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Abstract

Background: Limb-girdle muscular dystrophy (LGMD) is a group of neuromuscular disorders of heterogeneous
genetic etiology with more than 30 directly related genes. LGMD is characterized by progressive muscle weakness
involving the shoulder and pelvic girdles. An important differential diagnosis among patients presenting with
proximal muscle weakness (PMW) is late-onset Pompe disease (LOPD), a rare neuromuscular glycogen storage
disorder, which often presents with early respiratory insufficiency in addition to PMW. Patients with PMW, with or
without respiratory symptoms, were included in this study of Latin American patients to evaluate the profile of
variants for the included genes related to LGMD recessive (R) and LOPD and the frequency of variants in each gene
among this patient population.

Results: Over 20 institutions across Latin America (Brazil, Argentina, Peru, Ecuador, Mexico, and Chile) enrolled 2103
individuals during 2016 and 2017. Nine autosomal recessive LGMDs and Pompe disease were investigated in a 10-
gene panel (ANO5, CAPN3, DYSF, FKRP, GAA, SGCA, SGCB, SGCD, SGCG, TCAP) based on reported disease frequency in
Latin America. Sequencing was performed with Illumina’s NextSeq500 and variants were classified according to
ACMG guidelines; pathogenic and likely pathogenic were treated as one category (P) and variants of unknown
significance (VUS) are described. Genetic variants were identified in 55.8% of patients, with 16% receiving a
definitive molecular diagnosis; 39.8% had VUS. Nine patients were identified with Pompe disease.

Conclusions: The results demonstrate the effectiveness of this targeted genetic panel and the importance of
including Pompe disease in the differential diagnosis for patients presenting with PMW.
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Background
Limb-Girdle Muscular Dystrophy (LGMD) is a broad
and heterogeneous category of inherited muscular dis-
eases involving proximal muscle weakness in which the
pelvic or scapular muscles are generally affected. The
clinical evolution and phenotype vary widely and over-
lap, from severe forms with infantile onset and rapid
progression to milder forms in which affected

individuals have a slow progression and a relatively nor-
mal life [1].
LGMD is primarily divided into two major categories,

based on inheritance pattern: LGMD D with autosomal
dominant inheritance and LGMD R with autosomal re-
cessive inheritance pattern. LGMD D encompasses 5
subtypes of LGMD (LGMD D1 to D5) while LGMD R
comprises 24 recessive forms (LGMD R1 to R24), each
of which is caused by pathogenic variants in different
genes [2–4]. The autosomal dominant forms are rarer,
accounting for less than 10% of muscular dystrophies,
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whereas autosomal recessive forms are much more
frequent [1, 5]. The most common forms of LGMD R
worldwide are the types LGMD R1 calpain3-related
(MIM# 11420), LGMD R2 dysferlin-related (MIM#
603009), LGMD R5 γ-sarcoglycan-related (MIM#
608896), LGMD R3 α-sarcoglycan-related (MIM#
600119), LGMD R4 β-sarcoglycan-related (MIM#
600900), LGMD R6 δ-sarcoglycan-related (MIM#
601411), LGMD R9 FKRP-related (MIM# 606596),
and LGMD R12 anoctamin5-related (MIM# 608662)
[2, 5, 6]. These are estimated to affect 1:14,500 to 1:
123,000 individuals worldwide [5–7]. There are cur-
rently no available treatments for LGMDs despite sev-
eral ongoing clinical trials [6].
Pathological features of muscular dystrophies can be

observed with a muscle biopsy, presenting as necrosis
and regeneration of muscle fibers with various levels of
fibrosis and infiltration of adipose tissue [2]. However,
obtaining a definitive and timely diagnosis for some
forms of LGMDs is challenging in spite of the genetic
basis and Mendelian inheritance pattern [5]. This long
diagnostic journey endured by LGMD patients is due to
the variability in age of onset, severity, and disease pro-
gression as well as issues with genetic testing access
worldwide [2, 5].
Although no longer classified as a muscular dystrophy

