
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Biomedical Signal Processing and Control 70 (2021) 102999

Available online 21 July 2021
1746-8094/© 2021 Elsevier Ltd. All rights reserved.

Linear parameter varying model of COVID-19 pandemic exploiting 
basis functions 

Roozbeh Abolpour a, Sara Siamak a, Mohsen Mohammadi b, Parisa Moradi a, 
Maryam Dehghani a,* 

a School of Electrical and Computer Engineering, Shiraz University, Iran 
b School of Mechanical Engineering, Shiraz University, Iran   

A R T I C L E  I N F O   

Keywords: 
Basis function 
COVID-19 
Linear parameter varying (LPV) model 
Pandemic 
Quarantine 
Social distancing 
Stability analysis 
SARS-CoV-2 

A B S T R A C T   

Current outbreaks of the COIVD-19 pandemic demonstrate a global threat. In this paper, a conceptual model is 
developed for the COVID-19 pandemic, in which the people in society are divided into Susceptible, Exposed, 
Minor infected (Those who need to be quarantined at home), Hospitalized (Those who are in need of hospi-
talization), Intensive infected (ventilator-in-need infected), Recovered and Deceased. In this paper, first, the 
model that is briefly called SEMHIRD for a sample country (Italy as an example) is considered. Then, exploiting 
the real data of the country, the parameters of the model are obtained by assuming some basis functions on the 
collected data and solving linear least square problems in each window of data to estimate the time-varying 
parameters of the model. Thus, the parameters are updated every few days, and the system behavior is 
modeled according to the changes in the parameters. Then, the Linear Parameter Varying (LPV) Model of 
COVID19 is derived, and its stability analysis is presented. In the end, the influence of different levels of social 
distancing and quarantine on the variation of severely infected and hospitalized people is studied.   

1. Introduction 

The World Health Organization (WHO) announced the outbreak of 
the COVID-19 pandemic, also known as the Coronavirus pandemic, on 
January 30th, 2020 [1]. This disease influences the respiratory system of 
patients [2]. COVID-19 strikes the immunity, and patients who are 
already dealing with another disease such as heart or lung disease are at 
higher risk. Therefore, more attention should be paid to these people 
[3]. 

Due to the rapid spread of the disease in the world, the prevention 
and control of Coronavirus as soon as possible are very important. 
Evidently, mathematical modeling of the pandemic disease can help in 
predicting and forecasting the spread pattern and helps in deciding 
about required governmental action against the virus. 

In the literature, several models for the spread of the virus are pre-
sented [4–9]. Inspiring the models previously developed for a similar 
pandemic (influenza) [10], various models for COVID-19 are proposed, 
which are all based on models developed through data analysis. In [1], a 
susceptible-exposed-infected-recovered (SEIR) model is developed that 

divides the people in society into four groups, excluding the passed away 
people. In [11], a more detailed model is proposed that considers the 
people in susceptible, infected, diagnosed, healed, ailing, recognized, 
threatened, and extinct based on being asymptomatic/symptomatic, 
detected/undetected, … 

In [12–16] similar models are developed, and each study divides the 
people in society into various groups. However, all these papers provide 
models with constant variables, which is not able to fit the real data in 
the whole period of study. 

In [17], the dynamics of the virus are modeled for the general pop-
ulation and regional hospital scale. In [18], for the pandemic model, an 
adaptive Bayesian inversion is proposed to obtain the uncertainty in the 
model parameters. In [19], a network model is presented, in which, 
connections between Chinese cities are considered. This model provides 
a spatial spread of the virus. While most papers develop a continuous 
model for COVID-19, in [20,21], a discrete model is developed. 

In [22], a deterministic model for the Coronavirus and the impact of 
the quarantine strategy on the model for Tunisia are described in two 
ways. In [11,23,24], fractional derivational order mathematical models 
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are presented. In [25], a model with fractal-fractional is considered. In 
[26], a healthy, infected, and dead people (HID) model with one 
reversible reaction and a model by adding people with serious condi-
tions to the HID model are proposed, and the impact of quarantine 
strategies in hospitals on the model are incorporated. A mathematical 
model for Nigeria is presented in [27]. A new epidemic model consid-
ering the impact of health care capacity has been developed in [28]. An 
epidemic model with a latency period is presented in [29]. In [30], 
artificial neural network approaches (autoregressive integrated moving 
average and nonlinear autoregressive artificial neural networks) have 
been used to model and forecast the prevalence of this epidemic in 
Egypt. Huang et al. [31] proposed a multi-input convolutional deep 
neural network model to predict the cumulative number of confirmed 
cases of COVID-19 in seven Chinese cities. In [32], a reinforcement 
learning-based agent was derived for tuning the model’s parameters of 
COVID-19 transmission dynamics. The authors took into account the 
healthcare system parameters, the pandemic’s characteristics, and the 
socio-economic aspects of the community. 

