
ARTICLE

Noise correlations in neural ensemble activity
limit the accuracy of hippocampal spatial
representations
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Neurons in the CA1 area of the mouse hippocampus encode the position of the animal in an

environment. However, given the variability in individual neurons responses, the accuracy of

this code is still poorly understood. It was proposed that downstream areas could achieve

high spatial accuracy by integrating the activity of thousands of neurons, but theoretical

studies point to shared fluctuations in the firing rate as a potential limitation. Using high-

throughput calcium imaging in freely moving mice, we demonstrated the limiting factors in

the accuracy of the CA1 spatial code. We found that noise correlations in the hippocampus

bound the estimation error of spatial coding to ~10 cm (the size of a mouse). Maximal

accuracy was obtained using approximately [300–1400] neurons, depending on the animal.

These findings reveal intrinsic limits in the brain’s representations of space and suggest that

single neurons downstream of the hippocampus can extract maximal spatial information from

several hundred inputs.
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The hippocampus encodes the spatial position of a subject in
an environment1. This code likely originates from the
combination of many sensory inputs and internal repre-

sentations related to physical variables that contribute to position
estimation2–8. Although previous studies have investigated the
accuracy of decoding spatial position from neuronal activity, how
that accuracy depends on population size has not been well-
characterized experimentally. Because of the hippocampus’ pro-
minent role in memory and spatial navigation, it is crucial to
understand what bounds its accuracy. Thanks to modern tech-
niques that allow us to record from a small but significant portion
of the hippocampus, we could estimate, as we have in this work,
the number of neurons necessary for encoding an animal’s
position and the precision limits of that encoding.

Neurons in the CA1 area of the hippocampus modulate their
firing rates as the animal visits different locations, yet their
responses vary across visits9. This variability presents a limitation
to any decoding mechanism built upon reading out neuronal
responses to a set of stimuli. There are several strategies that the
brain could use to cope with the effect of response variability.
Experimental evidence suggests that one way to increase spatial
coding accuracy is by the overrepresentation of place fields near
locations related to task goals and salient sensory cues10–17.
Previous influential work suggested that spatial accuracy increases
with the size of the ensemble of neurons from which spatial
information is decoded18–22.

A crucial factor in a network’s encoding capacity is what is
called noise correlation. Each time an animal receives a given
sensory input, for example, associated with a spatial location, a
given neuron will respond with a variable number of spikes. The
neuron’s responses can be characterized as an expected response
(the mean over many presentations of that sensory input) plus a
noise component that is different in each presentation. The noise
components of two neurons might be correlated, meaning that
over presentations of the same stimulus, the neurons will both
respond with more spikes, or they will both respond with fewer
spikes than expected. This correlation of noise components is
called noise correlation. There is a long history of theoretical
work indicating that noise correlations can greatly influence the
capacity of a neural network to encode the world (for reviews,
see23,24). If noise is not correlated, the response variability from
different neurons can be averaged out, and a downstream reader
reads the population’s expected response accurately. Conversely,
positive noise correlations could distort the population response
in a way that cannot be averaged out, leading to a deterioration of
the encoding capacity. Noise correlation can be quantified as the
Pearson correlation of a pair of neurons’ spike counts during the
repeated presentation of the same stimulus. Several studies have
identified noise correlation experimentally, for example25–28,
among others. Noise correlations are a small portion of the
neurons’ pairwise correlations, and their values are usually
between 0.01 and 0.229. The effect of noise correlation on the
navigation system has been previously studied30–32. Yet their
effect on spatial accuracy at large population sizes has remained
unexplored until now.

The first theoretical studies that investigated the effect of noise
correlations considered neurons with identical receptive field
shapes33–36 and limited-range correlations (i.e., correlations that
are strongest between pairs of neurons with similar preferred
stimuli). Despite their great contribution, these models did not
capture real neuronal response characteristics. When the models
included neurons with receptive fields with heterogeneity in their
shapes, the information contained in large ensembles was not
limited by the presence of noise correlations37,38. This result has
not been confirmed experimentally. The relation between recep-
tive field shapes and the effect of noise correlation is still under

investigation. In addition, 39 and 40 demonstrated that quantify-
ing the effect of noise correlation on limiting information for
large populations experimentally requires simultaneous recording
from large ensembles of neurons.

Recent results in macaque prefrontal41 and mouse visual
cortex42,43 have measured how information for large ensemble
sizes is limited due to the presence of noise correlations. Those
results pertain to sensory stimulus encoding, but very scarce data
and theoretical predictions exist regarding high-order repre-
sentations, such as the representation of space. It is important to
note that brain areas encoding high-order representations, like
the hippocampus, are formed by neuronal networks with various
connectivity patterns (e.g., feed-forward, recurrent, or a
mixture)44. These connectivity patterns allow hippocampal
receptive fields, called place fields (PFs), to have unique proper-
ties, including attractor dynamics45, a lack of topography46,47,
and global remapping48, among others. These unique properties
yield further motivation for understanding how noise correlations
affect coding in the hippocampus.

To assess how the hippocampal spatial representation is
affected by noise correlations, we performed neuronal calcium
imaging in the CA1 region of freely moving mice as they ran back
and forth on a linear track to obtain a reward. We analyzed the
accuracy of neural population representations of space in
ensembles of up to ~500 simultaneously recorded neurons. Our
analyses showed that noise correlations in the hippocampus were
of the type that places an upper bound on the ensemble’s coding
accuracy for ensembles larger than ~[300–1400] neurons. The
results presented in this article were based on neuronal popula-
tions that consist of roughly 0.1% of the total population of the
CA1 region. Still, the population sizes used here are larger than
previous studies and sufficiently large to see the effect of noise
correlation on information encoded by the neuronal population.
Furthermore, we found that mice with more heterogeneous PF
slopes displayed a smaller effect of noise correlation on limiting
information at large ensemble sizes. In this work, we demon-
strated the existence of information-limiting noise correlations in
the hippocampal spatially-tuned neuronal activity and show how
the heterogeneity of the population of neurons’ PFs is related to
the information encoded by the neuronal ensembles.

Results
To examine the statistical structure of hippocampal representa-
tions of space, we tracked the concurrent calcium dynamics of
hundreds of CA1 pyramidal neurons in 12 mice (151-497 neu-
rons per session, median 235; a total of 27,898 neurons over
110 sessions) that ran back and forth along a 120-cm-long linear
track (Fig. 1a, see Methods). Because our study required the
greatest possible statistical power, we used a linear track to
increase the number of visits to each spatial location. We quan-
tified CA1 neuron's calcium activity responses while the animals
ran on the track. We detected spike events with our algorithm
(see Methods and Suppl. Fig. 1) and found similar values to
previous reports for PF shapes and spatial distributions (Suppl.
Fig. 1 and Suppl. Table 1). PF characteristics were similar to those
obtained with electrophysiological methods and other animal
species (see Suppl. Table 1, Suppl. Fig. 1). In this study, we did not
select cells based on the amount of spatial tuning, since cells that
do not satisfy the traditional definition of “place-cells” can also
contribute to the neuronal ensemble’s spatial information49. A
position-responsive neuron varies its responses between indivi-
dual runs (i.e., trials) through the track, relative to the mean
response (Fig. 1b). Neuronal response fluctuations were, in gen-
eral, large for different visits to each spatial bin (response var-
iance= 0.7263+ /− 0.6117, variance between bins / variance
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within bins = single-cell signal-to-noise ratio= 0.41+ /− 0.34,
pooled from 27,898 neurons).

