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Abstract

Background

Over the past decade, machine learning techniques have revolutionized how research and

science are done, from designing new materials and predicting their properties to data min-

ing and analysis to assisting drug discovery to advancing cybersecurity. Recently, we added

to this list by showing how a machine learning algorithm (a so-called learner) combined with

an optimization routine can assist experimental efforts in the realm of tuning semiconductor

quantum dot (QD) devices. Among other applications, semiconductor quantum dots are a

candidate system for building quantum computers. In order to employ QDs, one needs to

tune the devices into a desirable configuration suitable for quantum computing. While cur-

rent experiments adjust the control parameters heuristically, such an approach does not

scale with the increasing size of the quantum dot arrays required for even near-term quan-

tum computing demonstrations. Establishing a reliable protocol for tuning QD devices that

does not rely on the gross-scale heuristics developed by experimentalists is thus of great

importance.

Materials and methods

To implement the machine learning-based approach, we constructed a dataset of simulated

QD device characteristics, such as the conductance and the charge sensor response ver-

sus the applied electrostatic gate voltages. The gate voltages are the experimental ‘knobs’

for tuning the device into useful regimes. Here, we describe the methodology for generating

the dataset, as well as its validation in training convolutional neural networks.

Results and discussion

From 200 training sets sampled randomly from the full dataset, we show that the learner’s

accuracy in recognizing the state of a device is � 96.5% when using either current-based

PLOS ONE | https://doi.org/10.1371/journal.pone.0205844 October 17, 2018 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Zwolak JP, Kalantre SS, Wu X, Ragole S,

Taylor JM (2018) QFlow lite dataset: A machine-

learning approach to the charge states in quantum

dot experiments. PLoS ONE 13(10): e0205844.

https://doi.org/10.1371/journal.pone.0205844

Editor: Lucas Lamata, University of the Basque

Country, SPAIN

Received: June 12, 2018

Accepted: September 25, 2018

Published: October 17, 2018

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All data files are

available from the data.gov database (direct link:

https://catalog.data.gov/dataset/quantum-dot-data-

for-machine-learning). The QFlow lite sure is

available at GitHub (https://github.com/jpzwolak/

QFlow-lite).

Funding: SSK acknowledges financial support

from the S. N. Bose Fellowship. We acknowledge

funding from the National Science Foundation

Physics Frontier Center at the Joint Quantum

Institute and the Army Research Laboratory funded

Center for Distributed Quantum Information.

http://orcid.org/0000-0002-2286-3208
https://doi.org/10.1371/journal.pone.0205844
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0205844&domain=pdf&date_stamp=2018-10-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0205844&domain=pdf&date_stamp=2018-10-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0205844&domain=pdf&date_stamp=2018-10-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0205844&domain=pdf&date_stamp=2018-10-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0205844&domain=pdf&date_stamp=2018-10-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0205844&domain=pdf&date_stamp=2018-10-17
https://doi.org/10.1371/journal.pone.0205844
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://catalog.data.gov/dataset/quantum-dot-data-for-machine-learning
https://catalog.data.gov/dataset/quantum-dot-data-for-machine-learning
https://github.com/jpzwolak/QFlow-lite
https://github.com/jpzwolak/QFlow-lite


or charge-sensor-based training. The spread in accuracy over our 200 training sets is

0.5% and 1.8% for current- and charge-sensor-based data, respectively. In addition,

we also introduce a tool that enables other researchers to use this approach for further

research: QFlow lite—a Python-based mini-software suite that uses the dataset to train

neural networks to recognize the state of a device and differentiate between states in

experimental data. This work gives the definitive reference for the new dataset that will

help enable researchers to use it in their experiments or to develop new machine learning

approaches and concepts.

Introduction

Quantum information—a field at the intersection of physics, mathematics, and computer sci-

ence—seeks to harness the power of quantum systems for computing and communication

technologies [1, 2]. This field is currently undergoing rapid development as a series of candi-

date quantum computing platforms grow in scale and complexity [3–7]. Essentially, coupled

qubit systems—the quantum analog of classical bits—are moving from being a lab curiosity to

fully integrated and usable computing devices. We are reaching the point where the uniquely

quantum features of entanglement and superposition will enable a solution to problems that

are thought intractable to even the most powerful present day supercomputers [2].