Although several models for the COVID-19 pandemic are developed, 
still much effort is need to develop a model that can fit the real data in all 
pandemic waves, completely. On the other hand, most models cannot 
indicate whether the capacity of hospitals in full or, similarly, the ca-
pacity of ICU beds is completely occupied according to the model of 
disease. 

In this paper, with generalizing the pandemic model based on the 
analysis of available data, infected people are classified according to the 
degree of their involvement in the disease, which considers their impacts 
on the usage of hospitals or ICU capacity. The reason for this model 
development is due to the shortage of hospital capacity or ventilators, 
which caused a panic in the peak of coronavirus disease in most 
countries. 

The main usage of model development is to provide a detailed and 
accurate model which can fit the past and present data. Therefore, a 
time-varying model is developed in this paper to assure an appropriate 
model according to the historical data of a country. After being sure 
about the suitability of the model, it is used for developing an LPV model 
for the COVID-19 pandemic according to the time-varying parameters. 
Stability analysis of this model according to various social distancing 
levels can obviously be done by such an LPV model using LMI-based 
methods or the direct searching idea [33]. The LPV model is also 
appropriate for model-based stability analysis and controller design for 
the COVID19 pandemic, especially, the robust stability analysis and 
controller design approaches. 

Unfortunately, many countries deal with a serious challenge of not 
being able to provide the required facilities for all patients. This inspired 
the significance of caring for this point in mathematical modeling. In this 
paper, the people in society are divided into SEMHIRD or Susceptible, 
Exposed, Minor infected (Those who need to be quarantined at home), 
Hospitalized (Those who are in need of hospitalization), Intensive 
infected (ventilator-in-need infected), Recovered and Deceased. Existing 
data provided by the Italian Health Organization are used in this study 
due to their completeness. The parameters of the proposed model are 
estimated via least-squares fitting. Then, according to a certain capacity 
in hospitals for people with severe care who need a ventilator to breathe 
and a certain capacity for hospitalization, the model is analyzed whether 
the present quarantine or social distancing rules are suitable for being 
continued in a country or a more sever strategy is required. Finally, the 
immaculate derived model is exploited in generating the COVID-19 LPV 
model. 

The remainder of the paper is organized as follows. In Section 2, the 
suggested generalized mathematical model of pandemic Coronavirus is 
proposed. Section 3 presents the time-varying model identification 
strategy and the impact of various levels of quarantine. The COVID-19 
LPV model is presented in Section 4. Numerical tests and comparisons 
between real and mathematical model behavior of coronavirus disease 
in a sample country are presented in Section 5. Also, this section includes 

the results of the LPV model analysis. Section 6 presents a discussion 
about the results and the state-of-the-art approaches. Finally, Section 7 
concludes the paper. 

2. Mathematical model of COVID-19 

The purpose of this section is to provide an appropriate mathematical 
model for COVID-19 which can demonstrate the relation among 
different categories of people in society. 

2.1. Conceptual model 

In the proposed model, seven states are considered that represent 
different categories of people in the community who are associated with 
the disease. Susceptible people, S(t), exposed people, E(t), people with 
positive tests with mild symptoms of the disease as minor infected 
people, M(t), hospitalized with symptoms people, H(t), people in 
intensive infected, I(t), recovered people, R(t), and deceased people, 
D(t). The state I(t) shows the people who need a ventilator for breathing. 

The flow diagram of the proposed model is shown in Fig. 1. 
In this diagram, αE, αM and αH show the contact factors of exposed, 

minor infected, and hospitalized people with susceptible people, which 
can lead to their transition to exposed people. Also, k1, k2, δ1, δ2,θ1 and 
θ2 coefficients demonstrate the transfer from exposed to minor infected, 
from exposed to hospitalized, from minor infected to hospitalized, 
hospitalized to minor infected, from hospitalized to intensive infected 
and from intensive infected to hospitalized, respectively. 

According to the proposed model, recovered people have come from 
the exposed, minor infected, hospitalized and critical people with 
transfer coefficient ρ, β, η, and φ, respectively. 

