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Abstract: Emerging research indicates that vitamin D metabolic disorder plays a major role in both
acute pancreatitis (AP) and chronic pancreatitis (CP). This has been demonstrated by studies showing
that vitamin D deficiency is associated with pancreatitis and its anti-inflammatory and anti-fibrotic
effects by binding with the vitamin D receptor (VDR). However, the role of vitamin D assessment and
its management in pancreatitis remains poorly understood. In this narrative review, we discuss the
recent advances in our understanding of the molecular mechanisms involved in vitamin D/VDR sig-
naling in pancreatic cells; the evidence from observational studies and clinical trials that demonstrate
the connection among vitamin D, pancreatitis and pancreatitis-related complications; and the route
of administration of vitamin D supplementation in clinical practice. Although further research is still
required to establish the protective role of vitamin D and its application in disease, evaluation of
vitamin D levels and its supplementation should be important strategies for pancreatitis management
according to currently available evidence.

Keywords: acute pancreatitis; chronic pancreatitis; vitamin D; vitamin D receptor; vitamin D analog

1. Introduction

Both acute and chronic pancreatitis are common digestive diseases for which specific
treatment is not yet available. Acute pancreatitis (AP) is characterized by sudden onset
triggered by various factors such as gallstones, alcoholism, hypertriglyceridaemia, and
endoscopic retrograde cholangiopancreatography (ERCP), leading to self-digestion of
acinar cells that induce local and systemic inflammation [1]. The prevalence of AP has been
increasing, with an overall incidence of >34 affected cases per 100,000 person-years [2].
Most cases resolve within two weeks. However, approximately 10–20% of AP patients have
an eventful clinical course, from local pancreatic fluid collection and/or necrosis to critical
illness of persistent organ failure with a substantial mortality rate of 20–50% [3]. Emerging
evidence indicates that patients with an episode of AP have a 20–30% likelihood of one or
more recurrent attacks, with progression to chronic pancreatitis (CP) in an estimated 10%
of the recurrent cases [1,4]. Once CP is established, the risk for pancreatic cancer rises by
13.3-fold [5].

Vitamin D refers to a group of steroid hormones that are naturally present in small
amounts in food, but it is mostly synthesized endogenously by ultraviolet (UV) rays from
sunlight acting on the skin. The biologically inactive precursors, namely vitamin D2 (ergo-
calciferol) and vitamin D3 (cholecalciferol), convert into the active compound 1,25(OH)2D
by two enzymatic hydroxylation reactions after they enter the circulation. Biologically
active 1,25(OH)2D binds to and stimulates the transcriptional activity of the nuclear vitamin
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D receptor (VDR) in target cells to regulate the expression of genes, thus altering cellular
activities. The main function of vitamin D is to regulate calcium homeostasis and maintain
a healthy mineralized skeleton. Vitamin D is also critical for pleiotropic functions such as
anti-inflammation, immune regulation, tumor suppression, and metabolic homeostasis [6].
Lack of sunshine exposure; seasonal variation; pregnancy; older age; obesity; and ethnicity
(Black, Hispanic, and subjects with increased skin melanin deposition), are particularly
high-risk factors for vitamin D deficiency [7–10].

Emerging studies indicate the association of vitamin D with pancreatitis [11,12]. Most
patients who develop pancreatitis have changes in their dietary habits prior to the on-
set of the disease, either due to heavy alcohol consumption or fat intolerance. Because
of maldigestion/malabsorption alone, and complicated with other factors such as a low
dietary vitamin uptake, low exposure to sunshine, and exocrine dysfunction, nutritional
deficiencies, especially in fat-soluble vitamins (vitamins A, D, E, and K), have been demon-
strated in patients with AP and CP. Although nutritional management has been suggested
in several guidelines [13–17], the role of vitamin D assessment and its management in
pancreatitis remains underestimated by physicians.

2. Search Strategy

Two investigators independently performed a systematic computerized search for
related articles through MEDLINE (PubMed) and Web of Science from their inception
to 1 April 2022. The search strategy used a combination of the following keywords:
“vitamin D”, “vitamin D deficiency”, “cholecalciferol”, “vitamin D receptor”, “VDR”,
“ergocalciferol”, “pancreatitis”, “chronic pancreatitis”, and “acute pancreatitis”. All studies
investigating vitamin D in experimental and clinical exocrine pancreatic diseases were
initially included. Possible additional articles were identified by manually searching the
reference lists of all the retrieved articles to identify potentially relevant studies. Only
studies in English were analyzed. In all, 111 relevant articles were selected and included in
the present narrative review.