When response variations were correlated among neurons with
similar PFs, the estimation of mouse position deviated from the
actual position. To illustrate this phenomenon, we first artificially
eliminated noise correlations by randomly “shuffling” the neu-
ronal activity from different trials in the session, independently
for each neuron, and then compared the result with the neuronal
responses from the original data (Fig. 1c, Suppl. Fig. 4, Methods).
The shuffling procedure eliminated noise correlations for the
neuronal ensemble while preserving the individual neuron's mean
responses (Fig. 1c-right). Then, to show how noise correlations
vary between neurons, we plotted the Pearson correlations of
neuron pairs’ activities, arranged by relative distances between
their PF peaks (Fig. 1d). In the hippocampus, we found that noise
correlations’ dependence on PF distance was similar to previously
measured values in other brain regions25,27,28,50,51. Finally, to test
if the correlations were generated through contamination from
nearby cells, we confirmed that pairwise correlations were inde-
pendent of the physical distance of the neurons within the
recording field of view, as previously demonstrated47.

To determine the impact of noise correlations on the accuracy
of spatial information, we used decoders based on neuronal
population activity, which we constructed using sets of linear
support vector machines (SVMs) to estimate the mouse’s position
and direction of motion from the neural activity (see Methods).
To quantify how noise correlations affected the accuracy of
spatial representations, we decoded the animal's position using
the simultaneously recorded neuronal activity in 20 equal size
spatial bins, with (i.e., “ensemble”) and without (i.e. “ensemble
shuffled”) the presence of noise correlations (Fig. 2a, b). The
misclassification error for ensemble activity data was worse than
the case of ensemble activity without noise correlations. This
effect was consistent across all spatial bins (Fig. 2c & Suppl.
Fig. 5). The misclassification errors were typical of the order of
one but could reach up to three spatial bins. Furthermore, the
root mean square (RMS) error between predicted and recorded
mouse positions showed that the effect of noise correlations was
detrimental for position estimation across all spatial
bins (ensemble: 9.38+ /−4.06 cm, ensemble shuffled: 5.15+ /
−2.40 cm (median+ /− IQR, n= 110 sessions); Fig. 2d, Suppl.
Fig. 6).

Fig. 1 Noise correlation in the neuronal activity of the mouse CA1 area. a Mice ran back and forth along a linear track of length L= 120 cm and collected
water rewards at each end of the track. b Example neuron’s activity level for different spatial locations. Activity level based on normalized amplitudes of
detected events convolved with an alpha function (see Methods) for each visit to each spatial location (dots) relative to mean values across visits
(continuous line). Error bars are the 95% confidence intervals over 186 trials. c Left: Schematic of the shuffling procedure, where we mixed neurons’
responses (columns) across different trials (rows) for the entire track. Center: Stack of maps of individual cells’ trial-by-trial PFs along the track for cells
monitored together within a single imaging session, ordered by the maximum activity level for a given rightward running direction (for one session from
animal 2022). Individual trials show response fluctuations relative to mean responses (Right) (the white line generated for visualization purposes was
obtained from the leftmost end of PF’s widths (smoothed across neighboring neurons/horizontal lines) computed on the distribution of mean responses
(Right)). Right: The mean response over trials for all recorded cells was unaffected by the shuffling procedure. d Noise correlations between neurons as a
function of distance between PF peaks (3,941,140 pairs from 110 sessions from 12 mice). The solid lines and shaded areas represent means and 95%
confidence intervals, respectively. The shuffling procedure drastically reduced noise correlations in the shuffled data. Source data is provided as a Source
Data file.
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To study the effect of noise correlations on spatial accuracy
when ensembles grow in size, we decoded spatial location using
simultaneously recorded neural ensembles. The decoding error
approached an asymptotic minimum value for ensembles with
large numbers of neurons. In contrast, the error decreased
without apparent bound for the shuffled data (Fig. 2e). It is
relevant to mention that the decoding errors were larger than the
animal position tracking error (0.28 cm with 95% confidence
intervals of [0.12−1.0 cm] across sessions; see Methods). To
quantify the accuracy of a linear decoder, the inverse of the mean
squared error (IMSE) can be used because of its relationship with
linear Fisher information. Intuitively, the higher the Fisher
information, the smaller the variance of the decoder’s estimates.
Linear Fisher information can be mathematically represented as
I¼ f 0TΣ�1f 0, where f 0 is the derivative of the population-tuning
curve for the stimulus variable and Σ is the response covariance
matrix. As expected from Fig. 2e for unmodified data, the IMSE
appears bounded (Fig. 2f). On the other hand, no bound was
present for shuffled data (Fig. 2f, (Suppl. Fig. 7a)), at least within

the neuronal population size ranges we recorded. This result
demonstrated the significant effect of noise correlations on lim-
iting the accuracy of the spatial representation.

To estimate the ensemble size at which spatial information
saturates, we fitted individual IMSE curves from different sessions
to a function of the form I0n=ð1þ n=NÞ that monotonically
increases until reaching a plateau at I0N (Fig. 2f (inset), form39).
In this function, n is the number of neurons in the ensemble, and
I0 and N are fitting parameters. To quantify the number of
neurons at which spatial accuracy starts to saturate in the IMSE
curves (Fig. 2f), we chose the abscissa value corresponding to the
point where the slope was 95% of the maximal asymptotic slope
in the fitted function (see Methods). Beyond this point,
the accuracy gained by increasing the number of neurons in the
ensemble would be negligible. We validated our method for
finding the saturation point; we created artificial data and com-
pared the procedure with populations of 500 and 2000 neurons
and found no significant difference in the saturation para-
meter estimates N (Suppl. Fig. 9). We found that the ensemble

Fig. 2 Noise correlation limits the spatial information encoded in the neural ensemble. a Position during running behavior (black). Each whole run
through the track is considered a separate trial. b Example of one trial showing the actual (black) and decoded locations of the mouse using ensemble data
(blue) and trial-shuffled noise correlation-free data (red). c Percent difference between the decoders’ confusion matrices (unmodified data minus shuffled
data) for rightward runs. For all confusion matrices, see Suppl. Figure 4. d The root mean squared (RMS) error between predicted and recorded positions of
the mouse, for each spatial bin, for unmodified data (blue) and noise correlation-free data (red), averaged over all 110 sessions. Error bars are the 95%
confidence intervals of mean values. e RMS error from a neural decoder using unmodified (blue) and noise correlation-free (red) data as a function of the
number of cells. Each data point denotes an average of over 80 randomly chosen subsets of cells. The data shown are from three different sessions with
three individual mice (all sessions are shown in Suppl. Fig. 7). Solid lines follow the parametric fits in f. Error bars represent SEM over the random subsets
of neurons trained with half of the trials and tested with the other half. f Inverse mean squared error (IMSE) as a function of the number of cells included in
the decoder. Solid lines show parametric fits to the function shown in the inset. Error bars shown are based on the same data as in e. Inset: Graphical
representation of the IMSE(n) = I0n/(1 + n/N) function used to fit the asymptotic behavior of the data. The parameter I0 represents the linear slope at a
small ensemble size. N is the ensemble size where the IMSE equals half the asymptotic value. The product of the two, I0N, is the asymptotic value of the
IMSE (Suppl. Fig. 7). g IMSE computed for one session with animal 2022 for the two bins closest to the end of the track (ends excluded because of
behavioral variability). The shaded area represents the 95% confidence intervals of mean values of the IMSE for the valid trials in the displayed spatial bins.
h IMSE computed for one session with animal 2022 for the bins in the center of the track. The shaded area is as in g. Source data is provided as a Source
Data file.
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approached saturation in spatial accuracy with 346–1402 neurons
(see Methods). These values were small if we compare them with
the estimated pyramidal cell population size in mouse dorsal CA1
(e.g., 447,500 by52, and 165,742 by53). The asymptotic IMSE value
(I0N) was significantly larger in the trial-shuffled data than in the
ensemble data for all animals (Suppl. Fig. 7b–d) due to the
elimination of noise correlations.