of the autosomal recessive type 2 V (LGMD2V) [8] in
the updated nomenclature for LGMD, Pompe disease
(MIM# 232300), also known as Glycogen Storage Dis-
ease Type II, is a rare metabolic disease with a broad
clinical spectrum and overlapping signs and symptoms
to recessive LGMDs [9]. The estimated prevalence of
Pompe disease varies from 1:40,000 to 1:60,000. Based
on newborn screening, the prevalence may be even
higher [10], depending upon ethnic and geographic fac-
tors. Pompe disease is caused by pathogenic variants in
the GAA gene, which encodes acid α-glucosidase (GAA),
an enzyme responsible for glycogen breakdown in the
lysosome [11]. Glycogen accumulation in the lysosome
can result in a clinical spectrum ranging from a rapidly
progressive infantile-onset form of the disease (IOPD) to
a more slowly progressive late-onset form referred to as
late-onset Pompe disease (LOPD) [12]. In IOPD, the
GAA activity is below 1% and infants present with severe
cardiomyopathy, hypotonia, rapidly progressive muscle
disease, and respiratory involvement. In LOPD, GAA ac-
tivity is above 1% yet below 30% of average normal activ-
ity and symptom onset may occur at any age, usually
without cardiomyopathy, but with progressive skeletal
and respiratory muscle weakness [13–16]. The enzyme
activity can be measured using fluorometry or mass
spectrometry techniques in either lymphocyte or fibro-
blast cultures or as a screening test through dried blood
spots (DBS) [17–19].

Since 2006, treatment with alglucosidase alfa (Myo-
zyme®, Lumizyme®, Sanofi Genzyme, Cambridge, MA)
has been approved for Pompe disease. Clinical trials
have shown that treatment increases patient survival
[20–26] and stabilizes respiratory and muscle function
[26–30]. Early diagnosis is critical for the most effective
treatment [16].
Genetic analysis for the identification of the altered

gene is essential for the accurate and timely diagnosis
of the LGMD R subtype as well as identification of
patients with Pompe disease, which is part of the dif-
ferential diagnosis in patients with proximal muscle
weakness [2, 3]. The identification of variants in these
Mendelian diseases, which is more straightforward
due to inheritance patterns, can be a valuable compo-
nent in the diagnosis of the disease and determining
appropriate clinical and preventive procedures. Vari-
ants of unknown significance (VUS) may still present
a challenge for diagnosis and may raise more ques-
tions in recessive disorders for patients with one or
more VUS. Studies have shown that traditional tech-
niques to identify protein abnormalities, such as im-
munohistochemistry, Western blotting, and Sanger
sequencing for the identification of pathogenic variants,
can yield a diagnosis of 35% of families with LGMD [3].
Western blotting and Sanger sequencing for Pompe dis-
ease have high specificity but low yield [31].
Targeted-panel next-generation sequencing (NGS) is

leading to a paradigm shift in the diagnosis of many
neuromuscular disorders, enabling individualized preci-
sion medicine. NGS allows the evaluation of several
genes simultaneously, improving the diagnosis of Men-
delian diseases that have a varied phenotype (eg,
LGMD). NGS may increase the molecular diagnosis of
LGMD R because it generates more data at a lower cost,
accelerating the process of identification of pathogenic
variants and new genes associated with Mendelian dis-
eases [32, 33]. A growing number of studies using NGS
have reported genes and variants associated with rare
diseases [34–36]. These data are being compiled into da-
tabases of Mendelian diseases (OMIM) and variants with
clinical significance (ClinVar) [37].
The prevalence of LGMD types varies in different

geographical locations [5] and the success rate in
diagnosis using NGS varies greatly between popula-
tions. To date, the success rate of sequencing of a
gene panel for the diagnosis of LGMD R or LOPD
has not been reported in the Latin American popula-
tion. A recent study that looked at enzymatic activity
showed a 4.2% yield for Pompe disease [9]; however,
no study designed to assess variants in a Latin Ameri-
can population or how Pompe disease is related with
other LGMD has been conducted. We investigated
the sensitivity and specificity for the detection of
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variants in a gene panel associated with the most
common forms of LGMD R and LOPD in a popula-
tion with undiagnosed limb-girdle weakness in Latin
America.