Deceased people are from critical people with transfer coefficient μ. 
Similarly, the rest of the parameters indicate the transfer coefficient of 
each group to another group. The compartmental representation of 
Fig. 1 is equivalent to the following set of differential equations: 

dS(t)
dt

= − αES(t)E(t) − αMS(t)M(t) − αHS(t)H(t) (1)  

dE(t)
dt

= αES(t)E(t)+ αMS(t)M(t) +αHS(t)H(t) − (k1 + k2)E(t) − ρE(t) (2)  

dM(t)
dt

= k1E(t) − βM(t) − δM(t) (3)  

dH(t)
dt

= k2E(t) + δM(t) − θH(t) − ηH(t) − ζH(t) (4)  

dI(t)
dt

= θH(t) − φI(t) − μI(t) (5)  

dR(t)
dt

= ρE(t)+ βM(t) + ηH(t) +φI(t) (6)  

Fig. 1. Flow diagram of SEMHIRD mathematical model of COVID-19.  
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dD(t)
dt

= μI(t)+ ζH(t) (7)  

N(t) = S(t)+E(t) +M(t) +H(t)+ I(t)+R(t)+D(t) (8) 

where N(t) is the total population of the considered country. Dividing 
equation (8) by N(t), the number of people in each group will be pro-
portional to the total population. With considering the relative popu-
lation for each group, the following equation is obtained: 

S(t)+E(t)+M(t)+H(t)+ I(t) +R(t)+D(t) = 1 (9) 

The algebraic relationship (9) helps to make the model simpler by 
reducing one state. S(t) can be removed from state equations. Table 1 
indicates the parameter information in the simulation. 

In the sequel, some explanatory notes about the conceptual model 
(1–8) are given to understand its concepts and aspects, completely. 

First, it must be emphasized that the mentioned groups have their 
own dynamics, properties, and influences on the virus transmission 
dynamics. For instance, the minor and major infected people have 
different dynamics and have cross-influences on the other groups. 
Indeed, the proposed categorization is adopted from the nature of the 
virus spread. 

Second, the proposed model (1–8) can be rewritten as given below: 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ĖṀḢİṘḊ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− k1 − k2 − ρ+αES αMS αHS 0 0 0
k1 − β − δ 0 0 0 0
k2 δ − θ − η − ζ 0 0 0
0 0 θ − φ − μ 0 0
ρ β η φ 0 0
0 0 ζ μ 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

E
M
H
I
R
D

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10) 

The non-zero entries of the system’s matrix in (10) indicate the 
conceptual connections between the mentioned groups. The connections 
are consistent with the real transmission dynamics of the virus, in both 
definition and causality aspects. For example, the deceased people 
cannot influence the other groups, while the exposed or infected ones 
can significantly impact the other groups. 

In (10), the off-diagonal entries of the system’s matrix are non- 
negative, which means the matrix is Metzler and the proposed model 
is positive [34]. Hence, the states will remain non-negative in the 
simulation times whenever initial conditions are non-negative. This fact 
mathematically describes the sign of off-diagonal entries that are obvi-
ously consistent with the positive nature of the real model. The diagonal 
entries of the system’s matrix in (10) are supposed to be non-positive to 
satisfy the wave shape of the model’s states. Thus, the states should 
individually have a damping mechanism to suppress their values inde-
pendent of the values of the other groups. It is apparent that this prop-
erty can be held by restricting the diagonal entries to be non-positive. 

Consequently, the proposed model satisfies necessary conditions 
adopting from the definitions and causality conditions of the real virus 
spread model. It means the structure of the model must be considered as 
(1–8) based on the existed restrictions and conceptual definitions of the 
model’s states. 

2.2. Parameter concepts and formulations 

In this model, birth is not considered, and death is only considered 
for this disease. The reason is the negligible number of death and birth in 
a short period of study. It is assumed that recovered people are immune 
to the disease, and only people in need of intensive care may die. With 
considering the susceptible people in the community who get the disease 
if they are exposed to it, the spread of the virus is through the 
communication of susceptible people with exposed people at the risk of 
the disease who are asymptomatic, people who have few symptoms of 
the disease, and people admitted to the hospital. Also, it is assumed that 
intensive infected are completely isolated from the outside environment. 
These communications are shown by αES(t)E(t), αMS(t)M(t) and 
αHS(t)H(t) terms. It seems that αE is greater than αM because people are 
more likely to avoid the people with symptoms of the disease, but αE is 
reduced strongly by implementing social distancing. αH may be greater 
than αE and αM because of the severity of the disease. 

Exposed people do not have the symptoms of the disease, and the 
disease can be transmitted to others. People who have been recovered 
may also transmit the disease for a period of time. Therefore, in this 
paper, these people are also considered those who can spread the disease 
to exposed people. Parameter ρ indicates the rate of recovery of these 
people. It is difficult to measure the number of people in this category 
due to the lack of symptoms and their avoidance of visiting medical 
centers. However, these people may have symptoms after a period of 
time. People with low symptoms and high symptoms may transfer to the 
minor infected people group and hospitalized people group with rates k1 
and k2, respectively. 