3. Vitamin D Metabolism and Its Biological Actions in Basic Studies
3.1. Vitamin D Metabolism

Biologically active vitamin D, 1,25(OH)2D (also known as calcitriol), is converted by
its precursors vitamin D2 (ergocalciferol) from plant-based foods and vitamin D3 (cholecal-
ciferol) mostly from animal-based sources or ultraviolet rays (UV, spectrum 290–315 nm)
from sunlight [18–20]. The synthesis of 1,25(OH)2D is mainly regulated by two enzymatic
hydroxylation reactions in the liver and kidney. The extrarenal synthesis of 1,25(OH)2D is
regulated by CYP27B1, which is expressed locally in tissues including the colon, parathy-
roid, prostate, breast, brain, placenta, and pancreas [21].

The local levels and activity of 1,25(OH)2D are mostly mediated by its catabolizing
enzyme (CYP24A1) and VDR. 1,25(OH)2D can induce the expression of CYP24A1, the key
vitamin D catabolizing enzyme found mostly in intestinal tissues. CYP24A1 catalyzes both
25(OH)D and 1,25(OH)2D via C23- or C24-hydroxylation pathways, forming 24,25(OH)2D3
and 1,24,25(OH)3D3 (or 1,23,25(OH)3D3) and initiating the inactivation of vitamin D for
excretion (Figure 1). This negative feedback loop limits vitamin D overdosage through
degradation of both 25(OH)D and 1,25(OH)2D [22–24]. The molecular basis of vitamin D
signaling implies that the active metabolite 1,25(OH)2D binds to the transcription factor
VDR with high affinity in the cytoplasm, forms a VD-VDR complex and induces VDR-
mediated signaling transduction. Because VDR has been found to be nearly ubiquitously
expressed, the effects of vitamin D induced gene activation affect almost every cell in the
body. Upon activation by ligand binding, it facilitates the formation of the heterodimer of
VDR with retinoid X receptor (RXR) in the nucleus, then binds to the specific vitamin D
responsive elements (VDREs) and modulates up to one-third of all human genes, including
those involved in the regulation of bone metabolism; cell-life processes (proliferation,
differentiation, apoptosis); the immune system; oxidative stress; and lipid metabolism [25]
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(Figure 1). It has been suggested that both adequate vitamin D levels in the blood and the
activity of VDR are crucial for the biological functions of vitamin D.
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Figure 1. Metabolism of vitamin D and VD/VDR signaling. UVB, ultraviolet radiation b; FGF-23,
fibroblast growth factor 23; PTH, parathyroid hormone; VDR, Vitamin D receptor; RXR, retinoid X
receptor; VDRE, vitamin D responsive gene; ECM, extracellular matrix.

3.2. Biological Action of Vitamin D in Pancreatic Cells

Pancreatitis in both acute and chronic forms is initiated by injury to pancreatic acinar
cells. The crosstalk between pancreatic acinar, ductal, and stellate cells and the immune
system perpetuates an inflammatory response, resulting in localized pancreatic inflamma-
tion, systemic inflammation, or chronic disease. Emerging evidence suggests that vitamin
D signaling can contribute to pancreatic homeostasis by exerting anti-inflammatory and
antifibrotic activities. The effect of vitamin D may be supported by the expression of VDR
and signaling in pancreatic cells. The role of vitamin D in the modulation of inflammatory
processes has emerged from cellular studies (Table 1).
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Table 1. VD/VDR signaling in pancreatic cells and its biological actions.

Pancreatic Cells VDR Expression Vitamin D Induced Targets
Expression Biological Actions

Pancreatic stellate
cells [26–28] High IL-6, Collagen I, α-SMA and

fibronectin↓

Inhibitory effects against proliferation
and fibrosis in vitro or in chronic

pancreatitis models

Islets cells [29–31] Low VDR, CYP24A1, CaSR↑

1,25 Dihydroxyvitamin D3 has a direct
and genomic action on β-cell functions

including insulin secretion; in CP
patients, the highest CYP24A1 levels

were found in the endocrine cells.

Pancreatic acinar
cells [31] Absent or low basal level VDR, CYP24A1, CaSR↑

CYP24A1 is increased both during
inflammation (as in chronic

pancreatitis) and during malignant
transformation (as in pancreatic ductal

adenocarcinoma)

Pancreatic ductal
cell [32] Low

Increased VD-induced VDR,
CDKN1A, CDK1 expression↑,
high-dose VD downregulated

VDR expression

Promoting the cell cycle of normal
ductal cells

Pancreatic progenitor
cells [33]

VDR expressing in the
nucleus, cytoplasm, and

plasma membrane
VD-induced VDR expression↑ Promote cell viability and proliferation.

α-SMA, α-smooth muscle actin; CaSR, calcium-sensing receptor; CDKN1A, cyclin-dependent kinase inhibitor 1A;
CDK1, cyclin-dependent kinase; Upward arrow (↑) signifies an increase above normal due to vitamin D induction;
Downward arrow (↓) signifies a decrease below normal due to vitamin D induction.