This move, though, comes with a host of challenges that need to be overcome both for near

term and long term computing goals. One of the greatest is the fabrication of stable, controlla-

ble, and scalable qubit arrays. There are a myriad of candidate systems to realize qubits—the

fundamental building block of quantum computers—each having its own set of advantages

and disadvantages to understand, improve, and control their operation [7–15].

Electrons confined in semiconductor nanostructures, called quantum dots (QDs), are one

such candidate. Quantum dots are defined by electrostatically confining electrons in nano-

wires or in two-dimensional electron gases (2DEGs) present at the interface of semiconductor

heterostructures [16]. In practice, for the linear dot arrays in a 2DEG, the electron density

islands are generated in one-dimensional (1D) channels patterned in the 2DEG [7] thus allow-

ing such channels to be modelled as effective nanowires, with electron transport restricted to

1D.

For semiconductor-based methods, the realization of good qubit performance is achieved

via electrostatic confinement, band-gap engineering, and dynamically adjusted voltages on

nearby electrical gates. Fig 1A shows a generic setup of quantum dots in a nanowire. The volt-

ages applied to barrier gates (VBi, i = 1, 2, 3) and plunger gates (VPj, j = 1, 2) define the potential

landscape in which the quantum dots are formed. In particular, barriers define the dot position

by locally depleting carriers beneath them, thereby separating the electron density into disjoint

regions, while the plungers shift the chemical potential in the dots relative to the chemical

potentials of the contacts. In other words, the choice of these voltages determines the number

of dots, their position, and their coupling, as well as the number of electrons present in each

dot.

The translation of requisite dot locations and charges to gate voltages presents a difficult

classical control problem. Currently, gate voltages are set heuristically in order to reach a stable

few electron configuration in experiment. However, given the recent progress in the physical

construction of larger arrays of quantum dots [6, 7], it is imperative to have a reliable and scal-

able method to find a stable, desirable electron configuration in order to initialize a quantum
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dot array. The ultimate goal is to have a fully automated method to find the voltages that yield

the right number of dots, electrons, and couplings. There have been initial attempts to use

computer-supported, algorithmic experimental device control, though these approaches typi-

cally still require human input and device-dependent parameters [17–19].

In recent years, machine learning (ML) algorithms, and specifically convolutional neural

networks (CNNs), have emerged as a “go to” technique for automated classification, giving

reliable output when trained on a representative, comprehensive dataset [20]. A natural next

step towards a fully automated tuning of experiments is to combine the computer-supported

device control with machine learning techniques to replace the heuristics developed by experi-

mentalists [21]. A new “auto-tuning” paradigm, where these two approaches are put together,

has recently been realized in the context of single and double dot devices [22]. In their work,

Kalantre et al. proposed a closed-loop system of experimental control using a large, labeled

simulated dataset, CNN-based learner, and numerical optimization techniques to automati-

cally tune the quantum dot device.

As with all ML techniques, the quality of the training data is essential for successful imple-

mentation of the learner. In scenarios like quantum dot tuning, the availability of a physical

model that can qualitatively mimic experimental output is key to providing large, reliable data-

sets for training. In our case, we developed such a dataset of simulated current, number of

charges on each dot, sensor response, and state identifiers, as a function of the gate voltages.

This dataset was employed to train a neural network and design an auto-tuning protocol that

was further evaluated on simulated and experimental data [22]. Moreover, due to the para-

mount importance of good quality training data, we released our dataset for future machine

learning studies via the Midas system at National Institute of Standards and Technology

(NIST) and at data.gov [23].

Fig 1. Quantum dots from a nanowire. A) A generic model of a nanowire with 5 gates. The barrier gates, VBi with i = 1, 2, 3 (light gray), are set to a fixed

voltage and are used to form islands by confining electron density to certain region. Voltage on the plunger gates, VPj with j = 1, 2 (dark gray), is varied to allow

for control of the current flow through the nanowire. B) Potential profile along a nanowire for a double dot system with N1 and N2 denoting the number of

electrons on each dot. C) Possible states in the 5-gate device. In the short circuit state the potential profile is below the Fermi level, leading to an unintended

current flow. When the potential profile is above the Fermi level, the current flow is blocked (barrier state). By varying the voltage applied to plunger gates in the

lower range while keeping the barriers above the Fermi level of the contacts, one can transition between one and two dots.

https://doi.org/10.1371/journal.pone.0205844.g001
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Here, we describe the generation and validation of the dataset employed in Ref. [22], along

with a bird’s-eye view of auto-tuning of quantum dot devices. While the physics of the model

we use is presented in detail in Appendix A in Ref. [22], we include here a brief overview for

completeness and to set the foundations for the charge sensor model. We also introduce

QFlow lite—a Python-based mini-software suite that uses the dataset to train neural networks

to recognize the state of a device and differentiate between states in experimental data. This

work thus gives the definitive reference for the dataset (which can be found at Ref. [23]) to

enable researchers to use it in their experiments, as well as in the development of new ML

approaches and concepts.