Minor infected people may get worse over time and be hospitalized, 
and this conversion rate is shown by δ. Hospitalized people may recover, 
be transferred to the part of intensive infected or die with rates η, θ and ζ, 
respectively. Intensive infected people may recover or die with rates φ 
and μ, respectively. 

The vector of all parameters is denoted by θ(t) =
[αE, αM,αH, k1, k2, ρ, β, η, δ,φ, θ, μ, ζ]T for the convenience of the nota-
tions. Obviously, these parameters surely have time-varying nature 
because the amounts of their related contact factors or transition rates 
(based on Table 1) are continuously changed over time. Furthermore, 
the consideration of time-varying parameters increases the number of 
free variables in the least square problem that intuitively improves its 
results which is described later in this paper. To represent this time- 
varying nature, each parameter such as αE(t) is considered as an 
extension of n basis functions: 

αE ≈
∑n

i=1
ωαEi

bi(t) (11) 

where notations 
{

ωαEi

}n

i=1 
and {bi(t) }n

i=1 are two sets of real co-

efficients and radial basis functions with the following definition: 

bi =
exp
(
− σ|t − ci|

2
)

̅̅σ
π

√ (12) 

In fact, bi is the ith basis function which is a Gaussian basis function in 
which ci is the center of each basis function and σ is its variance. All 
parameters can similarly be formulated as (11) that implies the structure 
of a network of n radial basis functions as follows: 

θ(t) =
∑n

i=1
ωibi(t) (13) 

Table 1 
Parameter Information.  

Parameter Description 

αE  Contact factor of exposed to susceptible 
αM  Contact factor of minor infected to susceptible 
αH  Contact factor of hospitalized to susceptible 
k1  Transition rate of exposed to minor infected 
k2  Transition rate of exposed to hospitalized 
ρ  Transition rate of exposed to recovered 
β  Transition rate of minor infected to recovered 
η  Transition rate of hospitalized to recovered 
δ  Transition rate of minor infected to hospitalized 
φ  Transition rate of intensive infected to recovered 
θ  Transition rate of hospitalized to intensive infected 
μ  Transition rate of intensive infected to deceased 
ζ  Transition rate of hospitalized to deceased  
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where; 

ωi =
[
ωαEi

,ωαMi
,ωαHi

,ωk1i
,ωk2i

,ωρi ,ωβi ,ωηi ,ωδi ,ωφi ,ωθi ,ωμi ,ωζi

]T
(14) 

The time-varying nature of the parameters is represented by (13) that 
is a combination of some radial basis functions given in (12). This 
particular time-varying structure is considered according to the uni-
versal approximation theorem that states there exist coefficients {ωi}

n(ε)
i=1 

for each threshold error value ε > 0 that satisfy condition (15) (Please, 
note that the number of the basis functions n(ε) depends on the 
threshold error value ε): 

∀t :

⃒
⃒
⃒
⃒
⃒
θ(t) −

∑n(ε)

i=1
ωibi(t)

⃒
⃒
⃒
⃒
⃒
≤ ε (15) 

Regarding the universal approximation theorem, the time-dependent 
parameters θ(t) can be approximately considered as given in (13). The 
theorem provides a mathematical reason for the time-varying repre-
sentation (13). 

3. Modeling strategy 

The linear parameters of the proposed model can be obtained from 
system identification. Endeavor to fit a constant-variable model to real 
database of a country demonstrates that the behavior of coronavirus 
spread is so complex that it cannot be modeled only by constant vari-
ables. Therefore, the attempt is made to fit the model by time-varying 
parameters. To ensure accurate and appropriate model of the Corona-
virus transmission dynamics, all the parameters in (1)- (8) are consid-
ered as a function of basis functions, and the parameters of the basis 
functions are determined, assuring least square errors. 

A sample basis function network is shown in Fig. 2 [35]. 
In Fig. 2, ti is the time which is considered from t1 to tp corresponding 

to the length of data, ωi is a coefficient vector and the output ŷ is the 
estimation of the parameters in equations (1)-(8). 

The proposed model (1)-(8) contains a set of unknown variables 
which are the weights of the radial basis functions in equation (13). The 
variables are estimated through the least square method, which is pre-
sented in the following. For this purpose, the following matrices should 
be firstly defined: 

x = [E M H I R D]
T (16)  

A(S, θ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− k1 − k2 − ρ + αES αMS αHS 0 0 0
k1 − β − δ 0 0 0 0
k2 δ − θ − η − ζ 0 0 0
0 0 θ − φ − μ 0 0
ρ β η φ 0 0
0 0 ζ μ 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(17)  

S(t) = 1 − x1(t) − ⋯ − x6(t) (18) 

Using (16) and (17), the dynamics of the model can be rewritten as 
follows: 

ẋ(t) = A(S(t), θ(t) )x(t) (19) 

The above model is a nonlinear time-varying model, even though it 
seems to be a linear model. This paper presents this nonlinear time- 
varying model by a Linear Parameter Varying (LPV) model since its 
parameters are time-varying according to (13). 