Pancreatic acinar cells are the major cell type in the pancreas. A previous study
indicated that VDR levels are low in acinar cells of the human and rat pancreas [34,35].
In response to AP toxins (bile acids, alcohol, nicotine, etc.), trypsinogen activation within
acinar cells triggers innate immune mechanisms that recruit immune cells (neutrophils
are recruited initially, followed by macrophages, dendritic cells, and T cells) to the site
of inflammation. Local injury is further exacerbated by the massive release of damaged-
associated molecular patterns (DAMPs) from necrotic acinar cells that attract and activate
immune cells, further prompting multiple inflammatory cascades and remote organ failure.
VD/VDR has been shown to exhibit immunologic properties that regulate the immune
response. The activation of toll-like receptor (TLR) and nuclear factor-kB (NF-κB) is essential
for the initiation and progression of the systemic inflammatory cascade during pancreatitis.
Vitamin D supplementation could downregulate TLRs in inflammatory diseases [36,37].
Studies have also demonstrated that 1,25(OH)2D reduces the nuclear translocation of NF-κB
through its subunit p65, thereby inhibiting the activation of NF-κB and its downstream
genes, including IL-8. Vitamin D acts as a negative modulator of TNF-α and IL-6 release,
decreasing TNF-α, IL-6, and C-reactive protein (CRP) levels in pancreatitis [38]. Further
studies are needed to confirm the underlying anti-inflammatory mechanisms of VD/VDR
signaling in pancreatitis.

Abnormal activation of pancreatic stellate cells (PSCs), resulting from progressive
necroinflammatory conditions of the pancreas, is the primary pathological feature of fibrosis
in CP. In mice, among isolated pancreatic cells, only PSC and islet cells highly expressed
VDR. Moreover, VDR expression in PSCs was five times greater than that in islet cells [35].
VDR plays a critical role in the development of CP because it attenuated inflammation and
fibrosis in a cerulein-treated CP model, consistent with decreased PSC activation. Vitamin
D3 has also been shown to initiate cellular differentiation and inhibit proliferation of cells
from normal tissue.
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4. Vitamin D and Pancreatitis in Clinical Studies

Serum 25(OH)D is a widely accepted biomarker to assess vitamin D status, ow-
ing to its stable concentration and half-life of 15–25 days [39]. There is no uniform
international consensus that defines the deficiency, insufficiency, sufficiency, and toxi-
city of vitamin D [7,40–43]. The prevalence of vitamin D deficiency is overwhelming
worldwide [44–46]. In developed countries, 36.8 to 40% of the population was moderately
deficient in vitamin D (25(OH)D < 50 nmol/L), and 5.9–13% of the population was severely
deficient (25(OH)D < 30 nmol/L) [47–49]. In China, the estimated prevalence of 25(OH)D
levels < 50 nmol/L was reported to be 60% [50]. As pancreatitis is an inflammatory condi-
tion of the pancreas that leads to impairment of endocrine and exocrine function, disrupted
absorption during disease or malnutrition due to prolonged fasting or exocrine function
disorders can cause nutritional deficiencies. Acute recurrent pancreatitis and progression to
CP are accompanied by extensive fibrotic tissue replacement and loss of exocrine pancreatic
function during the course of the disease, leading to malabsorption and malnutrition over
time [1,4]. Determining the serum levels of lipid-soluble vitamin D might be relevant for
pancreatitis because of its dependence on photosynthesis in the skin as well as on direct
intestinal resorption.

4.1. Vitamin D and Acute Pancreatitis
4.1.1. Vitamin D Status in Patients with AP

Currently, a few studies have investigated the association between vitamin D and AP
(Table 2). Decreased 25(OH)D levels were detected in cats and dogs with AP, which might
be associated with calcium imbalance and mortality rates in animal AP [51,52]. Vitamin
D deficiency/insufficiency is particularly common in patients with AP. One recent study
using a large retrospective database of 36,087,380 patients between July 2014 and July
2019 found that patients with AP were more likely to develop vitamin D deficiency (odds
ratio [OR]: 1.25, 95% confidence interval [CI]: 1.24–1.26, p < 0.0001); osteoporosis (OR: 1.89,
95% CI: 1.81–1.85, p < 0.0001), and fractures (OR: 1.58, 95% CI: 1.57–1.59, p < 0.0001) than
those without AP [53]. Another study that reported the 25(OH)D levels on the admission
of 73 patients with the first episode of AP showed that the prevalence of severe vitamin
D deficiency (<13 nmol/L), deficiency (13–25 nmol/L), and insufficiency (26–50 nmol/L)
was 23%, 20%, and 40%, respectively, while only 17% of patients had a normal level of
25(OH)D (>50 nmol/L) [38]. In a study of 242 AP patients in whom serum 25(OH)D levels
were measured within 24 h of admission, 56.2% had vitamin D deficiency (≤25 nmol/L)
and 28.5% had insufficiency (25–50 nmol/L), while only 15.3% of AP patients had normal
vitamin D levels (>50 nmol/L) [12]. As baseline levels of vitamin D were not available
and did not present the prevalence of osteoporosis, further studies should be conducted to
assess vitamin D deficiency/insufficiency in AP patients in the future.