Methods
Sample
The study sample was a convenience sample from 20 in-
stitutions from Brazil, Mexico, Argentina, Chile, Peru,
and Ecuador. Blood samples were from patients who
underwent the genetic sequencing examination, with
clinically suspected limb-girdle syndrome (proximal
muscle weakness with or without respiratory symptoms)
without confirmed diagnosis per molecular and/or im-
munohistochemical analysis. Serum creatine kinase ac-
tivity was not part of the inclusion criteria. Included
individuals had already received the results of the labora-
tory evaluation and were guided by their respective
physicians, according to their clinical care practices. In-
dividuals had not been tested for Pompe disease via a
screening or enzymatic assay.

Procedures
Peripheral DBS were collected on filter paper from pa-
tients in Latin America. The samples were received dur-
ing 2016 and 2017 and without any information that
allowed patient identification. The only identifying infor-
mation available was the geographical origin of each
sample. Samples were processed at DLE Laboratory, Sao
Paulo, Brazil.

Sequencing analysis
The NGS panel was chosen based on worldwide preva-
lence, national and regional epidemiology, and local
technical capacity [1, 38, 39]. Variants were classified ac-
cording to the criteria established by the American Col-
lege of Medical Genetics and Genomics (ACMG) [40].
The ACMG established a scoring system using a series
of criteria that are based on information about the vari-
ant (eg, protein effect, position in the transcript, litera-
ture information, functional assays, database, and
prediction software). The presence or absence of certain
traits is weighted differently, helping to determine
whether the variant is pathogenic, probably pathogenic,
or a variant of uncertain, probably benign, or benign sig-
nificance. The chosen genetic panel with the coding re-
gions and 10 nucleotides from the exon-intron junction
from the included genes and intronic variants (Table 1)
were customized with Agilent Sure-Select capture; this
panel covers above 98% of target regions at 20x or
greater. Nine genes and 154 corresponding exons related
to muscular dystrophy and GAA/Pompe disease were in-
cluded. Deep intronic variants were also targeted. Flank-
ing exon/intron regions up to 25 base pairs (bp) were
sequenced, as well as known intronic variants if outside
of this range.
The coding and flanking intronic regions are enriched

using a Custom SureSelect QXT kit (Agilent technology)
and were sequenced using the Illumina NextSeq 500 sys-
tem. The sequence reads were mapped to the human
reference genome (hg19) using BWA software. Only var-
iants (SNVs/Small Indels) in the coding region and the

Table 1 Myopathies, transcripts, and deep intronic variants included in the NGS panel

Myopathy Name Gene Transcript Exons Intronic Variants

LGMD R1
calpain3-related

Calpainopathy CAPN3 NM_000070 24 1746-20C > G; 2264-11C > T; 2381-12A > G

LGMD R2
dysferlin-related

Dysferlinopathy DYSF NM_003494 55 -116delC; 2163-11G > A; 2355 + 14G > A; 3442 + 14C > T