Up to this point, we have demonstrated that spatial accuracy in
the hippocampus is subject to the effect of noise correlations on
limiting information, but can we say something about the char-
acteristics of the signal and noise that could explain this phe-
nomenon? With the sole purpose of visualizing the relationship
between signal and noise in hippocampal neuronal population
activity, we generated a dimensionally-reduced projection of the
population activity using partial least squares (PLS) regression.
PLS is well suited for situations in which the number of trials is
smaller than the number of neurons (see Methods). To visualize
the effect of noise correlations, we compared response variability
over different trials, with unmodified and shuffled data (Fig. 3a).
The response variability was reduced for data without noise
correlations (i.e., shuffled), and adjacent spatial bin representa-
tions appeared to be more discriminable (Fig. 3a, b). Noise cor-
relations were present in the response variability in both PLS
directions, but we focused on how variability affects the most
susceptible direction for discrimination: the signal direction39.

Signal direction corresponds to the direction in which the
population activity changes during changes in stimulus (i.e.,f 0).
We approximated this direction by using the direction of the
vector that connects the mean response between two adjacent
spatial bins (Δ~μ in Fig. 3b). We computed the signal, noise and
signal-to-noise ratio (SNR) between sets of two adjacent spatial
bins within the 1-D projection defined by their signal direction.
This is similar to quantifying the discriminability between two
adjacent bins’ responses in the 1-D manifold plotted in Fig. 3a, b.
The signal and noise components, in the signal direction, changed
with the number of neurons included in the ensemble (Fig. 3c, d).
In the unmodified data, the signal divided by noise (SNR, Fig. 3e)
for large ensemble sizes reached an asymptotic maximum value in
agreement with the IMSE in Fig. 2e. Since we had access to the
linear growth rates of the signal and noise independently, we
inferred the asymptotic SNR value for each session as the signal
slope divided by the noise slope. Across all mice, the asymptotic
SNR values were consistently lower in the unmodified data than
in the shuffled data (Suppl. Fig. 10). Our definition of asymptotic
SNR shows a linear behavior that allows us to estimate the effect
of noise correlations on spatial accuracy even for smaller
ensemble sizes of approximately 100 neurons; an ensemble size
that would not show clear signs of saturating decoding accuracy
otherwise (Fig. 2f). The SNR varies across the entire linear track
due to differences in mouse behavior, but despite these differ-
ences, the behavior of the asymptotic SNR is similar for different
spatial locations. Figures 2d, g, h illustrate the differences in
decoding errors for different spatial bins. Thus, the asymptotic
SNR is also different for each spatial bin but remains bounded for
the entire track (Fig. 3f–h), regardless of the degree of PF density
along the track (Suppl. Fig. 2b).

Two important questions could be investigated using the
results and data presented above: 1) the potential dimensionality
of the spatial neuronal code in the hippocampus and 2) how the
distribution of noise components in the high-dimensional neu-
ronal space explains the saturation of information for large
neuronal ensembles. Dimensionality reduction has been the basis
of many data analysis developments in systems neuroscience in
the last years (for review see:54). These methods estimate the
multi-dimensional structure of neural population activity based
on correlations among simultaneously recorded neurons. In

hippocampus research, these methodologies have recently
uncovered that low-dimensional representations (3–4 dimen-
sions) are sufficient to understand a large fraction of brain
activity55,56 when animals move in environments with simple
geometries, as is the case in our experiment. It has been proposed
that, for the number of neurons and trials in our experiment, a
good estimate of the dimensionality of the neuronal population
activity could be obtained by computing the number of noise
components (i.e., the eigenvectors of the noise covariance matrix,
PC) that accounts for most of the shared variance of the neurons’
responses57. Intuitively, if the neuronal activity is low-dimen-
sional, most neurons will co-activate because they share infor-
mation and therefore have a single dominant eigenvector of the
covariance matrix. On the contrary, if each neuron carries unique
information with low shared fluctuations, the number of eigen-
vectors with significant amplitude will be high. To test this, we
first obtained the noise correlation covariance matrix eigenvec-
tors. The distribution of noise components can be visualized by
picturing the principal axes of an ellipsoid in a high-dimensional
space that contains all the noise correlations among all simulta-
neously recorded neurons. We computed the SNR within each
principal noise component to determine how much information
each component carries (Fig. 4a). We found that each noise
component’s contribution to the SNR increased until it reached
its maximum at the sixth largest component (for individual
animal's results, see Suppl. Fig. 12–14). The first six components
only accounted for a small proportion of the neuronal ensemble’s
total information. This proportion is most likely to be even
smaller if one considers the contributions from higher noise
modes (the continuation of the green curve, converging to a
residual SNR close to zero, Fig. 4a) that we could not accurately
compute because the number of trials was smaller than the
number of recorded neurons. Therefore, to recover most of the
spatial information it is necessary to observe a large number of
dimensions encoded in the neuronal activity (much larger than
six). The distribution of SNR components shows that information
in the hippocampal spatial representation is distributed broadly
over many dimensions, in contrast with previous reports in
neocortical areas, where a high percentage of the information was
concentrated in the first few components41,42. Our result sug-
gested that the way information is encoded and transmitted in the
hippocampus differs from the neocortex.

Is it sufficient to find noise correlations in cell pair recordings
(as shown in Fig. 1d) to claim that information will saturate with
ensemble size? The answer to this question was proposed by39

indicating that only if noise correlation distribution has a com-
ponent parallel to the signal direction can it limit information for
large ensemble sizes. Intuitively, this is when the noise ellipsoid in
the high dimensional space containing the neuronal population
noise has a non-zero projection onto the signal subspace direc-
tion. Meaning that the larger and the more principal noise com-
ponents align with signal direction, the faster the spatial
information saturates as the ensemble size grows. To
experimentally test39 prediction in the hippocampus, we quanti-
fied the alignment of noise with signal direction using the squared
cosines of the angles between each noise covariance matrix’s PCi
and signal direction Δ~μ (i.e., cos2ðPCi;4μÞ, Fig. 4b). Since
cos2ðPCi;4μÞ only describes the overlap between one noise
component and signal direction Δ~μ, we used the overlaps over all
PCs to compute the overlap between noise and signal direction
(Fig. 4b). We were particularly interested in to what extent noise
correlations increased this total overlap. Therefore, we used the
change in overlap between the unmodified and noise correlation-
free data to quantify the degree to which noise correlations
affected the alignment of noise with the signal direction (Fig. 4b,
gray area). We found that the average change in total overlap
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between noise and signal direction was inversely correlated with
the asymptotic SNR slope (i.e., Fig. 3e & Suppl. Fig. 10b) across
animals (Fig. 4c, r2= 0.50, p= 0.014), confirming the intuition.
With this result, we have empirically demonstrated that the
purely geometric property of the overlap between signal direction
and the shape of the noise structure predicts the limit at which
the ensemble information saturates.

So far, we have presented results describing phenomena that
only exist in high-dimensional spaces where neuronal population
activity resides, but their connection with individual neuron