Another study reported that serum concentrations of 25(OH)D were statistically
similar compared with the healthy control group, although patients in the pancreatitis
group (mainly of the alcoholism as etiology) had markedly reduced [54]. However, the
control group in this study was composed of a small sample size of 20 patients who were
hospitalized for hernia repair. The study conclusions were not reliable, because the low
vitamin D level found in the control group could be associated with the disease status.

Table 2. Prevalence of Vitamin D Deficiency/insufficiency in Patients with AP.

Author, Year Study Design Country AP
Patients (n) Etiology of AP (%) Vitamin D

Deficiency (n, %)
Osteoporosis

(n, %)

Abou Saleh
et al., 2020 [53]

Retrospective
cohort study USA 196,080 NA Deficiency (17.7) 17,120 (8.7)
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Table 2. Cont.

Author, Year Study Design Country AP
Patients (n) Etiology of AP (%) Vitamin D

Deficiency (n, %)
Osteoporosis

(n, %)

Bang et al.,
2011 [55]

Prospective
cohort study England 73

Gallstones (52),
Alcohol

consumption (30),
Idiopathic (11),

Alcohol and
gallstone (3),

Other (4)

severe deficiency
<13 nmol/L (23)

deficiency
13–25 nmol/L (20)

insufficiency
26–50 nmol/L (40)

NA

Huh et al.,
2019 [12]

Prospective
cohort study Korea 242

Gallstones (52.5),
Alcohol

consumption (36),
Hypertriglyc-
eridemia (5),

Idiopathic (6.6)

Deficiency < 10
ng/mL (56.2)

Insufficiency 10–20
ng/mL (28.5)

NA

Leerhøy et al.,
2018 [56]

Prospective
cohort study Denmark 29 Post-ERCP (100) Insufficiency < 50

nmol/L (34.5) NA

NA, not available.

4.1.2. Imbalance of Vitamin D Metabolism as a Risk Factor for AP
Vitamin D Deficiency and Hypercalcemia-Mediated AP

Hypercalcemic states could be associated with the pathogenesis of AP [51]. Approxi-
mately 7–19% of patients with hypercalcemia develop pancreatitis owing to obstruction
of the pancreatic duct by stones, activation of trypsin by excess calcium in the secretions,
increased alkalinity which precipitates calcium, and vasculitis within the pancreas. Hyper-
parathyroidism, either primary or secondary to vitamin D deficiency, has been described in
association with hypercalcemia-mediated by AP [57,58].

Although hypercalcemia seems to be the major risk factor, mutations in different genes
have also been proposed. CYP24A1 mutations can cause vitamin D-mediated hypercal-
cemia and pancreatitis [59]. CYP24A1 deficiency contributes to unexplained vitamin D-
mediated hypercalcemia or patients without baseline hypercalcemia or nephrocalcinosis [60].

Vitamin D3 Poisoning-Induced Pancreatitis

When an excess of dietary vitamin D is present, elevated systemic and local concentra-
tions of 1,25(OH)2D can occur. The toxicity of the serum 25(OH)D concentration threshold
differs from 50 ng/mL to 150 ng/mL [7,42]. When excess 1,25(OH)2D is present within a
tissue, local hypervitaminosis D can be produced. Rare case reports have highlighted the
possibility of increasing serum 25(OH)D concentrations into the normal range of single pa-
tients. Vitamin D intoxication was reported as the cause of hypercalcemic pancreatitis [61].
Several studies have demonstrated that AP could be caused by hypercalcemia following an
excessive dose of vitamin D [62–64]. A case report described a patient in whom recurrent
attacks of pancreatitis were induced by vitamin D poisoning associated with hypercal-
cemia. Vitamin D-induced AP reportedly occurred in a patient with a history of vitamin D3
supplementation and high levels of serum 1,25(OH)2D without other etiologies [65].