To implement the least square method, the above model is firstly 
discretized as given below, in which notations T and k stand for the step 
time and time index, respectively: 

x((k + 1)T ) = A(S(kT), θ(kT) )x(kT) (20) 

On the other hand, (13) leads to the following result: 

θ(kT) =
∑n

i=1
ωibi(kT) (21) 

Upon substituting (21) in (20), one can find the following equation: 

x((k + 1)T ) =
∑n

i=1
A(S(kT), bi(kT)ωi )x(kT) (22) 

For the convenience of the notations, x((k + 1)T ) and x(kT) are 
replaced by xk+1 and xk in the above equation, as follows: 

xk+1 =
∑n

i=1
A(S(kT), bi(kT)ωi )xk (23) 

Please note that, vector xk is adopted from the recorded data which is 
the kth record. Using this fact, the following equation can be found from 
(23): 

∀j = 1,⋯, 6 :

eT
j xk+1 =

∑n

i=1

∑13

l=1

(
eT

j A(S(kT), elbi(kT) )xk

)
ωi,l

(24) 

where ej and el are the jth and lth columns of the identity matrices of I6 

and I13 (Please, note that, there are 13 parameters in the model). Let N be 
the number of the recorded data that means there exists {xk}

N
k=0 records. 

Using this assumption, the identification problem will briefly be ob-
tained as follows: 

Gω = g (25) 

with the following matrix definitions and considering Sk = S(kT) and 
bi,k = bi(kT): 

G=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

eT
1 A
(
S0,e1b1,0

)
x0 ⋯ eT

1 A
(
S0,e13b1,0

)
x0 ⋯ eT

1 A
(
S0,e13bn,0

)
x0

eT
2 A
(
S0,e1b1,0

)
x0 ⋯ eT

2 A
(
S0,e13b1,0

)
x0 ⋯ eT

2 A
(
S0,e13bn,0

)
x0

⋮ ⋮ ⋮ ⋮ ⋮
eT

6 A
(
S0,e1b1,0

)
x0 ⋯ eT

6 A
(
S0,e13b1,0

)
x0 ⋯ eT

6 A
(
S0,e13bn,0

)
x0

⋮ ⋮ ⋮ ⋮ ⋮
eT

1 A
(
Sk,e1b1,k

)
xk ⋯ eT

1 A
(
Sk,e13b1,k

)
xk ⋯ eT

1 A
(
Sk,e13bn,k

)
xk

⋮ ⋮ ⋮ ⋮ ⋮
eT

6 A
(
Sk,e1b1,k

)
xk ⋯ eT

6 A
(
Sk,e13b1,k

)
xk ⋯ eT

6 A
(
Sk,e13bn,k

)
xk

⋮ ⋮ ⋮ ⋮ ⋮
eT

1 A
(
SN ,e1b1,N

)
xN ⋯ eT

1 A
(
SN ,e13b1,N

)
xN ⋯ eT

1 A
(
SN ,e13bn,N

)
xN

⋮ ⋮ ⋮ ⋮ ⋮
eT

6 A
(
SN ,e1b1,N

)
xN ⋯ eT

6 A
(
SN ,e13b1,N

)
xN ⋯ eT

6 A
(
SN ,e13bn,N

)
xN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(26)  

Fig. 2. A sample basis function network.  
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g =
[
eT

1 x1⋯eT
6 x1⋯eT

1 xN+1⋯eT
6 xN+1

]T (27)  

ω =
[
ω1,1⋯ω1,13⋯ωn,1⋯ωn,13

]T (28) 

The least square method is used to solve the algebraic equations (25)- 
(28). To evaluate the cross validation, the algebraic equation is 
decomposed such as Gtrain and Gtest and the test dataset are randomly 
selected from the rows of matrix G. Similarly, vectors gtrain and gtest are 
correspondingly selected from the rows of the main vector g. Using these 
decompositions, the algebraic equation (25) is equivalently converted to 
the following equations: 

Gtrainω = gtrain (29)  

Gtestω = gtest (30) 

The algebraic equation (29) is solved via the least square method as 
the train equation. Then, the results are cross validated by the test 
equation (30) to check their accuracy. 

4. LPV modeling of SEMHIRD and its stability assessment 

Consider the system (10). It can be seen that in this system the 
parameters 

{pi} = {αE,αM , αH , k1, k2, ρ, β, η,φ, δ, θ, μ, ζ} (31) 

belong to a predefined interval [0 pi]. Also, each state variable of the 
system (10) belongs to the set [0 1]. 