Materials and methods

To mimic the transport characteristics of an experimental device, we developed a model for

electron transport in gate-defined quantum dots (again, see Appendix A in Ref. [22] for addi-

tional information). Here we extend it to include also the charge sensor data generation. Note

that this model is at best a qualitatively correct approach; the general interacting fermionic

problem requires a quantum computer to fully solve, though we expect that the quasi-1D

nature of these devices enables (a computationally very expensive) classical simulation to do

somewhat better than our inexpensive, modified Thomas-Fermi solver.

A generic gate-defined double dot device is presented in Fig 1A. The barrier gate electrodes,

labeled in Fig 1A as VBi (i = 1, 2, 3), are used to confine electron density to certain regions,

forming islands of electrons. The plunger gates, labeled VPj (j = 1, 2), shift the chemical poten-

tial in a given dot relative to the chemical potentials of the contacts (reservoirs of electrons,

labeled in Fig 1A as the source and drain) that are assumed to be kept at a fixed chemical

potential. In our simulations, the electron islands are generated in a 1D channel designed in a

2DEG.

Applying voltages to the gates defines a potential profile along the 1D channel, V(x).

Depending on the relation between the chemical potential μ and the electrostatic potential

V(x), alternating regions of electron density islands and barriers are formed (see Fig 1B), i.e.,

the state of the device is established. For the 5-gate device the possible states are a barrier or

quantum point contact (QPC), single dot (SD), double dot (DD), and short circuit (SC) (see

Fig 1C). To go from the potential profile to experimentally measurable characteristics of the

device, we use a physical model described in the following section. The flow of the data simula-

tion is visualized in Fig 2.

Physical model of the device

In our model, we use the theory of many-electron systems developed by Thomas and Fermi

[24], treating the electronic density n(x) as the main variable. While such an approach lacks

the quantitative details of a full simulation, it reproduces the minimum qualitative features of

the system sufficient for machine learning, as we will show.

Electron transport. As mentioned earlier, in the transport simulations, we assume that

the externally created 1D potential V(x) is given. In particular, the barrier voltages are set to

VBi = −200mV, for i = 1, 2, 3. For plungers, voltages vary between 0mV and 400mV. The ends

of the device are connected to reservoirs of electrons which are assumed to be kept at a fixed

chemical potential, μ1, μ2� 100meV, with a very small bias of 100μeV present across the leads.

The electron density, n(x), is found by iteratively solving the self-consistent equation:

n ¼
Z 1

�0

gð�Þ
1þ ebð�� EFÞ

d�; ð1Þ
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with the starting solution n(x) = 0. Here, β is the inverse temperature, �0 is the conduction

band minimum, and gð�Þ ¼ g0 ¼
m�
pℏ2 is the density of states in the conduction band set to a

constant g0 for a 2DEG. The conduction band minimum itself is modified because of the pres-

ence of the electron density, hence the need for self-consistency. The modified band minimum

is calculated as

�0
0
ðxÞ ¼ �0 � eVðxÞ þ

Z

Kðx; x0Þnðx0Þdx0; ð2Þ

where �0
0
ðxÞ is the new spatially varying band minimum, V(x) is the externally applied poten-

tial, and Kðx; x0Þ ¼ K0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2þs2
p gives the Coulomb potential between points x and x0. K0 sets the

energy scale of the interaction and
R
K(x, x0)n(x0) dx0 gives the effective Coulomb potential cre-

ated as a result of the electron density n(x). A softening parameter σ has been added to the