4.1.3. Vitamin D Disorders Affect the Severity of AP
Vitamin D Levels Affect the Severity of AP

Although it remains unclear whether vitamin D deficiency is a cause or a consequence
of severe disease, findings suggest that the degree of vitamin D deficiency may be related
to disease prognosis. Serum vitamin D deficiency on admission was an independent risk
factor for severe AP (OR: 5.37, 95% CI: 1.13–25.57, p = 0.015) and intensive care unit (ICU)
admission (OR: 3.09, 95% CI: 1.24–7.69, p = 0.035) [12]. In the first two or three days of
AP, serum vitamin D showed a significant drop and linear trend, which was related to
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alterations in the levels of CRP, a systemic inflammation marker. Nevertheless, CRP is not
a prompt and precise indicator of the severity of AP, and the association of low levels of
serum 25(OH)D at admission and parameters of organ failure have not been confirmed.

Gene Polymorphisms

There are studies on the relationship between VDR polymorphisms and the risk of
AP. As vitamin D acts through VDR, impairment or reduced functions due to VDR gene
polymorphisms are associated with the severity of AP [66,67]. This finding highlights the
protective effect of VD/VDR signaling against AP. However, the mechanism of VD/VDR
signaling in AP remains to be explored.

Vitamin D may suppress renin synthesis at the transcriptional level and influence
renin-angiotensin system (RAS) activity, thus acting as a negative regulator of RAS. The
association of AP and its severity with specific variants in key RAS/vitamin D pathway
genes likely denotes a causal role for such systems in AP pathogenesis. The renin rs5707 G
(rather than A) allele was associated with AP, infected necrosis, and mortality. The role of
vitamin D/RAS in the pathogenesis or severity of AP needs further detailed analysis [68].

4.2. Vitamin D and Chronic Pancreatitis
4.2.1. The Prevalence of Vitamin D Deficiency/Insufficiency in Patients with CP

CP is characterized by a progressive malabsorptive condition that affects the digestive
and absorptive ability of the body, resulting in malnutrition over time [13]. Predominant
factors leading to vitamin D deficiency are likely related to steatorrhea with malabsorption
of vitamin D due to CP [69]. Additional risk factors for vitamin D deficiency include
African–American ethnicity, reduced nutritional status, and diabetes mellitus, among others.

Numerous studies have assessed the prevalence of vitamin D deficiency/insufficiency
in patients with CP (Table 3). A recent meta-analysis [70] including 12 studies reported
that vitamin D deficiency (defined as <50 nmol/L) had the highest prevalence (57.6%,
95% CI 43.9–70.4) among fat-soluble vitamins (vitamins A, D, E, and K) in CP. Another
study that included nine studies on the prevalence of vitamin D deficiency/insufficiency
(<50 nmol/L, or <75 nmol/L) in 465 CP patients and 378 controls also indicated a high
prevalence of vitamin D deficiency (65%) and insufficiency (83%) in CP patients [71]. The
prevalence of vitamin D deficiency (<20 ng/mL) was 42% in a cohort of 147 patients with
newly diagnosed CP [72].

Table 3. Prevalence of vitamin D deficiency/insufficiency in patients with chronic pancreatitis.

Study Patients Sample
Size

Age,
Years *

Etiology
(%)

PEI
(%)

PERT
(%)

EI
(%)

Osteopathy
(%)

Serum 25(OH)D
Deficiency

Observational Studies (Cross-Sectional Studies)

Olese et al., 2017,
Denmark [72] CP 147 NA NA NA NA NA NA 42% (<50 nmol/L)

Tang et al., 2021,
China [73] CP 104 46.1 (14.4) Idiopathic, 68.3

Tropical alcoholic 31.7 27.9 49.0 26.9 Osteopenia, 30.8;
Osteoporosis, 5.8 73% (<20 ng/mL)

Joker-Jensen
et al., 2020,

England [74]
CP 115 57.9 (13.0)

Alcoholic, 50
Tropical, NA

Idiopathic, NA
60.8 35.6 37.4 NA 22% (<25 nmol/L)

Stigliano et al.,
2018, European

(multicenter) [75]
CP 211 60

Alcoholic 43.60
Idiopathic 18.95
Hereditary 4.26
Obstructive 5.68

Other 27.48

56.42 54.97 37
Osteopenia 42.18;

Osteoporosis
21.80

56.37% (<20 ng/mL)

Min et al., 2018,
USA [76] CP 91 48.6 (10.4)

Toxic/metabolic 59.3
Idiopathic 18.7

Genetic 14.3
Autoimmune 5.8
Obstructive 2.2

84.6 NA NA Osteopenia 46.7;
Osteoporosis 22.2 62.50%
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Table 3. Cont.

Study Patients Sample
Size

Age,
Years *

Etiology
(%)

PEI
(%)

PERT
(%)

EI
(%)

Osteopathy
(%)

Serum 25(OH)D
Deficiency

Kumar et al.,
2017, India [77] CP 102 40.8 (12.6) Alcoholic 67

Tropical 35 NA NA NA
Osteomalacia
and low bone

mass 36
67.6% (<30 ng/mL)

