Calcium Release in HSY Cells Conforms to a Steady-state Mechanism Involving Regulation of the Inositol 1,4,5-trisphosphate Receptor Ca²⁺ Channel by Luminal [Ca²⁺]

Akihiko Tanimura and R. James Turner

Clinical Investigations and Patient Care Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892

Abstract. In many cell types, low concentrations of inositol 1.4.5-trisphosphate (IP_3) release only a portion of the intracellular IP₃-sensitive Ca²⁺ store, a phenomenon known as "quantal" Ca²⁺ release. It has been suggested that this effect is a result of reduced activity of the IP₃-dependent Ca²⁺ channel with decreasing calcium concentration within the IP₃-sensitive store $([Ca^{2+}]_s)$. To test this hypothesis, the properties of IP₃dependent Ca2+ release in single saponin-permeabilized HSY cells were studied by monitoring $[Ca^{2+}]_{S}$ using the Ca²⁺-sensitive fluorescent dye mag-fura-2. In permeabilized cells, blockade of the sarco/ER Ca²⁺-ATPase pump in stores partially depleted by IP₃ induced further Ca²⁺ release via an IP₃-dependent route, indicating that Ca²⁺ entry via the sarco/ER Ca²⁺-ATPase pump had been balanced by Ca²⁺ loss via the IP₃-sensitive channel before pump inhibition. IP₃-dependent

The physiologic effects of numerous hormones, growth factors, and neurotransmitters are mediated by a rise in intracellular (cytosolic) calcium concentration (Berridge, 1993; Pozzan et al., 1994; Clapham, 1995). Many of these agents act by binding to G proteincoupled or tyrosine kinase-linked receptors on the cell surface, resulting in the receptor-dependent activation of phospholipase C. Phospholipase C in turn hydrolyzes the lipid precursor phosphatidylinositol 4,5-bisphosphate to produce the intracellular messengers diacylglycerol and inositol 1,4,5-trisphosphate (IP₃).¹ IP₃ then releases Ca²⁺ from intracellular stores by binding to its receptor which is a Ca²⁺ release channel (Marshall and Taylor, 1993; Ferris Mn²⁺ entry, monitored via quenching of luminal magfura-2 fluorescence, was readily apparent in filled stores but undetectable in Ca²⁺-depleted stores, indicating markedly reduced IP₃-sensitive channel activity in the latter. Also consistent with reduced responsiveness of Ca²⁺-depleted stores to IP₃, the initial rate of refilling of these stores was unaffected by the presence of 0.3 μ M IP₃, a concentration that was clearly effective in eliciting Ca²⁺ release from filled stores. Analysis of the rate of Ca²⁺ release at various IP₃ concentrations indicated a significant shift of the IP₃ dose response toward higher [IP₃] with decreasing [Ca²⁺]_s. We conclude that IP₃-dependent Ca²⁺ release in HSY cells is a steadystate process wherein Ca²⁺ efflux via the IP₃ receptor Ca²⁺ channel is regulated by [Ca²⁺]_s, apparently via changes in the sensitivity of the channel to IP₃.

and Snyder, 1992; Mikoshiba, 1993). This Ca^{2+} release is usually followed by a sustained elevation of intracellular (cytosolic) calcium concentration due to increased Ca^{2+} entry from the extracellular solution. At present little is known about this Ca^{2+} entry pathway. However, there is good evidence from a variety of cell types that the Ca^{2+} permeability of the plasma membrane is regulated by the degree of depletion of the IP₃-sensitive intracellular Ca^{2+} store (Clapham, 1995; Putney and Bird, 1993), and thus indirectly by intracellular levels of IP₃ and the activity of the IP₃ receptor.

Owing to their central roles in intracellular signaling, the Ca^{2+} uptake and release pathways of the IP₃-sensitive Ca^{2+} store have received considerable experimental attention. Ca^{2+} uptake is mediated by sarco/ER Ca^{2+} -ATPase (SERCA) pumps of molecular weight ~110,000 (Pozzan et al., 1994). These transporters are structurally distinct from plasma membrane Ca^{2+} -ATPases and are specifically and irreversibly inhibited by the tumor-promoting sesquiterpene lactone, thapsigargin (Thastrup et al., 1990). The IP₃ receptor is a homotetramer of ~310 kD subunits. Based on molecular cloning and other analyses, each sub-

Address all correspondence to R. James Turner, National Institute of Dental Research, Bldg. 10, Room 1A06, 10 CENTER DR MSC 1190, Bethesda, MD 20892-1190. Tel. (301) 402-1060. Fax: (301) 402-1228. e-mail: rjturner@nih.gov.