Fig 2. Data simulation flow chart. The simulation for a device begins by setting gate voltages and calculating the potential profile V(x). This potential

profile, along with other physical parameters, is used to calculate the electron-density self-consistently along the 1D channel. The state of the channel,

e.g., the number of dots is known at this stage. The electron density is used to construct a capacitance model. The model predicts the stable charge states

on the dots and the current through the device. The sensor conductance is calculated using the charge states. The final output for a single set of gate

voltages consists of the device state (state labels), current, charges, and sensor conductance(s). The simulation is repeated for every point in the space of

plunger gate voltages for a single device and then across an ensemble of device geometries.

https://doi.org/10.1371/journal.pone.0205844.g002
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denominator to help model the effective 1D interaction for a higher dimensional gas of elec-

trons as would be present in the device and to prevent a numerical singularity at x = x0. The

modified band minimum is in turn used to find the n(x), and the process is repeated until the

density n(x) converges. The strength of the Coulomb interaction is being increased in a linear

fashion to the required level for a fixed initial number of iterations to avoid pathologies associ-

ated with numerical convergence in the self-consistent calculation.

Capacitance model and tunnel rates. Once the electron density is determined, we cast

the system of islands into a capacitance model [21]. In such a model, each island of electron

density is coupled to the depletion gates and other islands via capacitors. An integer number

of electrons are assumed to be present on each island. Let Q be the vector containing the inte-

ger charges on the islands and Z be the induced charge from the depletion gates. The energy of

such a capacitance model is given as:

E ¼ ðQ � ZÞT
1

2C

� �� 1

ðQ � ZÞ ð3Þ

¼
X

i;j

Ei;jðQ � ZÞiðQ � ZÞj; ð4Þ

whereC is the capacitance matrix and Ei;j ¼
1

2C

� �� 1

i;j
.

The objective behind constructing a capacitance model is to find the stable configuration of

charges Q that leads to the minimum energy E. The Thomas-Fermi electron density n(x) gives

an estimate of the inverse capacitance elements as

Ei;j ¼
ckdi;j

R

inðxÞ
2dxþ

R

i

R

jKðx; x
0ÞnðxÞnðx0Þdx

ð
R

inðxÞdxÞð
R

jnðxÞdxÞ
; ð5Þ

where δi,j is the Kronecker delta function and ck is the coefficient that sets the scale for the

kinetic energy of the Fermi sea on each island. The integration subscript
R
i denotes that the

integration is to be performed only over the ith island. The denominator normalizes to the

total number of electrons on each island.

The islands of electron density are separated by potential barriers. Quantum mechanically,

it is possible for electrons to tunnel into adjacent islands or contacts. We calculate a tunneling

rate for a single electron from the islands to one another or to the contacts under the WKB

approximation. Tunnel rates are then used to set a Markov chain based on charge states to cal-

culate the current. In this approach, we calculate the probability of the single electrons to tun-

nel to adjacent islands. The stable configuration of the Markov chain amongst the charge

states allows us to calculate a current through the device (see Ref. [22]).

Charge sensor model. In our simulations, in addition to finding the current, we also cal-

culate the response of a sensor to the charge on the islands (see Fig 2). A charge sensor is a

device capable of sensing the electrostatic environment around it [25]. It can be constructed in

two principal ways: using a quantum point contact (QPC) or using a single dot (SD). In both

cases, the current through the sensor is sensitive to the change in potential at the sensor’s posi-

tion. A high sensitivity is achieved by tuning it to the rising flank of a conductance step (in the

case of a quantum point contact) or a Coulomb blockade peak (in the case of a quantum dot).

Generically, we model the output of a charge sensor with a simplified model. The sensor con-

ductance, gs, is given as the linear combination of the voltages produced at the sensor location
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by each of the quantum dots:

gs /
X

i

Qi

ri
; ð6Þ

where Qi and ri are the charge on and the distance of the sensor from the ith quantum dot,

respectively. The position of the quantum dot is determined from the peak positions of the

electron density islands produced from the hypothetical Thomas-Fermi model. In our dataset

for the 5-gate device, we store the response produced by two charge sensors positioned in a 1D

channel 50 nm away from the channel where quantum dots are created.

Gate model of the simulated devices. The gates in the simulated QD devices are mod-

elled as cylindrical conductors. Each gate is defined by four parameters: x0 (the gate position),

r0 (the radius of the gate), h (the height from the 2DEG at which gates are fixed), and V0 (the

height of the potential profile at the gate position) that are randomly sampled from a Gaussian

distribution with the mean values listed in Table 1 and standard deviation set to 0.05 times the

mean value. The total width of the device is set to 120 nm.