Pezzilli et al.,
2015, Italy [78] CP 30 57.0 (13.1) NA 56.7 NA 23.3 NA 86.6% (<20 ng/mL)

Sikkens et al.,
2013, Holland

(Prospective) [79]
CP 40 52 (11)

Alcoholic 50
Idiopathic 43

Other 7
70 48 45 Osteopenia 45;

Osteoporosis 10 53% (<38 pmol/L)

Klapdor et al.,
2012, Germany

(Prospective) [80]
CP 37 NA NA NA 100 NA NA 86.5% (<30 ng/mL),

37.8% (<10 ng/mL)

Dujsikova et al.,
2008, Czech

Republic [81]
CP 73 46 (13) Alcoholic 11

Idiopathic 89 NA NA NA

Osteopathy 39;
Osteopenia 26;
Osteoporosis 5;
Osteomalacia 8

86.3% (<75 nmol/L)

Prospective Case—Control Study

Duggan et al.,
2015, Ireland [82]

CP 29 44.3 (12.3)
Alcoholic 62.1
Idiopathic 27.6

Other 10.3
NA NA NA Osteoporosis 31;

Osteopenia 44.8 48.3% (<30 nmol/L)

Controls 29 45.8 (9.8) NA NA NA NA Osteoporosis 6.9;
Osteopenia 51.7 20.7% (<30 nmol/L)

Duggan et al.,
2014, Ireland [83]

CP 62 47.9 (12.5) Alcoholic 38.7 34.8 NA NA NA 58% (<20 ng/mL)

Controls 66 47.7 (11) NA NA NA NA NA 61.7%

Prabhakaran,
et al., 2014,
India [84]

CP 103 38.6 (20.6)
Alcoholic 70

Idiopathic 29.1
Post-traumatic 0.9

20.4 NA 37.8
Osteoporosis

30.1;
Osteopenia 39.8

19.4%
(<10 ng/mL)

Controls 40 36.7 (20.7) NA NA NA NA NA 38.59 ± 26 ng/mL *

Duggan et al.,
2012, Ireland [85]

CP 62 47.9 (12.5) Alcoholic 38.7
Other 61.3 NA NA NA Osteoporosis 34;

Osteopenia 39.6 47.5 ± 21.6 mmol/L *

Controls 66 47.74 (11) NA NA NA NA
Osteoporosis

10.2;
Osteopenia 33.9

46.4 ± 20.4 mmol/L *

Joshi et al., 2011,
India [86]

CP 72 31.1 (10.3) Tropical calcific
pancreatitis 46 46 72

The BMD
Z-scores at the
lumbar spine
−1.0 ± 1.0 total
hip −1.2 ± 1.2

86% (<50 nmol/L)

Controls 100 32.6 (9.6) NA NA NA NA NA 85%

Sudeep et al.,
2011, India [87]

CP 31 35.8 (9.0)

Tropical fibro
calculous

pancreatitis 65
Idiopathic 35

69 0 68 Osteoporosis 29 52% (<20 ng/mL)

Controls 35 38.6 (5.2) NA NA NA NA Osteoporosis 9 24%

Mann et al., 2003,
Germany [11]

CP 42 52.6 (13.5) NA 78.5 NA NA
DEXA Ward’s

trangle (WARD)
92.2% ± 5.2%

26.7 ± 9.7 nmol/L *

Controls 20 48.9 (6.4) NA NA NA NA DEXA WARD
97.1% ± 3.1% 69.5 ± 13.5 nmol/L *

Double Blinded, Randomized Controlled Trial

Reddy et al.,
2013, India [88] CP 40 33 (9) Tropical Calcific

(idiopathic) NA 52.5 92.5 NA 40% (25–50 nmol/L)
72% (<25 nmol/L)

CP, chronic pancreatitis; PEI, pancreatic exocrine insufficiency; EI, endocrine in-sufficiency; PERT, pancreatic
enzyme replacement therapy; NA, not available; DEXA, dual-energy X-ray absorptiometry. * Data presented as
mean ± SD.

4.2.2. Vitamin D Deficiency/Insufficiency Associated with the Severity of
Exocrine Function

An impaired exocrine pancreas function alters vitamin D metabolism. Based on
structure, atrophy and ductal-related parameters in CP were associated with vitamin D
deficiency [89]. The consequences of exocrine insufficiency, mostly indicated by elastase
1 levels in feces, might be relevant for serum levels of vitamin D3 [90,91]. As summarized in
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Table 3, pancreatic exocrine insufficiency varied in CP patients and correlated with vitamin
D deficiency. Pancreatic enzyme replacement therapy improved vitamin D levels.