LGMD R5
γ-sarcoglycan-related

γ-sarcoglycanopathy SGCG NM_000231 7

LGMD R3
α-sarcoglycan-related

α-sarcoglycanopathy SGCA NM_000023 9 158-11G > A

LGMD R4
β-sarcoglycan-related

β-sarcoglycanopathy SGCB NM_000232 6

LGMD R6
δ-sarcoglycan-related

δ-sarcoglycanopathy SGCD NM_000337 9

LGMD R7
telethonin-related

Telethoninopathy TCAP NM_003673 2

LGMD R9
FKRP-related

FKRP NM_024301 1

LGMD R12
anoctamin5-related

ANO5 NM_213599 22

Pompe Disease (PD) GAA NM_000152 19 2481 + 16G > A; 2800-11C > G; -32-13 T > G

Total 154
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flanking intronic regions (+ 10 bp) with a minor allele
frequency (MAF) < 5% are evaluated. The ExAC,
1000Genomes, and ABraOM projects were used to de-
termine the frequency of the variants; CADD score over
20 was the threshold to classify the in silico damaging
prediction of the variant to the final protein, and other
published information and laboratory databanks were
used to further classify the variants. Patients who had
pathogenic variants in homozygous or compound het-
erozygous state for GAA consistent with Pompe disease
had GAA activity measured in the same paper filter card
by fluorometry.

Data analysis
After sequencing, the base call generates “.bcl” files were
converted to .fastq using the “bcl2fastq” script. The data
were mapped against the reference sequence of the hu-
man genome (GRCh37 / hg19) with BWA software. The
aligned file was then used for calling variants with the
Samtools software, followed by annotation using the
Variant Effect Predictor (VEP). “.Vcf” files annotated
with VEP and in-house scripts were converted to tabu-
lated tables and incorporated frequency information
from variants already sequenced as well as Reactome
and OMIM information.

NGS quality analysis (data not shown)
Quality analysis of the sequencing and call of variants was
done by “.fastq” and “.bam” files checked with Qualimap
software. In addition, the average size of sequenced reads,
aligned reads, transition rate, transversion, insertion, and
deletion was surveyed. The nomenclature followed HGVS
guidelines [41].

Results
The demographics of the total sample of 2103 patients
are described in Table 2. The sample was 53.7% male
and the majority were 18 years of age or older (74%)
with an age range of < 1 year to almost 97 years.
Of the 2103 patients, 1173 (55.8%) had genetic variants

identified by the panel. Frequencies for each genetic vari-
ant and each intronic variant within the total population
are described in Fig. 1. Targeted intronic variants repre-
sented 2.92% (45/1542) of all pathogenic variants and
VUS. The largest proportion of these targeted intronic
variants was found in GAA (30/45). No patient was homo-
zygous for one of the included intronic variants.
In the total population, less than half of the samples

were negative (n = 930, 44.2%), almost a third were iden-
tified with a VUS (n = 838, 29.8%), and 16% (n = 335) re-
ceived a confirmed molecular diagnosis (homozygous or
compound heterozygous) (Fig. 2). Table 3 shows the
number of individuals with each disease out of the 335
with a confirmed molecular diagnosis. The majority were

LGMD R2 (37.9%) and LGMD R1 (26.9%). Nine (2.7%)
patients received a confirmed molecular diagnosis of
Pompe disease, the eighth most frequent cause of
LGMW in the cohort. The frequencies of variants
among those who received a diagnosis are listed in
Table 3, and the top 25 most frequent variants by gene
in Latin America are listed in Table 4. In this list, vari-
ants in GAA were the third most frequent (24/335), after
DYSF (39/335) and SGCA (29/335).
Patients confirmed for Pompe disease (n = 9) had a

mean age of 37 years (range: 15 to 56 years old), and 6
(66.7%) were female. The majority were heterozygous for

Table 2 Summary statistics for demographic characteristics and
geographic regionsa

Parameter Statistics

Total N 2103

Male / Female, n (%) 1129 (53.7) / 974 (46.3)

Age (y), mean ± SD (min, max) 34.2 ± 19.7 (0.6. 96.6)

< 18 years of age, n (%) 547 (26)

≥ 18 years of age, n (%) 1556 (74)

Country, n (%)

Brazil 1078 (51.3)

Mexico 690 (32.8)

Argentina 247 (11.7)

Chile 48 (2.3)

Peru 32 (1.5)

Ecuador 8 (0.4)
a The patient sample was a convenience sample not a population-based
sample. The number of patients from each country is not necessarily
representative of the proportion of patients at risk

Fig. 1 Percentages for each genetic variant and each intronic variant
within the total population. 1173 (55.8%) patients had genetic variants
identified by the panel