^{1.} Abbreviations used in this paper: $[Ca^{2+}]_s$, calcium concentration within the IP₃-sensitive store; CaS, calcium sponge-treated medium; ICM, intracellular-like medium; IP₃, inositol 1,4,5-trisphosphate; PSS, physiological salt solution; SERCA, sarco/ ER Ca²⁺-ATPase.

unit is thought to consist of a transmembrane domain localized at the COOH terminus of the molecule and a long NH₂-terminal cytosolic region consisting of the IP₃ binding site and a regulatory domain. This regulatory domain contains the sites of action of a number of agents that modulate Ca^{2+} transport activity, e.g., protein kinases, adenine nucleotides, and intracellular (cytosolic) calcium concentration itself (Marshall and Taylor, 1993; Ferris and Snyder, 1992; Mikoshiba, 1993).

In 1989, Muallem et al. made an intriguing discovery concerning the nature of intracellular Ca2+ release. Using pancreatic acini whose intracellular Ca2+ stores had been loaded with ⁴⁵Ca²⁺, they showed that low concentrations of Ca²⁺-mobilizing hormone applied to intact acini, or low concentrations of IP₃ applied to permeabilized acini, apparently resulted in only a partial release of the available Ca²⁺ store. The remaining ⁴⁵Ca²⁺ could, however, be released by higher levels of hormone or IP₃, respectively. These observations were surprising in that they are not consistent with the hypothesis that the Ca²⁺ channel activity of the IP3 receptor simply increases monotonically with increasing IP₃ concentration. If this were the case, both high and low doses of IP₃ would result in the complete emptying of the IP₃-sensitive store of ⁴⁵Ca²⁺, the former simply at a faster rate than the latter. Similar or related observations to those of Muallem et al. (1989) have now been made in a variety of intact and permeabilized cells (for review see Missiaen et al., 1994; Bootman, 1994). Hence, this phenomenon, commonly referred to as "quantal" or "incremental" Ca²⁺ release, appears to be a common feature of the IP₃-sensitive Ca²⁺ stores of many, and possibly all, cell types.

The functional significance of this characteristic of intracellular Ca^{2+} release is still uncertain. Its effect is to allow cells to respond to different levels of stimulation in a graded fashion, and it has been suggested that this may be preferable to producing a maximal response at differing rates (Irvine, 1990). It has also been argued that this phenomenon provides a mechanism for "increment detection"; i.e., it allows cells to respond rapidly to increases in agonist concentration that follow a previous lower level of stimulation (Meyer and Stryer, 1990). It is nevertheless clear that this behavior is a direct manifestation of the complexity of Ca^{2+} handling by intracellular stores and that its explanation will greatly enhance our understanding of this process.

In the present paper, we study the properties of Ca^{2+} release in single saponin-permeabilized HSY cells, a continuous salivary ductal cell line from human parotid (Yanagawa et al., 1986). In our experiments, we have taken advantage of the fact that under appropriate loading conditions, certain Ca²⁺-sensitive fluorescent dyes can accumulate in intracellular organelles and be used to monitor their Ca²⁺ content (Hofer and Machen, 1993; Short et al., 1993; Renard-Rooney et al., 1993; Glennon et al., 1992; Hajnoczky and Thomas, 1994). In this case, we have used mag-fura-2, which, as we demonstrate, accumulates in the IP₃-sensitive Ca²⁺ stores of HSY cells. A particular advantage of our experimental system is that these IP₃-sensitive stores can be repeatedly loaded and discharged in an essentially reproducible fashion, thus allowing comparisons of various experimental maneuvers in the same cell. Briefly

stated, our results indicate that IP₃-dependent intracellular Ca^{2+} release by HSY cells conforms well to a steady-state process wherein Ca^{2+} efflux via the IP₃ receptor Ca^{2+} channel is regulated by the calcium concentration within the store ([Ca²⁺]_S). In particular, we provide direct and convincing evidence that the permeability of the IP₃-sensitive Ca²⁺ channel decreases as [Ca²⁺]_S decreases.