4.2.3. CP-Related Osteopathy

Risk factors for CP include excessive alcohol consumption, cigarette smoking, and pre-
conditions such as diabetes mellitus, exocrine pancreatic insufficiency, and anorexia. These
only affect vitamin D synthesis and absorption but also impair bone metabolism, which
could induce low bone mass density and subsequent disorders such as osteopenia and
osteoporosis and a consequent increase in bone fragility and susceptibility to fractures [85].
A previous study reported that 5% of CP patients had osteoporosis, whereas 39% in total
had osteopathy including osteopenia, osteoporosis, and osteomalacia [92]. As shown in
Table 3, and according to a meta-analysis, osteoporosis occurs in about one-quarter of CP
patients, and osteopenia or osteoporosis occurs in approximately two-thirds of CP patients.
To prevent and cure osteoporosis and fractures as well as the accompanying morbidity,
bone health screening should become an integral part of the medical and nutritional care
for CP patients.

It has been reported that 25(OH)D is correlated with the severity of inflammation,
fecal elastase (exocrine dysfunction), and bone mineral density (BMD) [93]. Another
study reported that patients with CP had no correlation between BMD loss and duration
of illness or vitamin D levels [94]. In tropic CP patients, vitamin D was diminished in
nearly 90% of patients, but such an association is difficult to establish. Currently, there
are no reports of BMD in other forms of CP with an early-onset, such as idiopathic CP or
hereditary pancreatitis.

4.2.4. CP-Related Diabetes

The development of diabetes mellitus in CP mainly occurs due to the destruction
of islet cells by pancreatic inflammation. Loss of pancreatic islet cells occurs later in the
disease process, as endocrine cells are diffusely distributed throughout the pancreatic
parenchyma. Patients may develop type 3c (pancreatogenic) diabetes mellitus (T3cDM),
which is complicated by concurrent decreased glucagon secretion [95]. From a biological
perspective, vitamin D deficiency/insufficiency as a determinant of diabetes risk is plausi-
ble, given that both impaired insulin secretion and action have been reported with vitamin
D insufficiency [6]. As 78.5% of T3cDM patients have CP, physicians must also be aware
of the elevated risk of pancreatic cancer in this subset of patients. Measurement of serum
25(OH)D levels and supplementation in patients with T3cDM might therefore be beneficial.
To our knowledge, there are no randomized controlled trials (RCTs) on this topic and they
should be considered in future studies.

5. Vitamin D Supplementation and Its Analogs’ Potential in Pancreatitis

The dose of vitamin D supplementation for the prevention of vitamin D deficiency
is still controversial. The Institute of Medicine (IOM) [96] and Scientific Advisory Com-
mittee on Nutrition (SACN) [41] recommend 600 IU or 400 IU daily to maintain serum
25(OH)D > 50 nmol/L. The Endocrine Society [7] suggests an intake of 1500–2000 IU daily
in adults. The European Food Safety Authority (EFSA) [97] has set the upper limit for
vitamin D supplementation for adults at 4000 IU per day. Another guideline focused
on the pleiotropic effects of vitamin D recommends a target 25(OH)D concentration of
75 nmol/L, and age-, body weight-, disease-status, and ethnicity dependent vitamin D
doses ranging between 400 and 2000 IU/day [98]. Supplementation should consider the
specific aspects of their health outcome concerns, age, body weight, the latitude of resi-
dence, dietary and cultural habits, making the regional or nationwide guidelines more
applicable in clinical practice.

Activated vitamin D helps maintain serum calcium levels by promoting the absorption
of calcium in the upper small intestine and stimulating bone absorption by osteoclasts [99].
Studies have reported the benefits of vitamin D supplementation in both AP and CP. One
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multiethnic cohort study that enrolled 2810 pancreatitis patients (gallstone-related AP,
n = 1210; AP not related to gallstones, n = 1222; recurrent AP or suspected CP, n = 378)
showed associations between dietary factors and AP [100]. This study found that intake of
vitamin D and milk were inversely associated with gallstone-related type, which indicated
the importance of vitamin D intake in preventing AP, at least the gallstone-related type.
Moreover, vitamin D supplementation in AP patients with vitamin D deficiency appeared
to reduce the development of persistent organ failure [101]. Nevertheless, high-dose
supplementation may cause excessive intestinal calcium absorption, and renal calcium
and bone reabsorption [102–105], leading to hypercalcemia over time. Several studies
have demonstrated that AP could be caused by hypercalcemia following an overdosage of
vitamin D [61–64]. The appropriate dosage of vitamin D as a supplement in AP treatment
remains to be determined. However, the role and use of vitamin D are not mentioned in
any therapeutic guidelines for AP.