The potential profile for each device is given as:

VðxÞ ¼
V0

log h=r0
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � x0Þ
2
þ h2

q

r0

exp �
jx � x0j

ssc

� �

; ð7Þ

where V0 sets the height of the potential profile at x = x0 and h controls the width of the profile

[26]. The term e�
jx� x0 j

ssc , with σsc = 20 nm equal to the separation between adjacent gates, has been

added to account for the screening due to the electron density present in the semiconductor.

Additionally, each device is characterized by a set of standard physical parameters chosen

to assure that the quantum dots would be in the few electron (0 to 10 electrons) regime:

• K0 = 10 meV —sets the strength of the Coulomb interaction,

• σ = 2 nm —prevents blowup at x = 0 in the interaction,

• g0 = 0.5 eV−1 nm−1—sets the scale for the density of states,

• ck = 1 meVnm—gives the kinetic term for the 2DEG.

The current, charge, and charge sensor response are calculated as a function of (VP1, VP2). The

resultant dataset allows to train the neural network for a large range of potential experimental

devices, creating a tuning procedure that is robust against varying conditions and imperfections.

Overview of the QFlow lite dataset

As described in previous section, we calculate the electron density in a reference semiconduc-

tor system comprising of a quasi-1D nanowire with a series of depletion gates using a modified

Table 1. Mean values for the parameters defining simulated 5-gates devices: Height of the potential profile (V0) at

the gate position (x0), the height at which barriers were fixed (h), and the radius of the barrier gates (r0). The

device size along x-axis is 120 nm, with the center positioned at x0 = 0 nm.

Gate V0 (mV) x0 (nm) h (nm) r0 (nm)

B1 -200 −40 50 5

P1 (0,400) −20 50 5

B2 -200 0 50 5

P2 (0,400) 20 50 5

B3 -200 40 50 5

https://doi.org/10.1371/journal.pone.0205844.t001
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Thomas-Fermi approximation. Those gates voltages determine the number of dots and the

charges on each of the dots, as well as the conductance through the channel. Using the sam-

pling procedure for physical parameters and gate configurations described in the previous sec-

tion, we generated an ensemble of 1001 different realizations of the same type of device. For

each device realization, we stored data as a 100 × 100 map from plunger gate voltages to the

specific output domains. In particular, we stored the current through the device at small bias

and the charge sensor readout (the relevant, experimentally measurable quantities), as well as

the number of charges on each island and the state labels (not directly measurable but useful

for machine learning). The machine learning training and evaluation set is then generated by

taking random sub-images of fixed size from each map.

The output from simulations, together with the plunger voltage ranges and all physical

parameters defining a given device, are stored as NumPy data files, as this file format allows

for storing structured data while keeping the size of a file relatively small (the total size of a

compressed zip data file with the raw data is 913.1 MB) [27, 28]. Moreover, NumPy files enable

faster reading compared to plain text or CSV files, which is particularly important for high per-

formance scientific computing and data analysis [29]. The Jupyter notebook (S1 File) provides

a Python code to convert the NumPy files (see S2 File for a sample file) to csv format (see S3

File for a converted version of the S2 File).

Each file contains information about a single simulated device. While the units are not

included as part of the dataset, they are provided here for completeness. The generated devices

are stored as dictionaries with the following five elements (keys) in them (the type of each ele-

ment in the dictionary is given in the brackets):

‘type’: information about what data is in the file [string],

‘V_P1_vec’: voltage range for the first plunger (0 to 0.4 V) [numpy.array],

‘V_P2_vec’: voltage range for the second plunger (0 to 0.4 V) [numpy.array],

‘output’: the simulated data [list];

‘physics’: physical parameters of the device [dictionary];

For the structure of full data files, see Fig 3. For a detailed reference list for the simulated

data (i.e., ‘output’), refer to Table 2, and for a reference list for the physical parameters of the

device (i.e., ‘physics’), see Table 3.

Data visualization

The data stored in the ‘output’ correspond to a 2D map (100 × 100 pixel) from the space of

plunger gate voltages (VP1, VP2) to current, charge, state, and sensor maps (each stored sepa-

rately). These maps can be used as observables (current, charge, sensor) and labels (state) for

machine learning training and testing. Fig 4 shows a preview of a sample of each of the gener-

ated data types. The Python code that allows for visualizing the ‘output’ data is included in the

Jupyter notebook (S1 File).