Materials and Methods

Media

The physiological salt solution (PSS) contained 135 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl₂, 0.8 mM MgCl₂, 0.73 mM NaH₂PO₄, 11 mM glucose, 2 mM glutamine, 20 mM Hepes, pH 7.4 with NaOH, and 1% BSA (Sigma Chemical Co., St. Louis, MO). Intracellular-like medium (ICM) contained 125 mM KCl, 19 mM NaCl, 10 mM Hepes, pH 7.3 with KOH, 3 mM ATP, 1.4 mM MgCl₂, 330 μ M CaCl₂, and 1 mM EGTA (free Ca²⁺ and Mg²⁺ concentrations, 50 nM and 0.1 mM, respectively). Calcium sponge-treated medium (CaS) was made from a solution containing 125 mM KCl, 19 mM NaCl, 10 mM Hepes, pH 7.3 with KOH, and 1 mM ATP. To remove Ca²⁺, ~60 ml of this solution was passed twice over a column containing 0.3 g Calcium Sponge S (Molecular Probes, Eugene, OR), regenerating the column after each passage by washing with the same solution (without ATP) adjusted to pH 4.0. The final Ca²⁺ concentration of CaS was ~50 nM (determined fluorescently using fura-2).

Cell Culture

The HSY cells (Yanagawa et al., 1986), a generous gift from Dr. Mitsunobu Sato (Tokushima University, Japan), were cultured as described previously (Moran and Turner, 1993) in a 50:50 mixture of DME and Ham's F12 medium supplemented with 10% newborn calf serum, 2 mM glutamine, and 100 μ g/ml each of penicillin and streptomycin (all from Biofluids, Inc., Rockville, MD).

Fluorescence experiments were carried out on HSY cells growing in glass sample chambers consisting of 10×10 mm cloning cylinders (Bellco Glass, Inc., Vineland, NJ) glued to round glass coverslips (25-mm diameter) with RTV silicone rubber adhesive (General Electric Co., Waterford, NY). Sample chambers were precoated with fibronectin by incubation for 1 h with 100 µl of Ca²⁺/Mg²⁺-free PBS (Biofluids, Inc.) containing 1 mM EGTA and 20 µg/ml human fibronectin (Collaborative Research, Inc., Bedford, MA). Fibronectin was stored above liquid nitrogen in aliquots as a 50× stock solution in 100 mM 3-(cyclohexylamino)-i-propanesulfonic acid, 150 mM NaCl, and 1.0 mM CaCl₂, pH 11.5.

Cells were cultured for experiments as follows. A single cell suspension was made by incubating confluent monolayers of HSY cells with Ca²⁺/Mg²⁺-free PBS containing 1 mM EGTA for 15–20 min at 37°C and then vigorously pipetting. This suspension was diluted to 50,000 cells/ml in culture medium, and 200-µl aliquots were plated into fibronectin-coated sample chambers. The cells in these chambers were then returned to the tissue culture incubator for at least 14 h before use.

Mag-Fura-2 Loading

Cells in glass sample chambers were washed with PSS and then incubated with 6 μ M mag-fura-2/AM (Molecular Probes) in the same medium for 30 min at 37°C in the dark. After washing with PSS, these mag-fura-2-loaded cells were kept at room temperature (~25°C) until use (10–60 min).

Permeabilization

Sample chambers were washed with BSA-free PSS and then with Mg^{2+}/ATP -free ICM. Cells were permeabilized by incubation with Mg^{2+}/ATP -free ICM containing 50 µg/ml (wt/vol) saponin (Calbiochem-Novabiochem Corp., San Diego, CA) for 2.5–3 min at room temperature. Permeabilization was monitored by looking for the release of (fluorescent) cytosolic mag-fura-2 (see *Results*) using the same microscope employed for microfluorimetic measurements (see below). After permeabilization cells were washed with Mg^{2+}/ATP -free ICM, and then switched to complete ICM and left for at least 5 min to allow for complete filling of their intracellular stores.