Bevilacqua et al. Orphanet Journal of Rare Diseases           (2020) 15:11 Page 4 of 11



the common IVS1 splice site variant, c.-32-13 T > G, in
combination with known pathogenic variants. These pa-
tients with IVS1 splice variant had (1) a second deletion
variant that results in a protein frameshift and termin-
ation at residue 45 of the GAA protein (c.525del
[p.Glu176Argfs*45]) identified in a 42-year-old patient,
(2) two nonsense mutations (c.2560C > T [p.Arg854*]
mapping to exon 18, present in 2 siblings, and c.377G >A
[p.Trp126*]) identified in patients 56, 64, and 42 years of
age, (3) a missense mutation (c.1941C >G [p.Cys647Trp]
mapping to exon 14) identified in a patient 28 years of

age, and (4) a donor splice site variant resulting in a resi-
due deletion (T > A transversion at the second nucleotide
of intron 18 c.2646 + 2 T >A [p.Val876_Asn882del], also
referred to as IVS18 + 2 T > A) identified in a patient 32
years of age. The youngest patient identified, 15 years of
age, was heterozygous for a duplication that causes the
insertion of a cysteine residue in exon 2 which results in a
frameshift and premature stop codon (c.258dup
[p.Asn87Glnfs*9]) and a missense variant (c.1445C > T
[p.Pro482Leu]). Only 2 of the 9 patients diagnosed with
Pompe disease carried homozygous variants, both mis-
sense type (c.1082C > T [p.Pro361Leu] mapping to the N-
terminal B-sheet domain of the protein and c.1445C > T
[p.Pro482Leu]), identified at 41 and 23 years of age,
respectively.
The genotype IVS1 and c.2560C > T (p.Arg854*) was

found in two sibling patients in this study. One patient
was 54 years old with morning headaches and com-
plaints of shortness of breath beginning at the age of 48.
The second was a 56-year-old who presented with short-
ness of breath. Upon clinical investigation, the 54-year-
old patient had a normal ECG, creatine kinase (CK)
levels of 360IU/L, supine forced vital capacity of 28%
and upright forced vital capacity of 47%, and a quadri-
ceps biopsy with fiber size variability as the main finding
and without signs suggestive of a glycogen storage dis-
ease. After a molecular diagnosis was made using the
10-gene panel, the enzymatic levels were tested and de-
termined to be low for these patients.
The patients with no molecular diagnosis (44.2%) had

(1) one heterozygous variant only, (2) two or more het-
erozygous variants in unrelated genes, or (3) one or two
heterozygous and/or one homozygous VUS. Thirty-eight
patients with one GAA variant identified by the panel
were also screened by polymerase chain reaction for de-
letion of exon 18. One of the 38 patients negative for
exon 18 deletion who was clinically suspected to have

Fig. 2 Frequencies and percentages of patients with confirmed
molecular diagnosis, negative diagnosis, or variants of unknown
significance (VUS)

Table 3 Frequencies of variants among patients with any variant identified by the panela

Gene Variant Frequency, n (%) Disease Molecular Diagnosis Frequency, n (%)
(N = 335)

DYSF 468 (39.89) LGMD R2 127 (37.91)

CAPN3 247 (21.05) LGMD R1 90 (26.87)

ANO5 101 (8.61) LGMD R12 20 (5.97)

GAA 94 (8.01) Pompe disease 9 (2.69)

SGCA 90 (7.68) LGMD R3 33 (9.85)

FKRP 62 (5.29) LGMD R9 18 (5.37)

TCAP 42 (3.58) LGMD R7 15 (4.48)

SGCB 32 (2.73) LGMD R4 10 (2.99)

SGCG 24 (2.05) LGMD R5 9 (2.69)

SGCD 13 (1.12) LGMD R6 4 (1.19)
a Includes pathogenic variants and variants of uncertain significance (VUS)
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Pompe disease was also analyzed by multiplex ligation-
dependent probe amplification and was found to be
negative for large deletions elsewhere in GAA.