properties is not direct. Thus, how do our results relate to bio-
logical quantities, such as the shape of the PFs? Is it possible to
describe how noise correlations limit spatial information based on
single neuron properties? The question of how PF shape deter-
mines spatial decoding accuracy has been at the center of the
discussion in the field of hippocampal research since the dis-
covery of place-cells (for examples see58,59, among others). We tried
to provide new insights on this matter, considering the effect of
noise correlations. Previous theoretical studies demonstrated that
the heterogeneity of the amplitudes and widths of the neurons’
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Fig. 3 Signal-to-noise ratio as a direct observable to measure the effect of noise correlations on the neuronal representation of the linear track.
a Projection of the first two dimensions identified by partial least squares (PLS) regression on position and direction of motion for each of the 40 bins from
a single session with animal 2022. Same PLS components (from ensemble data) in both panels. Samples for each bin have different colors for visualization
purposes. Each point on the plot represents the neuronal ensemble’s state within an individual trial and is color-coded according to the mouse’s spatial
position (Bottom). The two leftmost clouds in each panel represent rightward runs, and the other two clouds leftward runs. b The schematic introduces Δμ
as the distance vector between mean responses of adjacent spatial bins and σ as the neuronal activity standard deviation along Δμ. c Squared spatial signal,
defined as the median squared distance between mean neuronal responses of adjacent spatial bins. The shaded regions are the 95% confidence intervals
over 80 random subsets of cells from a single session with example animal 2022 as in a. The shaded areas are small, and most points are under the line
representing the mean value. The plot shows the same examples as in Fig. 2d, e. d Unmodified data (blue) noise variance along the spatial position
encoding direction. The fluctuations in the direction of spatial encoding are shared between neurons and cannot be eliminated by neuronal population
activity averaging. Each plotted value is the median over spatial bins—shaded regions as in c. e SNR (signal in c divided by noise in d) as a function of
ensemble size. f Asymptotic signal slope for different spatial bins on rightward runs. Signal slope decreases significantly between the beginning and end of
runs (p= 2 × 10−18, one-tailed Wilcoxon signed-rank test, n= 110 sessions). Shaded regions are the 95% confidence interval over trials from one session
with example animal 2022 (same as a). g Asymptotic noise slope displayed monotonic and significant decreases over the run (p= 8 × 10−10, one-tailed
Wilcoxon sign rank test, pooling left and right runs, n= 110 sessions). Shaded regions as in f. h The asymptotic SNR (signal-slope / noise-slope) was
significantly higher at the end of the run than at its initiation (p= 2 × 10−29, one-tailed Wilcoxon sign rank test, n= 110 sessions). Shaded regions as in f.
Source data is provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31254-y

6 NATURE COMMUNICATIONS |         (2022) 13:4276 | https://doi.org/10.1038/s41467-022-31254-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


receptive fields in a given ensemble mitigates or avoids infor-
mation saturation as ensemble size increases in the presence of
noise correlations37,38. Kanitscheider et al.,40 instead showed that,
in the scenario of limited input information, the output infor-
mation would be saturated by the presence of noise correlations
for both homogeneous and heterogeneous receptive fields. To
provide experimental evidence to support either of these two
theoretical predictions regarding the effect of PF heterogeneity on
decoding spatial accuracy for large ensembles, we once
more exploited the variability among animals in terms of spatial
encoding accuracy.

We did not find a direct correlation between the variance of PF
amplitudes or widths with the effect of noise correlations on
information saturation. Instead, we found that the distribution of
individual PF slopes could explain the effect of noise correlations
on saturating spatial information for large ensembles. To provide
some intuition about this finding, we first used synthetic data to
describe, in a simplified manner, the population of PF shape
heterogeneities displayed in our recordings. In the synthetic data,
PFs have a Gaussian shape with different widths. Different
width distributions lead to different distributions of PF slopes
between adjacent spatial bins. For illustration, we plotted two
distinct PF width distributions (narrow and broad, Fig. 5a, b).
Using this simplified description, we can easily show how the
distribution of PF slopes between two spatial bins relates to the
distribution of PF widths, a more commonly used quantity. To
complete the picture of our new variable, we now describe the
distribution of slopes between consecutive bins (described by f’
for the ensemble or Δ~μ for a single neuron). We computed the
normalized signal between two spatial bins: Δ̂μ ¼ Δ~μ=jΔ~μj, where
each element of this vector represents the slope between two
consecutive bins for each neuron in the population. We then
computed the variance of each of the squared elements of Δ̂μ. We
called this new statistical quantity the normalized signal variance
(NSV): VAR½ðΔ̂μÞ2�, representing the spread or variability in the
sensitivity of each neuron's response for the position (see Meth-
ods). Although counterintuitive, the narrower the distribution of
PF widths, the broader the distribution of PF slope, quantified by

the NSV (Fig. 5c, d). This inverse relation depends on the size of
the environment and the number of active neurons. We con-
firmed that this relation remains qualitatively the same for
populations as large as 10 thousand neurons (Suppl. Fig. 17). To
demonstrate that our simplified model of PFs is a good descrip-
tion of the biological data, we computed the distribution of PF
width for two example animals (Fig. 5e). We could confirm the
observation from synthetic data that there was an inverse rela-
tionship between the variance of PF width and NSV in the real
data (Fig. 5f). Different animals presented different mean
NSV distributions over the linear track (Fig. 5g, Suppl. Fig. 18).
We found that, for each animal, the smaller the NSV the larger
the ratio between asymptotic SNR of the unmodified data and the
asymptotic SNR of the data without noise correlations (i.e.,
asymptotic SNR ratio) (Fig. 5h). Therefore NSV explained the
noise correlations’ effect on limiting the spatial information
(Fig. 5i, r2= 0.65) over the distribution of the recorded animals.
In addition, NSV described the relation between noise correlation
and asymptotic SNR ratio better than other variables that para-
metrized PF shape (see Suppl. Table 2 for comparisons with other
quantities). We confirmed that our result does not depend on the
number of neurons active or trials performed in a given session
(Suppl. Table 2 and Suppl. Fig. 19). This analysis concluded that
the narrower the distribution of PF slopes between consecutive
spatial bins, the larger the effect of noise correlations on limiting
information at large ensemble sizes. In this way, we connected the
effect of noise correlations on limiting information to individual
neurons PF properties.

Discussion
For many decades, the standard view in the fields of spatial
memory and spatial navigation research has been that an increase
in spatial accuracy could be achieved by increasing the neuronal
ensemble size involved in the representation of a given
environment18,19,22, having consequences in current investiga-
tions. However, theoretical and experimental work in neocortical
areas has shown that, in the presence of noise correlations, the
decoding accuracy cannot be unbounded; it must reach a

a b c

0 50 100
PC index

 S
N

R
 o

n 
P

C
 d

ire
ct

io
ns

 

r 2  = 0.50

(c
os

2
(P

C
i,Δ

μ)
)

PCi

PCi

Σ

Σ

0

0.02

0.04

0.06

0.08

0.1

50 100 150
PC index

0

0.01

0.03

0.02

area between curves 
for all PCs

area between curves for all PCs

max SNR contrib.@ PC=6

ensemble (shuff.)
ensemble

0 0.05 0.1 0.15 0.2

1

2

3

4

 e
ns

em
bl

e 
as

ym
pt

ot
ic

 S
N

R

Mouse 2023
24
28
10
12
19
22
26
11
21
25
29

si
gn

al
-n

oi
se

 a
lig

m
en

t Δµ

Δµ

Fig. 4 Spatial information is distributed across many dimensions. a The SNR along each noise covariance matrix eigenvector. SNR computation using the
training set (dotted gray) or the testing set (solid green). Median and the 95% confidence interval (shaded area) over spatial bins, averaged over 100
different train (gray) and test (green) sets and aggregated over 73 sessions with 10 mice. The first dimensions increasingly accumulate contribution to
SNR, peaking at PC6 (purple dashed line). The accumulated contribution up to this point is a small percentage of the area under the curve as the PC indices
grow to large numbers. b cos2 between the signal direction Δμ and the noise mode direction PCi for ensemble data (blue) and ensemble shuffled data
(red). Shaded area is the 95% confidence interval based on the same testing set as in a. The gray area between red and bluecurves is an empirical estimate
of the overlap between signal and noise due to noise correlations. Gray area is computed using all available PC directions per session, which were limited
by data size. c The total cos2 overlap between signal direction Δμ and each noise PC direction in the shuffled data, subtracted from the corresponding
quantity in the unmodified data, correlates with the asymptotic SNR from Supp.Fig. 11c. Increase in signal-noise overlap due to noise correlations predicts
the limit of spatial information (Pearson’s corr.= 0.81, r2= 0.50, p < 0.05, n= 73 sessions with 10 mice. Each dot represents the average over sessions for
each animal, error bars are the 95% confidence intervals over each animal’s sessions). Noise structure explains how noise correlation limits hippocampal
spatial information. Source data is provided as a Source Data file.
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maximum that is independent of the size of the neuronal popu-
lation participating in the representation. We have experimen-
tally demonstrated that noise correlations limit spatial
representation’s asymptotic accuracy for large neuronal ensem-
bles in the hippocampal network activity. Our result coincides
with several observations in the neocortex41–43, but we have
demonstrated these phenomena in the hippocampus. For this
reason, we believe it is of great relevance for the field.