The LPV model of system (10) can be written as [36]: 

ẋ = A(p)x (32) 

where p represents the interval change of parameters {pi}, and ma-
trix A is 

A = A ⊙ (1 − C)+A ⊙ C (33) 

And 

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− k1 − k2 − ρ 0 0 0 0 0
0 − β − δ 0 0 0 0
0 0 − θ − η − ζ 0 0 0
0 0 θ − φ − μ 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

αE αM αH 0 0 0
k1 0 0 0 0 0
k2 δ 0 0 0 0
0 0 θ 0 0 0
ρ β η φ 0 0
0 0 ζ μ 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1 c2 c3 0 0 0
c4 0 0 0 0 0
c5 c6 0 0 0 0
0 0 c7 0 0 0
c8 c9 c10 c11 0 0
0 0 c12 c13 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(34) 

The corner points of matrix A can be found by setting each varying 
parameter ci}

13
i=1 a value of one or zero. Therefore, there are 213 corner 

points in the COVID-19 LPV model. In the above model, the varying 
parameters ci can change freely in the interval [0 1]. 

Lemma 1.. The system (10) is stable if there exists a positive definite 
symmetric matrix P such that: 

AT
i P + PAi < 0, for all corner points Ai. (35)  

Proof.. The system (10) can be rewritten as: 

ẋ =
∑213

i=1
aiAix, (36) 

where ai represents the coordinates of matrix A in the convex space 
formed by the corner points Ai. Now, consider the Lyapunov function 
V = xTPx. Its derivative can be found as: 

V̇ =
∑213

i=1
aixT AT

i Px+ aiPAix = aixT

(
∑213

i=1
AT

i P+PAi

)

x (37) 

If all the elements in the parentheses are negative definite, it can be 
concluded that V̇ is negative definite. 

To check the COVID-19 LPV system stability, we use both the LMIs in 
(37) and the concept of direct search approach [37]. Evidently, we have 
an uncertain system that includes many time varying parameters that 
should be assessed whether it is stable. Due to the large uncertain space 
of parameters, the LMIs in (37) may become infeasible. To be sure that 
we can find the system stability status exactly, we exploit the direct 
search approach. The methodology is to consider the whole uncertain 
space and then divide it into small simplexes. Then, check whether the 
simplices in the uncertain space assure stability of the model or not. The 
stability assessment is based on the exposed edges lemma. In each 
simplex, if the corner points are stable and the convex combination of 
the corner points does not entail any critical points, then the whole 
simplex is stable. The detailed proofs of the method are given in [37]. 

In the direct search approach, the goal is to check the system stability 
by searching the solution space of the parameters. 

At first, we check if the COVID-19 model is inherently stable, and we 
may encounter a non-satisfying answer that it is not stable. Then, we can 
apply some control measures such as increasing social distancing level 
and repeat the test. This method can lead to a useful conclusion for 
controlling the COVID-19 spread. 

5. Simulation results 

To show the appropriateness of the proposed approach in modeling 
the Coronavirus transmission dynamics and assessing its stability, the 
sample data of a country is exploited. According to the completeness of 
data in [38], the real data of Italy is considered. Then, the model is 
developed based on the basis function model, and the behavior of the 
model in the past and present is evaluated. After being sure about the 
time-varying model parameters, the effects of social distancing and 
quarantine levels on the severity of the Coronavirus infections and death 
are investigated. 

The proposed model can be used for different countries, however, in 
this article, the data of Italy is used due to its completeness. 

5.1. Model study 

In this section, the data provided by the Italian Ministry of Health, 
[38], are used to determine the parameters of the proposed model of 
COVID-19. The total population of the mentioned groups for Italy is 
considered 60,381,361 people [39]. 

At first, the model without using basis functions is considered and by 
using constant parameters, the model is simulated. Fig. 3 shows the 
results of the model with constant parameters and a comparison of the 
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states model with real data for 454 days. As shown in Fig. 3, the model is 
not fitted on the real data. 

In the following, the basis functions model mentioned in section 3 is 
implemented to simulate the model. In this simulation, for some 
different ci, the Gaussian functions are chosen as basis functions. The 
number of basis functions is n = 130.σ = 0.15 and N is the population of 
Italy. Fig. 4 shows the considered basis functions in this simulation (for 
better display, it is only shown for 150 days). 

According to the obtained data, the least square approach is 
exploited to determine the model parameters. 

The variation of quantities in the mathematical model for the Italy 
database for 454 days is shown in Fig. 5. The maximum error in the 
fitting of the model to the real data is 0.0115. The results of Mean 
Squared Error (MSE), Sum Squared Error (SSE), and Root Mean Squared 
Error (RMSE) are given in Table 2. As shown in Fig. 5, the number of 
minor infected people, hospitalized people, and intensive infected 
increased in the early days, and these populations experience a peak, 
and after that, with the regulations related to this disease, given by 
WHO, the trend is decreasing. Again, after some time, the pandemic 
experiences its second wave. 