Discussion
Over 8 years of data with over 1200 patients from ap-
proximately 220 families in North America, Europe, and
Asia have demonstrated that NGS is an effective strategy
for improving the diagnosis of patients with proximal
muscle weakness [3, 5, 33, 36, 42–62] and identifying pa-
tients with Pompe disease among those with unclassified
LGMD [31, 36, 63, 64]. The current study has now illus-
trated the effectiveness of NGS with the largest patient
sample from a Latin American population. NGS identi-
fied genetic variants in 55.8% of 2103 tested patients and
16% of patients received a definitive molecular diagnosis.
It is important to note that these results may not be rep-
resentative of the of the regional incidence of the in-
cluded forms of LGMD R and Pompe disease given that
the study included only patients with proximal muscle

weakness without a confirmed diagnosis and patients
were not enrolled equally from each country.
Inclusion of GAA in the panel improved the overall

performance in the identification of variants and in diag-
nostic yield. Four percent of the total population was
identified with GAA variants, which were the fourth
most frequently identified pathogenic variants (Table 4).
This compares favorably with the identification of other
unclassified LGMD patients when GAA was included in
the panel [17, 34, 35, 65]. Nine (2.7%) of the patients
with a definitive molecular diagnosis were confirmed
with Pompe disease.
Targeted deep intronic variants represented almost 3%

of the total identified variants from this panel and were
especially important in the identification of variants in
the GAA gene and diagnosis of patients with Pompe dis-
ease. Among the 94 GAA variants, approximately one-
third were intronic, and the majority of these intronic
variants were the common IVS1 splice site variant. The
inclusion of deep intronic variants allows for a more
thorough genetic analysis and may help resolve cases

Table 4 Most frequent pathogenic variants found by gene in Latin America (Top 25; N = 335 variants)

Rank Gene Status DNA Variant Protein

1 DYSF Pathogenic c.5979dupA (n = 38) (p.Glu1994Argfs*3)

2 SGCA Pathogenic c.229C > T (n = 29) (p.Arg77Cys)

3 GAA Pathogenic c.-32-13 T > G (n = 24) p.?

4 CAPN3 Pathogenic c.2362_2363delAGinsTCATCT (n = 18) (p.Arg788Serfs*14)

5 SGCA Pathogenic c.850C > T (n = 18) (p.Arg284Cys)

6 TCAP Pathogenic c.157C > T (n = 18) (p.Gln53*)

7 ANO5 Pathogenic c.172C > T (n = 15) (p.Arg58Trp)

8 SGCA VUS c.421C > A (n = 13) (p.Arg141Ser)

9 DYSF Pathogenic c.5429G > A (n = 13) (p.Arg1810Lys)

10 DYSF VUS c.1402C > T (n-12) (p.Arg468Cys)

11 DYSF VUS c.2281G > A (n = 11) (p.Gly761Ser)

12 CAPN3 Pathogenic c.328C > T (n = 11) (p.Arg110*)

13 SGCG Pathogenic c.525del (n = 11) (p.Phe175Leufs*20)

14 DYSF Pathogenic c.2777del (n = 11) (p.Ala927Leufs*21)

15 CAPN3 VUS c.2257G > A (n = 10) (p.Asp753Asn)

16 ANO5 Pathogenic c.692G > T (n = 8) (p.Gly231Val)

17 TCAP VUS c.37_39del (n = 8) (p.Glu13del)

18 FKRP Pathogenic c.826C > A (n = 7) (p.Leu276Ile)

19 CAPN3 Pathogenic c.1466G > A (n = 7) (p.Arg489Gln)

20 CAPN3 Pathogenic c.1468C > T (n = 6) (p.Arg490Trp)

21 GAA Pathogenic c.2238G > C (n = 6) (p.Trp746Cys)

22 CAPN3 Pathogenic c.223dup (n = 6) (p.Tyr75Leufs*5)

23 ANO5 Pathogenic c.1359C > G (n = 5) (p.Tyr453*)

24 FKRP Pathogenic c.1387A > G (n = 5) (p.Asn463Asp)

25 ANO5 VUS c.155A > G (n = 5) (p.Asn52Ser)
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that would otherwise remain unresolved in an exome-
only NGS approach.
Our results are remarkably similar to other NGS pro-