Noise correlations could be the manifestation of information
that was not taken into account in our decoders (i.e., slow
oscillations, phase-precession, speed, acceleration, heading-
direction relative to landmarks, time of day, odors in the room,
etc.,) (e.g.,49,60). It was recently shown that it is possible to decode
information related to body movement from the visual cortex;
however, this information is mainly perpendicular to the signal

direction of the visual stimuli61, which, in principle, would not
affect decoding accuracy. Stringer et al.,61 have shown thatvisual
and body movement representations share only one dimension.
Further analysis eliminating noise correlations should be per-
formed on their data to estimate the effect of body movement on
visual information for large ensemble sizes. The hippocampus has
a different structure and connectivity properties than the visual
cortex. Therefore the results of Stringer et al., might not gen-
eralize to the hippocampus.

As remarked upon by62, our division of neuronal activity into
signal and noise is operationally defined based on the spatial
position variable that we measured in the experiment. We cannot
rule out that adding more observational variables to the analysis
would better explain the neural responses quantified by the var-
iance explained. To test the hypothesis that other variables could

Fig. 5 PF shape heterogeneity explains the effect size of noise correlations on decreasing spatial representation accuracy. a Top: Synthetic distribution
of narrow PFs generated by 50 Gaussian curves with a uniform width distribution of min= 0.2 and max= 1.42. Bottom: Average over the distribution of
synthetic PF slopes within each spatial bin (black), and the variance of the normalized PF slope distribution, called normalized signal variance
ðNSV ¼ σ2½ðΔ̂μÞ2�Þ, between two spatial bins (red). b Same as in (a), but with a uniform width distribution of min= 0.8 and max= 2.0. The distributions
were chosen from a parameter study to match our recorded data (Suppl. Fig. 16). c Distribution of NSV from each bin, generated from 1000 simulations of
the PFs in a. d Distribution of NSV from each bin, generated from 1000 simulations of the PFs in b. The variance of the PFs determines the shape of the PF
slope distribution (inset rectangles, top-right). e Width distributions for two example animals: 2026 (narrow distribution) and 2021 (broad distribution).
f Correlation between animal’s PF width and NSV. The broader the width distribution, the narrower the NSV values per animal. Pearson’s corr.=−0.65,
r2= 0.36, pval= 0.039. Each dot represents the average over sessions for each animal. Error bars are the 95% confidence intervals over sessions. g NSV
for each bin from the linear track for one session. Two extreme example animals: high NSV (Top: Mouse2026), low NSV (Bottom: Mouse2021). The
dashed line represents NSV averaged over bins. Black lines and shaded areas correspond to the mean and the 95% confidence intervals over sessions. NSV
distribution for all bins, from all mouse sessions (Left). h Asymptotic SNR changes after eliminating noise correlations (shuffle). The effect is higher in
animals with a small NSV. Each thick line represents the median over sessions for each animal. Boxes top and bottom edges represent the interquartile
range (IQR). Whiskers minima is the (first quartile)-1.5*IQR and the maxima is the (third quartile) + 1.5*IQR. i Correlation between the asymptotic SNR
ratio (i.e., ensemble with noise correlations over ensemble shuffled) and averaged NSV (Pearson’s corr.= 0.83, r2= 0.65, pval= 0.003). Each dot
represents the average over sessions for each animal. Error bars are the 95% confidence intervals over sessions. Animals whose neuronal representation
had a narrow PF width distribution were more affected by noise correlations. Source data is provided as a Source Data file.
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contribute to information-limiting noise correlations, an experi-
menter would need to proportionally add as many trials as new
bins are added to discretize the extra encoded variables. In our
data, this would be unfeasible because it would dilute the statis-
tical power. Nevertheless, we encoded two observational variables:
position and heading direction (rightward and leftward runs). We
used a total of 40 spatial/directional bins in our analysis. In our
case, this treatment of the data improved decoding accuracy.

Recent work has shown that eliminating noise correlations
decreases decoding accuracy when the position is estimated from
ensembles of ~350 neurons from the hippocampal area CA1 of
mice freely exploring an open field49. The reported opposite effect
relative to our findings is likely caused by their shuffling method
not controlling for the direction of motion, in conjunction with
shuffling the calcium event times before convolving the event
traces with a transient function. These two factors degrade the
benefit of the convolution to the decoding accuracy and are
absent in our methodology. The shuffling procedure of Stefanini
et al., is conceptually different from ours because our results are
obtained on the premise of finding the absolute minimal error,
which is relaxed in the case of mixing visits with different heading
directions. Peyrache et al.,31 also claimed that noise correlations
improve decoding accuracy in areas connected to the CA1 hip-
pocampal region. In this case, the authors simulta-
neously recorded from a modest number of neurons (2–12 cells),
making it difficult to derive a conclusion due to the poor coverage
of the encoded variable. As we have found in our study in Figs. 3
and 4, a minimum of 100–150 neurons were necessary to describe
the effects of noise correlations on asymptotic decoding accuracy.

We discovered that spatial information is distributed over a
large number of dimensions, which makes the hippocampus
different from previously reported neocortical areas. Hippo-
campal area CA1 seems to be a region where considering only the
principal noise components with the largest SNR is insufficient to
estimate the encoded information accurately. Because we found
that information is encoded in a large number of dimensions, one
could hypothesize that hippocampal neurons integrate inputs
from a larger population of presynaptic cells than neocortical
neurons do. Previous theoretical work57 proposed that networks
should display high levels of clustering in subpopulations of
neurons to concentrate the noise in the largest components.
Instead, based on our experimental observations, the level of
neuron clustering in the hippocampus might be low or negligible
due to the broad SNR distribution over many components, giving
a potential argument as to why the hippocampus shows a dif-
ferent noise distribution than neocortical areas.

It has been shown that attention and learning can change the
effect of noise correlations on information26,63,64. Despite the
large variability in PF shape, we could determine the impact of
noise correlations on spatial information between different ani-
mals by using a statistical quantity we termed the NSV. This
provided experimental evidence showing how PF heterogeneity
reduces encoding accuracy due to noise correlations. One natural
question is whether PF heterogeneity can be modified in the
medial temporal lobe circuit to increase the accuracy of repre-
sentations, for example, during learning. The answer to this
question will be the subject of further analyses and novel
hypotheses. Currently, hippocampal research uses spatial
information58 to describe spatial accuracy, which is a quantity
that increases the narrower the peak (or multiple peaks) of the
PFs become. Some experimental evidence from animals accu-
mulating experience running on linear tracks reported broad-
ening PFs65, while others reported sharpening66. Instead, we
found that the effect of noise correlations in changing the
information encoded in the hippocampus was reduced if the PF
NSV was more heterogeneous, rather than if the neurons’ PFs

became narrower or broader. The differences between our and
previous results are due to differences in the study approach
for hippocampal spatial representations: the single neuron versus
neuronal population representation. For the traditional sin-
gle neuron and deterministic doctrine, information is quantified
based on the PF’s mean response . This view ignores the effect of
the PF’s response being highly variable between different visits to
the same spatial location and how this interplays with the
redundant information from neurons with overlapping PFs. Our
result should encourage the analysis of spatial accuracy taking
into account the effect of trial-by-trial variability using tools such
as decoders. It should also inspire new experiments to describe in
detail how PF heterogeneity evolves during learning and
forgetting.

The methods that we have developed to observe the asymptotic
behavior of spatial accuracy at large ensemble sizes using the SNR
between representations of two spatial bins enable the measure-
ment of the effect of noise correlations even on ensembles of
modest sizes (~100 neurons). Thus, this methodology now pro-
vides a way to observe changes in spatial accuracy during learning
and forgetting. Furthermore, our method could be used during
experimental manipulations involving optogenetic and pharma-
cological techniques, even when ensembles of neurons’ activities
are collected via traditional methods like tetrode recordings.