Fig. 6 to Fig. 10 show the results of parameter estimation using real 
data from Italy. The parameters are time-varying, and every 3.5 days 
change. 

5.2. Discussion about shortage in hospital capacity and ventilator 
capacity 

The hospital capacity of Italy is 3.18 beds per 1000 people and the 
ventilator capacity for Italy is 5,324 [40], and the need for these devices 
has to be at most equal to the number of available devices. This number 
is about 8.9 per 100,000 people. Since some people are already hospi-
talized in the country according to a disease other than Coronavirus, it is 
assumed that the 30% of hospital capacity and 80% of ventilator ca-
pacity can be devoted to this disease, approximately. The capacities are 

shown by a red line in Fig. 11 and Fig. 12. 
To analyze the model for the future, we can consider the above 

model and assume that the level of quarantine is changed. In model (1)- 
(2), the social distancing and the quarantine levels can affect the 
parameter αE, and αH, respectively. At the same time, the social 
distancing and quarantine strategies may change, which can influence 
the curve variations in the future. 

It is assumed that the social distancing is divided into 5 categories: 
100%, 75%, 50%, 25%, and 0%, according to the level of social 
distancing imposed by the government. Obviously, 100% means com-
plete lockdown, and 0% means no social distancing is applied. In other 
categories, different levels of social distancing are considered. For 
instance, we can assume 75% social distancing means all people stay at 
home and only the shops are open provided that they keep on the sever 
regulations of WHO (covering most parts of their shop with glass or 

Fig. 3. Variation of number of states of the model with constant parameters which shows inappropriate modeling result: αE = 0.342, αM = 0686, αH = 0.2955, k1 =

0.0123, k2 = 0.0021, ρ = 7.8126e− 4, β = 0.0153, η = 0.1180, δ = 0.0055, φ = 0.0750, θ = 0.0123, μ = 0.0152 , ζ = 0.0016. 

Fig. 4. Basis functions.  
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Fig. 5. Variation of number of people in different categories in the proposed model a) Exposed people b) Minor infected people, c) Hospitalized people, d) Intensive 
infected people, e) Recovered people, and f) Deceased people. 

Table 2 
Error in Statistical Tests.  

State MSE SSE RMSE 

E  1.7134× 10− 4   0.0778  0.0353 

M  9.3893× 10− 6   0.0043  0.0083 

H  2.5102× 10− 8   1.1396× 10− 5   4.2733× 10− 4  

I  2.7961× 10− 9   1.2694× 10− 6   1.4262× 10− 4  

R  5.7608× 10− 4   0.2615  0.0647 

D  2.0986× 10− 6   9.5275× 10− 4   0.0039  
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Fig. 6. Variation of parameters that affect the spread of the virus.  

Fig. 7. Variation of parameters that express the transfer rates of exposed people to the minor infected and hospitalized people.  

Fig. 8. Variation of parameters that express the transfer rates to the recovered people.  
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plastics to avoid direct contact with the customers). The 50% social 
distancing level can be assumed as the case that added to the shops, 
subways, MTR and transportation facilities, work, and finally, 25% so-
cial distancing refers to the case that except conferences, university and 
school classes that are held electronically, all other activities in the city 
are followed, regularly. Obviously, these numbers are not estimated 

exactly and they are just mentioned to give a sense of different social 
distancing levels. 

Added to the different social distancing levels, different cases of 
quarantine in hospitals are assumed. In these cases, people (doctors, 
nurses, and those who are supposed to work at hospitals) who visit the 
patients may or may not wear special clothes, and the patients may or 

Fig. 9. Variation of parameters that state the transmission rates of different degrees of disease to each other.  

Fig. 10. Variation of parameters that state the transmission rates to deceased people.  

Fig. 11. Hospitalized people compared to hospital capacity.  Fig. 12. Intensive infected people compared to ventilator capacity.  
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may not be kept in isolated rooms. The more the contaminated person is 
kept isolated, the more severe quarantine level is considered. 

5.2.1. Effects of quarantine strategy on hospitalized and Intensive-infected 
people 

The effect of decreasing quarantine strategy with increasing αH on 
the population of hospitalized people and intensive infected people are 
shown in Fig. 13. Similarly, Fig. 13 reveals that to avoid a shortage of 
ICU beds, it is necessary to quarantine the hospitalized people. This 
indicates the isolation of COVID-19 patients to protect doctors, nurses, 
and those who are supposed to work at hospitals. It is concluded that the 
isolation should be kept at the highest level to assure enough ICU ca-
pacity for intensive infected people. 