grams reported in other geographic regions. The major-
ity of variants identified in these other regional studies
are similar and found within a limited set of genes in
spite of diverse inclusion criteria and gene panels of
varying size. In a study of 1001 European and Middle
Eastern patients with undiagnosed limb-girdle muscle
weakness and/or elevated serum CK activity, 20 genes of
the 170-gene panel covered 80% of the patients for
whom causal variants were found [66, 67]. Seven of the
10 genes included in the current study panel were
among these top 20 genes—CAPN3, DYSF, SGCG,
SGCA, FKRP, ANO5, and GAA. Eight patients from a
European subset (n = 606) of these patients were identi-
fied with a GAA variant [67]. Similarly, in a large North
American study of clinically suspected LGMD patients
without molecular confirmation (n = 4656), 12 genes of
the 35-gene NGS panel accounted for all of the patients
with identified causal variants [6]. Eight of these genes
were included in the 10-gene panel of the current
study— CAPN3, DYSF, FKRP, ANO5, SGCB, SGCA,
GAA, and SGCB. The molecular diagnostic yield for this
study was 27%. The majority of patients with a molecu-
lar diagnosis had variants in CAPN3 (17%), DYSF (16%),
FKRP (9%), and ANO5 (7%). Thirty-eight cases of LOPD
were identified. Similar to our study, the vast majority
(31/38) of the LOPD patients carried the IVS1 variant.
The frequencies of gene variants in this Latin American
population were similar to studies in other geographic
regions, despite variability in inclusion criteria and size
of the gene panel [17–19, 34, 36, 65, 68–70].
Across these geographically diverse, multigene panel

testing studies, patients came from the United States,
Canada, Europe, the Middle East, and now Latin Amer-
ica. The size of the gene panel for each study has varied
from 10 in our study to 170 in the European/Middle
Eastern study. The highest identification of variants
(49%) was found with the largest panel [66, 67]. For the
United States sample with the 35-gene panel, the identi-
fication of variants was 27% [6]. For the Canadian sam-
ple with a 98-gene panel, the identification of variants
was 15%; however, the sample size for this study was
only 34 patients [63]. Kuhn et al. evaluated 58 patients
from Germany with clinical suspicion for LGMD and
obtained a success rate of 33% using a 38-gene panel
[33]. Similarly, a commercial panel containing the 9
genes associated with the most common forms of
LGMD (LGMD R1, LGMD R2, rippling muscle disease,
LGMD R3–6 and LGMD R9) had a diagnostic yield of
37% in a United States population [71]. Further studies
are ongoing in Asia and the South Pacific. Two Asian
populations have been evaluated. Dai et al. investigated

399 genes in patients with clinical diagnosis of muscular
dystrophy and congenital myopathies and obtained a
diagnostic yield of 65% of the patients [44]. Seong et al.
evaluated a much smaller number of genes (18 genes)
and obtained a similar diagnostic yield of 57% [57]. The
current Latin American sample with a carefully selected
10-gene panel had a similar yield of identification of var-
iants as the Canadian study (16%).
The diagnostic yield in the current study was lower