What are the implications of having limited accuracy in the
spatial representation encoded in the dorsal hippocampus? We
observed that the asymptotic decoding error was, on average, 9.38
+/− 4.06 cm (median +/− IQR). Ten centimeters is approxi-
mately the size of a mouse’s body, and it is possible that, on
average, the animals did not require higher precision to navigate
in our task. This spatial error might not be an absolute lower
bound but the manifestation of the accuracy required to solve a
simple linear track task. We propose that, in more demanding
spatial navigation tasks, the spatial error might decrease (as
suggested by Supp. Fig. 8c), and perhaps PF heterogeneity might
also change accordingly. On the other hand, in tasks such as free
exploration or random foraging, the error can increase.

We have experimentally demonstrated the existence of
information-limiting noise correlations in hippocampal neuronal
activity, and we have provided experimental evidence of how the
heterogeneity of neurons’ PFs can counteract the information-
limiting effect of noise correlations. Furthermore, we proposed
that PFheterogeneity can be modulated to increase the informa-
tion encoded in the hippocampus’ neuronal activity in processes
such as learning during spatial navigation, as suggested by our
analysis in Suppl. Fig. 8c. Finally, we put forward the idea that, to
better quantify how information increases during learning, it is
necessary to consider the effect of noise correlations on neuronal
population activity.

Methods
Animals. Male C57BL6/J mice (Jackson Labs; 14–16 weeks old) were provided
food ad libitum and water restricted to 0.5 mL per day plus the water obtained
during the task (0.5–1.5 mL). Before the experiment, mice were habituated to
human handling twice a day for three days. All animal procedures were approved
and executed following institutional guidelines (Stanford Administrative Panel on
Laboratory Animal Care).

Behavioral box. The arena was a linear corridor 5 cm wide and 100 cm long, with
two, 10 cm deep, trapezoidal compartments at the two ends. Water spouts were
located at the back end walls, leaving enough room for the animal to turn inside the
compartments. The water was delivered by a solenoid valve driven by an Arduino
that controlled the amount of water delivered and kept track of the alternating
water availability. Water was released when the animal closed the electric circuit
between a metal base and the dispenser tube.

Behavioral task. The animals ran on a linear track to collect rewards (50 µL water
drops) from the two water spouts located at both ends of the track (Fig. 1a). Mice
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performed more than 100 trials per session. The task was based on collecting
rewards at the two ends of the track without repetition. The mice did not receive
the reward if they returned to the same end. A five-day pre-training phase was used
to teach the animals to run to alternate ends of the track to obtain rewards and
reach many runs.

Analysis of behavioral data. Each session’s output data consisted of a full video
recorded from a camera above the arena and synchronized frame by frame with the
mini-microscope’s recorded frames. Videos were recorded using IC-capture.
Frames were triggered by the TTL signal from the mini-microscope DAC board
output. The recording frequency was 20 frames per second. The tracking of the
mouse’s position was performed using a MOG algorithm implemented in OpenCV.
We discretized the animal's spatial position on the track into 20 bins of equal
length, each approximately 6 cm long, for each running direction. This selection
was based on minimizing the decoding error (Suppl. Figure 4) and maximizing the
number of samples per bin to obtain higher statistical significance in analyzing
noise structure. During each 20-minute session, the mice performed up to ~380
runs over the track in each direction, which we called trials.

Estimate of position measurement noise. Noise in the estimates of the mouse’s
positions from the overhead camera can, in principle, reduce the position decoder's
performance and introduce noise correlations that limit information. However, we
estimated that this noise source was minimal compared with our typical decoding
errors on the scale of 10 cm and that it did not significantly influence our results.

To assess the degree of position measurement noise, we took each running trial
and isolated the frames between spatial bins 7 and 13 in the middle of the track
(center-track frames). Between these bins, the motion appears to be uniform in
most trials. We sought to measure the spread of the residuals relative to a linear
model of uniform motion. Our approach used half of the center-track frames from
each trial to fit a linear model between time and position and then measure the
residuals’ spread using the other half of the frames. We first collected the residuals
from each trial, we then measured their collective standard deviation using a robust
estimator, resulting in the estimated scale of the position measurement noise for a
given session. The robust estimator was necessary since a minority of the trials
exhibited non-uniform motion, inflating the residuals and creating outliers. We
used the interquartile range (IQR) with a normalization factor to match the result
with the standard deviation of a Gaussian distribution. On average, the scale of the
jitter was 0.28 cm, with a range of 0.12–1.0 cm across 110 sessions. Therefore, the
position measurement noise cannot explain the observed saturation in the spatial
information of ensemble activity.

Viral injection. Surgeries were performed when the mice were between 6-8 weeks
of age. Only excitatory pyramidal neurons were labeled by injecting adeno-
associated virus (AAV, serotype 2.5), driving expression of GCaMP6m via the
CaMKIIα promoter. We injected 600 nL of the AAV (injection coordinates relative
to bregma divided between three locations: mediolateral (ML)= 1.8, anterior-
posterior (AP)=−1.5, dorsoventral (DV)=−1.6; ML= 1.4, AP=−2.2, DV=
−1.55; ML= 2.1., AP=−2.9, DV= 1.8) via a borosilicate glass pipette with a
~50-μm-diameter tip using short pressure pulses applied with a picospritzer
(Parker Hannifin).

Mini-endoscope implantation. Thirty days after virus injection, a second surgery
was performed to implant a mini-endoscope, which is a stainless steel guide tube
(1.2 mm diameter) with a custom glass coverslip glued to one end (0.13 mm thick
cover glass, Paul Marienfeld GmbH), which holds the GRIN lens to focus the image
on the focal plane of the mini-microscope. We inserted the mini-endoscope with
the position and the angle to cover the more extended flat area of the dorsal part of
the hippocampal CA1 region (relative to bregma ML= 2.1 (+77° on the coronal
plane), AP=−2.2, DV=−1.1(from dura)). To prevent increased intracranial
pressure, all brain tissue inside the cylindrical volume that the mini-endoscope
occupied was aspirated, removing up to the second set of fibers crossing over the
CA1 area, coming from the entorhinal cortex. Each group of fibers was identified
by its orientation ~60 degrees from the previous layer. Mice recovered after three
days, but we waited up to 5–7 weeks for the tissue to return to its place after
movement due to a neuroinflammatory process. At this point, the level of
GCaMP6m expression was checked by bringing the mini-microscope to the GRIN
lens on a head-fixed mouse and determining if neurons were activated when the
animal ran on a wheel. Once the level of expression was constant, we then mounted
the miniature microscope’s base plate (nVista HD, Inscopix Inc.) using acrylic
cement and ultraviolet-light curable glue.

Calcium recordings during behavior. We used a computer to control and store
the nVista mini-microscope frames and send the trigger inputs to the camera that
recorded the behavior. We then combined the calcium activity with animal
behavior offline. First, the raw movies from the mini-microscope were down-
sampled before processing due to computer memory constraints. Next, we used the
NoRMCorre piecewise linear registration algorithm67 to minimize the frame-to-
frame displacements caused by the animal’s brain movement relative to the mini-
microscope field of view. Next, ΔF=F0 was obtained by subtracting and dividing

each pixel value at a given frame by its mean activity across the recording session.
This operation was followed by applying the CELLMAX extraction algorithm68,
which models how the movies arise from the underlying calcium signals and finds
the most likely set of neurons in the movie by computing the maximum likelihood
of this probabilistic generative model. By applying this algorithm on a temporally
downsampled version of the ΔF=F0 movies, we obtained 600 to 1000 mask can-
didates for the neurons in a given session. Finally, these candidates were inspected
in a semi-automated manner for calcium-like dynamics and neuron-like shapes,
resulting in ~200–500 simultaneously recorded neurons per session.