Results and discussion

Dataset validation

To ensure that the dataset can be used by independent researchers to generate their own train-

ing sets, we performed a validation test. Specifically, to test the reliability of the dataset, we ran-

domly generated 200 full training sets of 10,010 subregions (30 × 30 pixels) that were then

used for training and evaluation. These subregions were used as the input to the convolutional
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Fig 3. Data structure. The generic data structure tree for the data files. The data type is given in square brackets. The

simulation output is highlighted in gray. See Tables 2 and 3 for a reference list.

https://doi.org/10.1371/journal.pone.0205844.g003
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neural network. To mimic the experimental setting, for charge sensor data we considered the

gradient of the simulated data (i.e., the differential conductance) rather than the raw data. We

then run five iterations of network training per full set, each time dividing it into two disjoint

parts with 90% of images used for training and 10% of images used for evaluation. The net-

work used for training is comprised of one convolutional layer with 16 filters of the size 5 × 5,

followed by one pooling layer and three dense layers, with 1024, 512, and 128 units, respec-

tively. By convolving the input data (i.e., “sliding” the filters over the image and computing the

dot product of the filter with the input data), the convolutional layer extracts high-level fea-

tures from the input image while preserving the spatial relationship between pixels. The pool-

ing layer reduces the size of each feature map while retaining the most important information.

Finally, the dense layers allow for learning non-linear combinations of these features and to

classify the data. We used the Adam optimizer [30] with a learning rate η = 0.001, 5000 steps

per training, and a batch size of 50.

The accuracy of the learner is defined as a percentage of correctly identified images (super-

vised learning). To account for the uneven distribution of representatives between classes in

the training sets (see Fig 5A for a typical distribution of the states in the training set), we used a

weighted average of F1 scores of each class to find accuracy for each iteration [31]. Note that in

our tests, we did not focus on achieving a high recognition accuracy but rather on verifying

the consistency of the accuracy rate between iterations. The overall average accuracy of the

learner for the current data is 96.3%, with a standard deviation (std dev) of 0.5% and for the

charge sensor data the average accuracy is 95.9% (std dev = 0.6%). The training takes about 4.5

min (std dev = 1.1 min) for the current data and about 4.6 min (std dev = 0.2 min) for the

charge sensor data on a 2014 MacBook Pro.

The average accuracy per state type, i.e., the percentage of correctly identified SD, DD, etc.,

is in both cases fairly comparable for all states except for SC. For the current data, the average

accuracy is 63.5% (std dev = 29.2%) for SC, 92.8% (std dev = 1.9%) for QPC, 94.5% (std

dev = 0.8%) for SD, and 97.7% (std dev = 0.4%) for DD. For the charge sensor data, the average

accuracy is 22.4% (std dev = 26.1%) for SC, 92.8% (std dev = 2.1%) for QPC, 94.0% (std

dev = 0.8%) for SD, and 97.4% (std dev = 0.4%) for DD. Fig 5B shows visualization of the per-

formance of a ML algorithm described earlier, per state, on a sample simulated current-based

dataset. The lower accuracy for SC is caused by the significantly lower number of SC images in

the training and evaluation sets. The parameters of the ML algorithm, such as the number of

convolutional and pooling layers, the number and size of dense layers, the optimizer and learn-

ing rate, batch size and number of steps can be modified to further improve the performance

of the trained network.

The goal of the project presented in Ref. [22] was to auto-tune the device to a DD configura-

tion. Thus, the main task of the ML algorithm was to distinguish between SD and DD states.

Table 2. The single device simulation output (stored as ‘output’) is a list of 10 000 dictionaries, holding the simu-

lated data for each point in the plunger voltage space (defined by vectors ‘V_P1_vec’ and ‘V_P2_vec’). The ‘output’

dictionaries include four variables, as defined in the table.

Key Description Type

‘charge’ an information about the number of charges on each dot (with a default value 0 for short circuit

and a barrier)

tuple

‘current’ a current through the device at infinitesimal bias float

‘sensor’ an output of the charge sensors, evaluated as the electrostatic potential at the sensor locations list

‘state’ a numeric label determining the state of the device, distinguishing between a single dot (1), a

double dot (2), a short circuit (-1), and a barrier (0)

integer

https://doi.org/10.1371/journal.pone.0205844.t002
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The low number of QPC and SC states does not affect performance of the trained network. In

order to obtain a training set that includes more comparable numbers of all types of states one

can, e.g., apply affine transformations on the underrepresented type to reach the desired states

distribution. As has been shown in Ref. [22], however, the network trained on the QFlow lite
dataset can be employed to auto-tune simulated and, in principle, experimental devices.