than expected, possibly due to minimal entry criteria.
The only inclusion criteria were limb-girdle weakness
suggestive of LGMD and no molecular confirmation; el-
evated serum CK was not an inclusion criterion. A larger
panel including more genes associated with diseases pre-
senting with limb-girdle muscle weakness and/or more
selective criteria for inclusion could improve the diag-
nostic yield, for example, the three “red flags” identified
by Vissing et al. and also found by Preisler et al. in the
three patients with proximal weakness diagnosed with
Pompe disease in their study [65]. These three red flags
are “1) mild non-dystrophic, myopathic features on
muscle biopsy, often missing the typical vacuoles and
glycogen accumulation, 2) CK levels below 1000, and 3)
disproportionate axial and respiratory muscle involve-
ment in comparison with limb muscle involvement.”
Additionally, all reference databases have been devel-
oped with Caucasian populations and most of the popu-
lations studied have been European, North American,
and Asian, which are known to be genetically more
homogeneous than the Latin American population [3].
This may explain the large amount of VUS within this
study. For these reasons, Latin American patients with 2
VUS and those with 1 pathogenic and 1 VUS should be
investigated further.
The genotypes found for the newly identified LOPD

patients are aligned with global experience, as the major-
ity of these patients were heterozygous of the common
splicing pathogenic variant IVS1. While clinical evalu-
ation and follow-up data were limited for the patients di-
agnosed with Pompe disease in this study, these data
were available for one of the two siblings with the geno-
type IVS1 and c.2560C > T. Despite inconclusive clinical
findings, the 10-gene panel proved to be an effective dif-
ferential diagnosis tool. Low GAA enzymatic activity
levels further corroborated the diagnosis. Both patients
with this genotype have not had access to treatment.
The 54-year-old is being monitored continuously and
has had slow disease progression in motor function
and marked deterioration in respiratory function.
Limited information is available for the older sibling.
The disease progression of these patients is of interest
because the disease is progressing differently for these
siblings despite the same genotype and a similar en-
vironment [72–74].
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There are several interesting observations concerning
the genotypes and the age of the patients in which they
were found. Three patients were below 30 years of age,
including the 28-year-old with the IVS1 variant and the
missense c.1941C > G. There is no reason to expect that
the missense variant would lead to earlier signs and
symptoms and more severe disease. However, no infor-
mation is available on patient presentation. The youn-
gest patient is a 15-year-old with the c.1445C > T and
c.258dup genotype. Variant c.1445C > T maps to the
catalytic GH31 domain of the GAA protein and was
found in patients with symptom onset below 12 years of
age and without cardiomyopathy in a global population
[75]. Variant c.258dup was originally found in an IOPD
patient from the United Kingdom and also identified in
a 33-year-old North American patient by the 35-gene
panel [6]. It is likely that the effect of the c.1445C > T
mutation in combination with c.258dup may have led to
early symptom presentation or increased disease severity,
explaining the young age of the patients. We were also
fortunate to identify a 23-year-old patient homozygous
for c.1445C > T in this Latin America population.
The findings in this study demonstrate the importance

of genetic testing for multiple diseases with overlapping
phenotypes. In comparison to larger panels and panels
with more defined inclusion criteria available in other re-
gions, the 10-gene panel has performed reasonably well,
albeit with somewhat lower yields. This could be due to
several factors. One is the inherent limitation of the NGS
technology applied. Other intronic variants, regulatory re-
gions, modulatory genes and copy number variants are
not considered. Thus, it is likely that a percentage of the
unsolved cases are due to limitations in the technique ap-
plied. Other methods could be added to refine the investi-
gation of unsolved cases. Secondly, given the high
percentage of VUS variants across both Pompe disease
and the 9 recessive LGMDs in the panel, further research
into VUS variants found in this population is needed to
possibly improve the diagnostic yield for Latin American
patients. Thirdly, it is evident that increasing familiarity of
the diagnostician with a simple limited panel such as the
10-gene panel is a positive way to support differential
diagnosis, shorten patient journey to a definite diagnosis,
and ultimately increase disease awareness.

Conclusions
In this large cohort of Latin American patients, a simpli-
fied NGS strategy was effective for improving the diag-
nosis of patients with proximal muscle weakness. A
genetic variant was identified in over half of the patients,
with 16% receiving a definitive molecular diagnosis. The
inclusion of GAA in the panel improved the overall diag-
nostic success, with 9 patients identified with Pompe
disease (2.7% of patients with a confirmed diagnosis).
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