Event detection algorithm. To generate event traces from calcium ΔF=F0 traces,
we performed the following steps:

1. For each trace, we performed wavelet denoising using the wdenoise
function in MATLAB with the default options. Then, we subtracted the
denoised trace from the original to recover the removed noise component.
Wavelet denoising excels at removing Gaussian noise, such that the local
optima in the denoised trace are much less likely to be spurious and more
likely to correspond to calcium events.

2. We set the minimum event size to three times the standard deviation of the
noise component.

3. We set the minimum event peak value to the first quartile of the denoised
trace, plus the minimum event size.

4. We saved all of the local maxima in the denoised traces that were higher
than the minimum event peak value. These were the putative event peaks.

5. We found the local minima preceding each aforementioned local maxima.
Thus, these were the putative event baselines.

6. We found the frames between the baselines and peaks where the denoised
trace surpassed the baseline value plus the minimum event size. These
frames were the putative event onset.

7. We removed the putative events whose peak values were below the
minimum event size higher than their baseline values.

8. We generated event traces containing zeros except at the event onset frames,
where we set the values to the corresponding event peak values minus their
baseline values.

9. We convolved each event trace with the function α tð Þ ¼ t=τ
� �

exp 1� t=τ
� �

,
where τ = 0.2 sec sampled at 20 Hz from t= 0.05 to 1.5 s. This convolution
simulates a spike burst from each calcium event.

10. Finally, we divided each event trace by its own standard deviation.

We used this method because it does not require estimating a baseline level for
each trace. In many of the neurons, the periodic running activity of the mice led to
periodic and dense activity patterns that obscured the true baseline value. Instead
of looking for peaks at a certain threshold above the baseline, our method estimates
the noise level and searches for peaks of a relative magnitude that exceed the noise
level by a specific factor.

Data preprocessing for decoding mouse position. Out of 239 total sessions from
12 mice, in the analysis, we included only those sessions surpassing 150 identified
neurons and 30 running trials in each direction of motion (110 sessions from 12
mice, the “working” sessions). In some analyses involving estimating the correla-
tion matrix structure (Fig. 3g and the following figures), we opted to further restrict
the selection of sessions to those with at least 200 neurons. We referred to the
limited subset of sessions as the “large-data” sessions (73 sessions from 10 mice).
Within each session, we defined a valid trial as a contiguous duration in which the
speed of the mouse was always greater than four cm/s, and the mouse visited each
spatial bin on the track. Each trial contained either leftward or rightward motion.
We discretized the position variable into 20 bins and arranged the neuronal data
into an activity tensor with three axes: neurons, spatial bins and trials (Suppl.
Fig. 10). The (n,k,t) index of the tensor contained the mean event trace value for
neuron n, during trial t, from all the frames where the mouse was in spatial bin k.
Note that the choice to integrate all frames from a single visit into a spatial bin as
the neuronal representation for that visit means that the effective integration time
differed based on the average velocity during each visit. We chose this scheme to be
consistent with the model of a spatially parametrized population-tuning curve that
is also spatially discretized. The position decoder used either the activity tensor as-
is (i.e., “ensemble”) or the tensor’s trial-shuffled version. To perform the trial
shuffle, we randomly permuted the activity values of each neuron across trials but
within the same spatial-directional bin (Suppl. Fig. 2). We randomly selected 50%
of the trials to serve as held-out test data for decoding, while the other 50% served
as a training set. In the cases where trial-shuffling was necessary, we shuffled both
the training and testing sets separately. Note that shuffling only the training set but
not the testing set is not equivalent to our approach and may produce qualitatively
different results.

Computational spatial position decoder. We used a multiclass ensemble of linear
support vector machines (SVMs) to decode the spatial position from neural data.
These decoders had the ability to account for the noise correlation structure during
training69 and had access to all neurons regardless of their spatial coding prop-
erties. Stefanini et al.,49 demonstrated that cells that do not encode spatial
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information may still contribute to the population code. Such decoders can, in
principle, perform either as well as or better than equivalent decoders that ignore
the correlation structure, such as naïve Bayesian decoders23. Each class represented
a combination of spatial bin and direction of motion, with 20 classes for each
direction of motion, making a total of 40. There was one SVM binary classifier
between each pair of classes. We used the decoder to predict each column’s class
from the aforementioned neuronal activity tensor, in which a column represents
the population activity within a spatial bin on a given trial. The ensemble of binary
classifiers voted to decide on the decoder’s predicted class.

The rationale for discretizing the position variable. Our analyses were based on
the decoding accuracy of a classification model that predicts a discretized position
variable. Here we explain the choice to discretize the position variable. The pro-
blem of predicting the mouse’s position and direction of motion based on neuronal
activity naturally lends itself to a regression model. The neuronal activity values are
numeric predictors and the position target variable is likewise numeric. Thus, a
model that jointly uses regression and classification to predict the position and the
direction of motion would have sufficed to characterize the accuracy with which
hippocampal neuronal activity encodes these variables. However, the goal of our
analysis was to compare the encoding accuracy of the unmodified data to that of
trial-shuffled data. To trial-shuffle continuous position data, one must equivocate
visits to nearby yet non-identical positions, treating them as close enough to
perform the shuffle between them. The simplest way to carry out that equivocation
is by discretizing the position variable. All frames with positions within the same
spatial bin and the same direction of motion are eligible to have their neuronal
activities shuffled with other frames in that bin but not with those in other bins.
Since the problem now becomes to predict spatial-directional bins based on neu-
ronal activity, we opted to use a linear SVM-based classifier. It may be possible to
define a trial-shuffle that keeps the position variable continuous and chooses to
shuffle a pair of frames based on a probability that decays as a function of the
distance between the frames’ positions. However, such an approach would be more
challenging to interpret, and its results would be harder to compare to earlier work
that shuffled position-labeled neural data via discretization49.

Determining where spatial accuracy approaches saturation. The IMSE of
decoding spatial position as a function of ensemble size was estimated by computing
the mean IMSE using randomly sampled subsets of neurons of a particular size for a
range of ensemble sizes. Each subset of neurons was drawn independently of the
others so that they were not necessarily disjointed. Error bars were computed based
on the SEM over these subsets. When decoding from shuffled data, we applied the
trial shuffle separately to each random subset, and we then fit the IMSE curves as a
function of ensemble size to the function IMSEðnÞ ¼ I0n=ð1þ n=NÞ (refer to the
main text and Fig. 2f). We used the parameter N, the ensemble size at which the
IMSE reaches half of its asymptotic value, to characterize how quickly a given
neuronal ensemble approaches saturation. The main text notes the ensemble size at
which the slope on the fitted curve is 5% of I0. This ensemble size is equivalent
to ð ffiffiffiffiffi

20
p � 1ÞN or �3:47N. To aggregate these values across sessions and animals,

we first averaged sessions from the same animal and then reported the range across
animals. We used a geometric mean to mitigate potential outliers. Using the geo-
metric mean over each animal, the spatial accuracy reached 5% of its original slope
at [346 - 1402] neurons. As another measure of saturation, we computed the
ensemble size needed to reach 95% of the asymptotic IMSE, equivalent to 19N. In
that case, the values were [1894–7671] neurons.

Dimensionality reduction of neural data. To visualize high-dimensional neural
activity data on a low-dimensional plot, we used partial least squares (PLS)
regression70. PLS found the dimensions in the space of ensemble responses most
highly correlated with the spatial position and direction of motion variables. PLS
regression is particularly suited when the estimation matrix has more neurons than
observations (trials) and correlations between the estimated values. The neural
responses and both behavioral variables were z-scored before running PLS. For the
plot in Fig. 3a, we did not cross-validate the PLS dimensions to show the behavior
for the entire session on one set of axes because we did not rely on PLS to provide
an unbiased estimate of the spatial accuracy. Instead, we only used the PLS
dimensions to visually contrast the noise covariance structures between the
ensemble andshuffled ensemble data. We later cross-validated the PLS in several
2-D and 3-D subspaces to confirm that the description in Fig. 3a was accurate.