In an RCT [106] of 27 patients, compared to ultraviolet ray placebo (weekly tanning
bed sessions), daily cholecalciferol supplements (1520 IU) increased serum 25(OH)D levels
in patients. Another RCT demonstrated that compared with 300,000 IU, a single dose
of 600,000 IU intramuscular vitamin D3 was a more effective form of vitamin D supple-
mentation over six months in CP patients [88]. A systematic review and meta-analysis of
RCTs about nutritional management of CP indicated the substantial effect of vitamin D
supplementation in CP [107]. Several practice guidelines recommend that patients with
CP should have periodic evaluations for malnutrition, including tests for osteoporosis and
fat-soluble vitamin deficiency. When fat-soluble vitamins are insufficient, vitamin D should
be supplemented appropriately [13–15,17,108,109].

Currently, little data is available on the dosage and type of vitamin D supplemen-
tation in pancreatitis patients, as well as the magnitude of the benefits obtained. None
of the guidelines provide clear and consistent recommendations about the dosage, route
of administration, or type of vitamin D supplementation. Pancreas specialists, but not
general physicians, were more likely to advise vitamin D testing and vitamin supplemen-
tation. Therefore, health education for physicians should be enhanced to address this
situation [110].

Despite treatment with high doses of vitamin D, low levels persist. High and systemi-
cally administered doses are needed to achieve antiproliferative effects for treatment with
vitamin D3, with a risk of hypercalcemia and hypercalciuria. When treated with vitamin
D3, high doses and systemic administration are required to achieve anti-proliferative ef-
fects, with the risk of hypercalcemia and hypercalciuria. Vitamin D analogs have been
developed with fewer hypercalcemic effects and without affecting cell proliferation. More
than 3000 vitamin D analogs have been synthesized to enhance VDR binding affinity and
increase metabolic stability, but few are clinically approved. Experimental studies have
shown that calcipotriol, a potent and nonhypercalcemic vitamin D analog, could control
VDR induction and attenuate inflammation and fibrosis in a cerulenin-treated CP model,
consistent with decreased PSC activation [28]. Similar results showed that vitamin D2,
vitamin D3, and calcipotriol significantly reduced the expression of α-SMA in freshly iso-
lated PSCs without full activation [26]. Calcipotriol suppresses pancreatitis and enhances
pancreatic cancer therapy by modulating transforming growth factor β (TGFβ), the main
profibrogenic cytokine that drives fibrosis during CP [28]. Vitamin D inhibits ethanol
metabolism, or antioxidants in alcoholic pancreatitis may arise in part through their ability
to attenuate connective tissue growth factor (CCN2) production by mouse PSC [111]. We be-
lieve that the above studies shed light on the potential use of vitamin D in the treatment of CP.

6. Conclusions and Perspective

Studies have demonstrated that vitamin D plays a critical role in the regulation of
inflammation in AP and CP, where local and systemic inflammation and alterations in long-
term metabolic status are key elements. Numerous cross-sectional, cohort and longitudinal
studies have shown an association among 25(OH)D levels, inflammation, osteopathia, and
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glucose metabolism in pancreatitis. Interventional studies have failed to demonstrate an
unequivocally beneficial effect of vitamin D supplementation in pancreatitis, but some
encouraging results have emerged from trials on patients at risk of developing complica-
tions related to pancreatitis. The included studies have some limitations: (1) most reported
single observations; (2) nearly all studies were underpowered given the small sample size;
(3) most studies did not report medications at baseline or during the study; and (4) different
doses and types of vitamin D were administered, which may be metabolized differently and
provide either no benefit or result in an unfavorable benefit/risk ratio. VD/VDR signaling
induced anti-inflammatory and anti-fibrotic effects in pancreatitis, and further research
is required to detail the underlying molecular mechanisms. Vitamin D and its analogs
have shown promising potential during inflammatory and fibrotic diseases, but greater
focus is required to carry out well-designed RCTs of AP and CP to clinically evaluate these
treatment methods.

In conclusion, despite the available evidence of a connection among signaling path-
ways of vitamin D, inflammatory cytokines and pancreatitis, the current data are insufficient
to demonstrate a general causal role of vitamin D deficiency in the pathogenesis of pancre-
atitis, or a therapeutic role for its supplementation in pancreatitis. The study of vitamin
D and pancreatitis is still in its infancy. Long-term, well-designed, interventional clinical
trials should be conducted to achieve a better understanding of the therapeutic potential
of supplementation in patients with pancreatitis with vitamin D deficiency with regard to
doses, duration of therapy, side effects, and short-term, and long-term results. In fact, we
believe that vitamin D deficient patients at risk of developing CP-related complications
are the most promising target populations for supplementation. Patients with CP should
receive optimal preventive care, and more physicians should be better informed to provide
optimal vitamin D testing and offer bone health surveillance. The dose and duration should
be decided considering vitamin D deficiency/insufficiency and age.
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