5.2.2. Effects of social distancing on hospitalized and Intensive-infected 
people 

The effect of decreasing social distancing with increasing αE on the 
population of hospitalized people and intensive infected people are 
shown in Fig. 14. 

Fig. 14a indicates that if no social distancing is applied, the capacity 
of hospitals is not enough for patients. However, Fig. 14b determines the 
essential social distancing level of at least 75% to assure that ICU beds 
are enough for Coronavirus patients who are in need of a ventilator. 

5.3. LPV model stability analysis 

According to the results given in Fig. 6- Fig. 10, the variation of the 
parameters in the LPV model of COVID-19 in (10) is derived as follows: 

αE∊ [0,3.45],αM∊[0,2.92],αH∊[0.07,3.41], k1∊[0,1.38],k2∊[0,1.36],ρ∊[0,0.15],
β∊[0,0.46],

η∊ [0.02,2.55],φ∊[0.23,2.59],δ∊[0,2.66], θ∊[0.17,1.32],μ∊[0,0.06],ζ∊[0,0.07]
(38) 

At first, the stability is assessed by solving the set of LMIs in (35) 
using the YALMIP toolbox [41]. The result shows no feasible solution. To 
be sure that whether the problem is unstable per se or it can be stable, 
the direct searching approach is exploited. 

The approach shows total infeasible solution space, which means 
intensive care and quarantine strategies are needed to stabilize the 
model. Since the direct search approach is non-conservative, this means 
that the LPV model is unstable. For further study, the quarantine and 
social distancing levels are increased, which is equal to decreasing the 
values of αE,αM,αH. Setting these levels to 75% shows a stable model that 
guarantees the states’ convergence to constant values. 

Fig. 13. Effect of decreasing quarantine of hospitalized people with increasing αH . a) The effect of different levels of quarantine on the hospitalized people. b) The 
effect of different levels of quarantine on the intensive infected people. 

Fig. 14. Effect of decreasing social distancing with increasing αe. a) The effect of different levels of social distancing on the hospitalized people. b) The effect of 
different levels of social distancing on the intensive infected people. 
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6. Discussion 

The data of COVID-19 in case study Italy for 454 days from March 
2nd, 2020 to May 29th, 2021 are collected and a model for the spread of 
Coronavirus is suggested. It is shown that without using basis functions 
and by using constant parameters, the model is not fitted on the 
collected data. Then, according to section 3, some basis functions are 
used, and the parameters are estimated dynamically. As is given in 
section 4, the results show the capability of the proposed model to follow 
the real data. There are some papers that work on COVID-19 modeling, 
but they didn’t compare modeling results with real data [4,11]. In some 
other works, only in the early days of the outbreak, the model has been 
tested to fit the data [22,27,29], and in some others, the model has not 
fitted appropriately for all days [13,42]. However, in this paper, the 
comparison of data and the proposed model is given and the accuracy of 
fitting the proposed model to the data is 99.33% in the total data. 

In sections 5.2.1 and 5.2.2, it is shown that without applying 
appropriate quarantine and social distancing, the required number of 
hospital beds and ventilators exceeds the available capacities. The re-
sults show the need for social distancing and quarantine rules. 

It is essential to mention that the social distancing level depends on 
the physical distance of the people. Therefore, it is not essential for the 
model whether lockdown policy is imposed or the people themselves 
obey WHO’s suggestions. In some countries, the government imposed 
severe regulations, while in some other countries, governments just 
suggest people follow WHO regulations. For the proposed model of this 
paper, both of these strategies are the same. The result is important: the 
people should not come closer to others (whether by force or by their 
own decision). 

In the last part of the paper, the modeling results are used to derive 
the LPV model of COVID-19 disease. Fortunately, the methodology is 
successful in presenting an approach for COVID-19 LPV model deriva-
tion. Then, the stability tools can be used to assess the model stability. 

7. Conclusion 

In this paper, a mathematical model for the spread of COVID-19 is 
proposed. In this model, the people involved with the disease are divided 
into seven groups, including susceptible people, exposed people, minor 
infected, home isolation people, hospitalized people, intensive care 
people, intensive infected, recovered people, and deceased. After esti-
mating the time-varying parameters in the model, the effects of social 
distancing and quarantine are studied on the model. It is concluded that 
the model is suitable for fitting the past and present curves and can be 
used for determining the level of quarantine and social distancing in a 
city. In addition, the time-varying parameters of the model are used in 
deriving the COVID-19 LPV model. The model can be used for robust 
stability assessment or controller design (vaccine injection rate) ap-
proaches, exploiting the theory of LPV systems. 
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