QFlow lite suite: Working with the data

To ease working with the dataset, we developed a software suite—QFlow lite—that allows users

to generate current-based training sets for machine learning based on the QFlow lite dataset, to

Table 3. The physical parameters of the devices, stored as a dictionary ‘physics’. Fixed values are given explicitly. Varied parameters, given in angle brackets, were ran-

domly sampled from a Gaussian distribution with the given mean value μ and standard deviation set to 0.05|μ| (unless stated otherwise).

Key Description Value

attempt_rate_coef controls the strength of the attempt rate factor 1

barrier_current a scale for the current set to the device when in barrier mode 1 arb. unit

barrier_tunnel_rate a tunnel rate set when the device is in barrier mode while calculating the tunnel probability 10.0

beta effective temperature used for self-consistent calculation of the electron density n(x) 1000(eV)−1

bias difference in the chemical potential between the source and drain 100μeV

c_k kinetic term for the 2DEG h1 meV nmi

D dimension of the problem to be used in the electron density integral, (only when polylogarithm function is used to

calculate the electron density, for a 2DEG a direct analytic integral of the Fermi function is used)

2

g_0 coefficient of the density of states h1.0(eV nm)−1i

gates the dictionary of parameters defining each of the five gates: alpha: lever arm (same for all gates) h1.0i

h: distance of the gate from the electron density (same for all gates) h50.0 nmi

mean: position of the gate along linear array

- for gate 1 h−40 nmi

- for gate 2 h−20 nmi

- for gate 3 h0 nmi

- for gate 4 h20 nmi

- for gate 5 h40 nmi

peak: potential at the location of the electrons

- for gates 1, 3, and 5 h200 mVi

- for gates 2 and 4 h−400 mVi

rho: radius of the cylindrical gate (same for all gates) h5.0 nmi

screen: the screening length (same for all gates) h20.0 nmi

K_0 the strength of the Coulomb interaction h10 meVi

K_mat the Coulomb interaction matrix K_mat(x,K_0,

sigma)

kT temperature of the system used in the transport calculations 50 μeV

mu Fermi level (assumed to be equal for both leads) 0.1 eV

sensor_gate_coeff weight applied while including the potential of the gate in calculating the sensor output 0.1

sensors the position of the two charge sensors in the 2DEG plane, stored as (horizontal position with respect to the center of the

device, vertical position with respect to the dots which are assumed to be located on the x-axis)

[(−20,50), (20,50)]

nm

short_circuit_current an arbitrary high current value given to the device when in short circuit mode 100 arb. unit

sigma softening parameter 3.0 nm

V potential profile V(x)

V_L voltage applied to left lead 50 μV

V_R voltage applied to right lead −50 μV

WKB_coeff the strength of WKB tunneling 0.5

x linear array spanning the size of the device (−60, 60) nm

https://doi.org/10.1371/journal.pone.0205844.t003
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modify the network’s architecture, to train the network, and to test it on their own experimen-

tal data. QFlow lite is written in Python and operated through a Jupyter notebook-based inter-

face [32]. It can be accessed on GitHub [33]. The software comes with a “User Guide” that

includes the software dependencies required for successful execution of the code, a manual

Fig 4. Data visualization. A) Current, B) charge, C) charge sensor, and D) state data as a function of plunger gate voltages (2D map 100 × 100

pixels). Note that the data is unitless. For current, the data in the figure is re-scaled by a factor of 104. The code used to generate these plots can

be found in S1 File.

https://doi.org/10.1371/journal.pone.0205844.g004

Fig 5. State distribution. A) A typical distribution of states in a sample training set (N = 9009). B) A visualization of the performance of the ML

algorithm on sample simulated data (N = 1001).

https://doi.org/10.1371/journal.pone.0205844.g005
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explaining the workflow of QFlow lite, and guidance on how to convert the experimental data

to a format compatible with the trained network.

