoglobulin-like 
receptors (KIRs) during maturation is associated with a decrease 
of Eomes and an increase of T-bet levels (11), which appears 
to be independent of the fact whether KIRs are licensing or 
not (Pradier et al., unpublished observations submitted for the 
present Frontiers Immunology Research Topic).

T-BeT AnD eOMeS in nK CeLL 
FUnCTiOn

Chromatin Immunoprecipitation assays combined with the 
analysis of T-bet- and Eomes-deficient mice have partially uncov-
ered the role of T-box transcription factors in NK cell biology. 
Similarly to what previously reported in CD4+ Th1 cells, ChIP 
experiments identified IFN-γ as a target gene of T-bet in NK cells 
(13). By contrast, no evidence of Eomes binding to the IFN-γ 
promoter has been reported. Conditions that induce IFN-γ pro-
duction, such as stimulation with IL-12 plus IL-15 or with IL-12 
plus IL-18, also induce upregulation of T-bet (8, 13) and Eomes 
(12). Murine NK cells are still able to produce IFN-γ in vivo in 
the absence of T-bet, Eomes, or both (8, 13), but the maintenance 
of IFN-γ production is impaired in the absence of T-bet (13). In 
addition, T-bet and Eomes expression correlates positively with 
IFN-γ production in vitro in mice (36) as well as in humans (12, 
37, 38). Furthermore, NK cells are less cytotoxic in the absence of 
T-bet (13, 39), which is possibly caused by a decreased produc-
tion of perforin and granzyme B (8, 13). Murine studies suggest 
that T-bet but not Eomes is directly involved in the production of 
cytotoxic molecules (8). Accordingly, we found a positive correla-
tion between T-bet levels and perforin production in human NK 
cells and no relationship between Eomes levels and expression 
of cytotoxic molecules (12). Collectively, these findings support 
a model in which T-bet and Eomes cooperatively regulate IFN-γ 

production in NK cells while T-bet seems to be the crucial regula-
tor of their cytotoxic activity.

T-BeT AnD eOMeS in nK CeLL BiOLOGY 
in HeALTH AnD DiSeASe

Given their impact in NK cell development, peripheral matura-
tion and function, alterations in T-bet and Eomes expression 
could account for NK cell abnormalities in pathological condi-
tions in which NK cells exert an essential role, such as infections 
and cancer. Reduction in T-bet and Eomes levels in NK cells 
occurs during aging and is associated with an impaired NK cell 
cytotoxicity (40). Interestingly, T-bet and Eomes downregulation 
in aged mice is not related to a cell intrinsic defect but is induced 
by the aged environment pointing to a cell extrinsic induction of 
a senescent phenotype.

The role of T-bet and Eomes expression in NK cells has been 
investigated in several disease models. NK cells activated dur-
ing murine cytomegalovirus or vaccinia virus infection do not 
undergo terminal maturation in the absence of T-bet (13, 41, 42), 
which concords with the typical role of T-bet in NK cell differen-
tiation (13). However, despite the fact that this led to a significant 
reduction of NK cell virus-specific cytotoxicity early after infec-
tion (13, 42), the viral load remained unchanged suggesting that 
the NK cell activity in T-bet−/− mice is still sufficient to control 
viral replication. Similar sufficient in  vivo NK cell responses 
have been reported after infection of T-bet−/− mice with Listeria 
monocytogenes (43) or with Toxoplasma Gondii (44).

Murine models of cancer have illustrated the impact of T-box 
transcription factors in NK cell antitumor responses. Peng and 
coworkers used a transgenic prostate adenocarcinoma mouse 
model to demonstrate that although T-bet deficiency only 
had a very limited impact on primary tumor development, it 
significantly affected the ability to control tumor spread (45). 
This observation, subsequently confirmed in a murine model of 
metastatic cancer (46), led to the conclusion that in vivo NK activ-
ity in metastasized cancer strongly depends on T-bet expression. 
Although NK cells are still capable to infiltrate metastatic tumors 
in the absence of T-bet, their survival and capacity to terminally 
differentiate into fully competent, cytotoxic CD27negKLRG1pos 
NK cells appears to be diminished (31, 46). It has been show that 
in vivo IL-15 administration overcomes the defect of T-bet−/− NK 
cells by inducing differentiation of EomeshighKLRG1pos NK cells 
that are able to efficiently control metastatic pulmonary colorectal 
cancer, suggesting that IL-15 induced Eomes upregulation may 
compensate for the lack of T-bet inducing expansion of pheno-
typically and functionally mature NK cells.

Important insights into the relationship between T-bet and 
Eomes expression in NK cells and cancer come from the work of 
Gill and coworkers who identified the downregulation of T-bet 
and Eomes as the molecular signature of NK cell exhaustion 
in a murine NK adoptive transfer model of lymphoma (36). 
Importantly, downregulation of T-box transcription factors 
appeared to be not only the consequence of the NK cells’ expo-
sure to tumor cells but also of their homeostatic proliferation 
induced by the treatment-induced lymphopenic environment. 
Lymphopenia occurs frequently after cancer chemotherapy as 
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well as after conditioning regimens for hematopoietic stem cell 
transplantation (HSCT). Indeed, we found the same exhausted 
phenotype in human NK cells isolated from patients undergo-
ing HSCT (12). Similar to what had been observed in mice, 
T-bet and Eomes downregulation after HSCT was associated 
with impaired NK function and lower levels of T-bet in NK 
cells were associated with reduced patient overall survival (12). 
Surprisingly, improved survival associated with higher levels of 
T-bet in NK cells was not the consequence of improved cancer 
control but the result of a reduced non-relapse mortality, which 
suggests that sustained T-bet and Eomes expression in NK cell 
could participate to prevent the development of transplant related 
complications after HSCT. This hypothesis is supported by a 
recent study showing that adoptively transferred IL-12/15/18-
preactivated NK cells, which do not undergo exhaustion and 
maintain high levels of Eomes and T-bet expression, suppressed 
acute Graft-versus-Host-Disease in a murine model of HSCT 
(47). These results suggest that T-bet and Eomes expression 
may also modulate NK cell function in immunopathological 
settings, similarly to what recently shown in multiple sclerosis 
patients (35).

COnCLUDinG ReMARKS

Recent findings clarifying the role of the two T-box transcription 
factors T-bet and Eomes in NK cells have considerably increased 
our knowledge of NK cell biology. Notably, they led to the 
characterization of previously unknown NK cells developmental 
pathways. Furthermore, they led to the identification of a molecu-
lar signature of NK cell exhaustion, which may represent a future 
target for immunomodulatory therapies.
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