Quantifying the signal and noise overlap. To determine how noise correlations
influenced the extent to which trial-by-trial fluctuations overlapped with the
position signal, we compared overlap between signal direction and each of the
noise covariance matrix’s principal eigenvectors.

Definitions. “signal direction”- To approximate the direction tangent to the neu-
ronal population tuning curve, f 0 , we defined the signal vector Δ~μ as the vector
pointing from the trial-averaged population vector of one spatial bin to the one
adjacent to it. The corresponding unit vector gives the signal direction. With
20 spatial bins, we have 19 such vectors per direction of motion.

“noise correlations”—We defined the neuronal activity fluctuations in response
to a spatial position and direction of motion as the activity at each trial minus the
trial-averaged activity at that position with the same direction of motion. For
example, suppose the neuronal activity in neuron n, at spatial-directional bin k, and
trial t is, in that case, the corresponding activity fluctuation is Xnkt � <Xnkt>t ,
where < �>t denotes trial averaging.

“noise covariance matrix”- For each spatial bin, we counted each of the mean-
subtracted population vectors from different trials as samples of the noise
distribution. We then calculated the covariance matrix and its principal
eigenvectors for unmodified and shuffled data. These principal eigenvectors are
referred to as the noise directions.

“the overlap”- For each of the noise directions in a given spatial bin, we
calculated the dot-product with the signal direction from the same bin to the next
one (in each corresponding running direction), representing the angle’s cosine
between the two unit vectors. Then, as an empirical estimate, in Fig. 4b, we used the
difference between the sum of squares of the cosine angles up to the sixth noise
direction in the real and shuffled data to quantify by how much the correlations
increased the overlap of noise directions with signal direction.

Analyzing signal and noise in the spatial code. To observe how signal and noise
regarding spatial encoding change as a function of ensemble size, we first sought to
project the neural activity onto the signal direction and then analyze the signal and
noise within this one-dimensional subspace. We approximated the amount of
signal in the space of population firing rates as the squared difference between trial-

averaged responses of adjacent spatial bins ( Δ~μ
�� ��2). This quantity grew linearly with

ensemble size and was independent of trial shuffling (Fig. 3b, c). Similarly, we
defined noise σ2 as the trial-by-trial variance of the neuronal population responses
along the signal direction between two adjacent spatial bins (Fig. 3b). The noise in
the unmodified data kept increasing linearly with ensemble size, whereas in the
shuffled data, it reached saturation well within the first ~100 neurons (Fig. 3d).

To produce estimates of the true signal and noise without overfitting our data,
we first used 50% of the trials to calculate the difference between mean responses of
adjacent spatial bins (Δμtrain vectors). We then projected each spatial bin’s neural
activity from the other 50% of the trials onto the direction of the Δμtrain vector
between it and the following spatial bin. From this one-dimensional projection, we

found Δμtest
�� ��2 and σ2test as the squared differences between the mean responses of

the adjacent spatial bins and the pooled variances of both bins. Finally, we
computed their median values over all adjacent spatial bin pairs (Fig. 3c, d).

In formulaic terms, we estimated signal and noise quantities as follows: Let
Δ̂μtrain be the signal direction estimated from half of the trials, and let Δμtest and
Σtest represent the difference in mean responses between adjacent spatial bins and
the pooled covariance matrix from both bins, respectively, both calculated on the
remaining half of the trials. From these variables, we estimated signal quantity (or

jΔμj2) as ðΔ̂μTtrain:ΔμtestÞ2, and noise quantity (or σ2) as Δ̂μ
T
trainΣtestΔ̂μtest .

We repeated the calculations for 80 random subsets of neurons at different
ensemble sizes and calculated the values of jΔμj2 and σ2 from the unmodified and
shuffled data (Fig. 3c, d). We computed the linear slope values of jΔμj2 and σ2 as
functions of ensemble size using values from ensemble sizes of over 100 cells to
ensure that only the linear regime of the curve participated in the calculation of the
slopes. We repeated this analysis on the responses of each cell individually rather
than a population projection. For each cell, from the median values of jΔμj2 and σ2

over spatial bins, we defined the ratio jΔμj2=σ2 as the signal-to-noise ratio (SNR) of
the cell. We found that the average SNR across all cells correlated with the initial
linear slope of decoding accuracy (I0) when comparing across mice (Suppl.
Fig. 11b). We repeated the above analysis to calculate the SNR along each noise
component (Fig. 4a). Still, instead of estimating the signal direction from the

training set (as Δ̂μ
T
train), we estimated the principal components of the noise

covariance matrix from the training set (PCk;train) and calculated the SNR as
described above after projecting the testing set onto each PCk;train direction. As a
reference, we also included the SNR from projecting the training set itself onto each
PCk;train direction to show the effect of cross-validation on the estimates of SNR
along the noise principal components. Note that the sum of SNR values along each
PC is equal to the SNR along the direction maximizing SNR, which is generally not
identical to the SNR along the signal direction.

Signal and noise analysis for the direction of motion variable. The definitions
of signal (jΔμj2) and noise (σ2) for the direction of motion variables are identical to
those of the position variable, except that, instead of being measured between two
adjacent spatial bins, they are measured between bins with the same spatial posi-
tion but opposite directions of motion.

First, we held out 50% of the trials as a test set, with the remaining being the
training set. Next, we determined the direction of motion's signal direction for a given
spatial position as themean population vector of the rightward binminus the mean of
the leftward bin at that position, all using the training set data. We then projected the
test data onto the signal direction and calculated jΔμj2 and σ2 using the right and left
bins for each discrete spatial position value. jΔμj2 is the squared distance between the
means of the left and right bins, and σ2 is the pooled variance from both bins.
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Path analysis. We employed path analysis to show that task performance best
correlated with asymptotic decoding performance, unmediated by the number of
trials performed (Suppl. Fig. 8d)71. The analysis included number of trials and task
performance as predictors in a linear model of the log asymptotic IMSE. The path
analysis used one sample per session from the sessions with over 200 recorded
neurons (n = 73 sessions).

A synthetic PF model. To illustrate the PF shape variability, we used a synthetic
representation of spatially-tuned neurons covering the spatial environment in our
task. To generate artificial populations of cells tesselating the entire linear track, we
created Gaussian-like receptive fields located randomly within the track repre-
sented by 20 individual segments. For the “narrow” distribution, we generated
gaussian PFs with a log-normal distribution of half-widths with mean equal to 0
and variance equal to 0.3 [log(bins)]. For the broad distribution of half-widths, the
mean was equal to 0, and variance equal to 2 [log(bins)]38. The variance of the
slope distribution for 50 synthetic neurons across all bins was then computed. This
procedure was repeated 1000 times to obtain the distribution of the normalized
signal variance (see below) for these two types of PF distributions (“narrow” and
“broad”) (Fig.4c, d).

Definition of the normalized signal variance (NSV). To quantify the degree to
which the spatial (or directional) signal direction was distributed across the neu-
ronal ensemble, we took the signal direction vector Δ̂μ ¼ ~Δμ=j ~Δμj and found the
variance of its squared elements, termed the normalized signal variance (NSV).

NSV ¼ VARi½ðΔ̂μÞ2i �
We used signal direction only and not the original ~Δμ because the overall mag-
nitude varies enormously across spatial bins and does not affect the degree of
distributivity of the code.

Statistics. We have also utilized common tests not described in the Method sec-
tions. The Wilcoxon signed-rank test was used as a paired difference test without
the assumption of normally distributed samples. We utilized the Pearson correla-
tion coefficient ρ and p-values to describe linear correlation between two data sets,
and the coefficient of determination r2 to describe the power of the model.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data from all figures are provided in the supplementary material file called: “SourceData”
file. All cells raw data are available at CRCNS—Collaborative Research in Computational
Neuroscience (https://doi.org/10.6080/K0GH9G5X).

Code availability
Neuronal activity data analysis was performed using our own codes in Matlab. The codes
are available at: https://github.com/approbatory/ML-project.
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