After initializing the QFlow class that accompanies the QFlow lite suite (Step 1), the user

can modify the size of the images that will be generated for training (Step 2). The total time to

generate the training set from the 1001 stored primitives on a 2014 MacBook Pro is about 2.5

minutes (a default of 10 subregions per data file, 30 × 30 pixels each, and 10,010 effective reali-

zations). The size of the training images can be modified directly within the QFlow lite suite.

The number of images generated from each device has to be changed within the class itself.

Once the training set is established, the user can preview the data. A sample of a single and

double dot, together with the label of each region, are generated. The label indicates the actual

state, as well as the fraction of each type of state within the given image, and is in the format:

[SC, QPC, SD, DD] (see Fig 6 for a sample preview output).

Within Step 3: Definition of the learning network, the user can modify the configuration

of the neural network and other parameters of the learning algorithm (directly within QFlow
lite). Once the network architecture is set, the user can proceed to training (Step 4) and then to

visualization (Step 5) of the accuracy of the learner. Steps 3 through 5 can be repeated until the

desired accuracy is achieved. The final step (Step 6) allows for valuation of the trained network

on experimental data.

Conclusion

From hand-writing recognition of postal addresses [34] to defeating the champions of chess

[35] or the game of Go [36, 37] to self-driving cars [38] to Amazon and Netflix recommenda-

tions [39, 40] to helping battle cancer [41, 42], machine learning algorithms are becoming an

integral part of our daily lives. Over the past few years machine learning has also revolution-

ized how research and science are being done. ‘Adam’—an artificially-intelligent robot scien-

tist—uses ML algorithms to analyze parameters from multiple experimental replicates and

Fig 6. A sample preview output. A preview of a single dot (left) and of a double dot subregion (right) generated using a QFlow lite build-in function qf.
data_preview(). The labels printed above images indicate the actual state, as well as the fraction of each type of state within the given image in the format: [SC,

QPC, SD, DD].

https://doi.org/10.1371/journal.pone.0205844.g006
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helps identify genes responsible for catalyzing specific reactions in the metabolic pathways

[43]. Robot ‘Eve’ uses machine learning to help with search for new drugs [44].

Bringing machine learning to automate discovery or other processes rather than using a

‘brute force’ approach has the potential to substantially accelerate scientific progress across

many disciplines. However, the success of ML algorithms depends on the quality of the train-

ing data. To enable research on quantum dot tuning automation, we developed a reliable data-

set of simulated current and charge sensor response values versus gate voltage. Using this

training set, we showed that the algorithm can identify the state of the quantum dots in both

simulation and experiment, and then tune the device to a desired electronic state (see Ref. [22]

for details about tuning and working with experimental data). This establishes a closed-loop

system for tuning devices and eliminates the need for human intervention. To enable the

usage and further study of ML for quantum dot devices, the training dataset is available via the

Midas system at NIST and at data.gov [23].

The applications of quantum dots are plenty, from studying quantum phenomena observed

in real systems [45–47] to micro-masers and light emitting diodes [48] to realizing quantum

bits [49] to building quantum-dot-based single-photon sources [50, 51]. Progress in quantum

dots array sizes has been steady. Given that double and triple dots are being routinely used in

experiments [17–19] and moderate linear array sizes (* 10 dots) [7], as well as two-dimen-

sional arrays [6], are on the horizon, an auto-tuning procedure for these devices is a significant

step for employing them in both the laboratories and in applications.

While we focused on double dot devices, the procedure generalizes to higher dimensional

systems and, hence, to tuning larger quantum dot arrays. We are currently working on a full

version of the QFlow suite that will allow the user to choose the type of data to work with (i.e.,

the current or charge sensor measurements) as well as to automatically tune the device to a

desired state. In the future, we intend to expand our approach to systems with a larger number

of dots in both one as well as two dimensions. This should enable ML approaches to take over

device control as experiments go from the routine few to the challenging many. The fruitful

exchange between modern machine learning techniques and quantum technology thus pres-

ents an exciting and promising pathway for realizing scalable quantum dot devices for com-

puting and other applications.

Supporting information

S1 File. Data visualization code. A Jupyter notebook-based code for converting the NumPy

files to csv format and for previewing the simulated data.

(IPYNB)

S2 File. Sample raw data. A NumPy file with a single simulated device data.

(NPY)

S3 File. Sample converted data. The S2 File converted to csv format using the Jupyter note-

book-based code provided in S1 File.

(CSV)
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