Mag-Fura-2 Fluorescence Measurements

Mag-fura-2 fluorescence from saponin-permeabilized HSY cells was monitored using a microfluorometer (ARCM-MIC; Spex Industries, Inc., Edison, NJ) coupled to a microscope (Diaphot; Nikon Inc., Garden City, NY) equipped with a 40× objective (CF Fluor; Nikon Inc.). Fluorescence emission at 510 nm was measured with a photomultiplier tube attached to the side port of the microscope. Unless otherwise stated, a pinhole aperture placed in front of the photomultiplier tube restricted its view to a field 50 μ m in diameter containing a single permeabilized HSY cell that was alternately excited with light at 340 nm and 360 nm at 1-s intervals. In some experiments, 344 nm excitation (the isosbestic wavelength of mag-fura-2) was used instead of 340 nm.

A vacuum line was placed in the sample chamber and adjusted so that the volume was maintained at $\sim 50 \ \mu$ l. Solution changes were accomplished by the addition of 600–1,200 μ l of the new solution to the sample chamber. All experiments were carried out at room temperature.

The ratio of mag-fura-2 fluorescence at 340 (or 344) nm excitation divided by that at 360 nm is a measure of free [Ca²⁺] (or [Mg²⁺]; see text and Raju et al., 1989) and is illustrated in most experiments. In some experiments, free calcium concentrations were calculated from mag-fura-2 fluorescence ratios according to the procedure of Grynkiewicz et al. (1985) (Raju et al., 1989). The fluorescence ratios at saturating and zero free [Ca²⁺] (R_{max} and R_{min}, respectively) required for these calculations were determined from 5- μ M mag-fura-2 solutions in Mg²⁺/ATP-free ICM containing no added CaCl₂ or 9 mM CaCl₂, respectively. In our experimental system, using excitation wavelengths of 344 and 360 nm, R_{max} = 10.0 ± 0.6 and R_{min} = 0.733 ± 0.003 (n = 3) for mag-fura-2.

Data Presentation

Unless otherwise stated, results of single experiments from single HSY cells are illustrated. In each case, the result shown is representative of three or more experiments carried out under the same experimental conditions and yielding the same result. Quantitative results are given as means \pm SEM.

Results and Discussion

Predictions of Proposed Mechanisms for Quantal Ca^{2+} Release

Initially two explanations were suggested to account for quantal Ca²⁺ release (Muallem et al., 1989; Irvine, 1990; Missiaen et al., 1994; Bootman, 1994). The first proposes that there are multiple intracellular Ca²⁺ stores with differing sensitivities to IP₃ that release their Ca²⁺ in an "allor-none" fashion (Muallem et al., 1989). Thus, at a given submaximal IP₃ level, only a fraction of the stores, those most sensitive to IP_3 , discharge their Ca^{2+} content. This model requires both the existence of IP₃ receptor isoforms with differing IP3 sensitivities and their sequestration into distinct intracellular compartments. The second mechanism proposes that all intracellular Ca²⁺ stores are equally sensitive to IP₃, but that their sensitivity is regulated by their Ca²⁺ content. This regulation may be the result of an effect of the $[Ca^{2+}]_{s}$ on the IP₃ receptor itself or some less direct effect. One possibility is the existence of a Ca²⁺ binding site on the luminal side of the receptor (Irvine, 1990). Thus, as $[Ca^{2+}]_{s}$ falls after IP₃-induced release, this (putative) site would act as a sensor closing the channel until a new steady state is reached between Ca²⁺ entry and Ca²⁺ loss. Both of these hypotheses have received considerable attention in the literature (Missiaen et al., 1994; Bootman, 1994), and more recently several additional explanations have been proposed (see below). At present, however, there is no consensus concerning the mechanism of this phenomenon.

These two possible mechanisms for quantal Ca²⁺ release make quite different predictions for the behavior of the IP₃-sensitive Ca²⁺ channels after IP₃-induced Ca²⁺ release. In the case of multiple stores that respond to IP₃ in an allor-none fashion, those channels that open in response to a given dose of IP₃ remain open as long as IP₃ is present (if they were to close, the stores would refill, and this is not observed). On the other hand, in the case of stores whose sensitivity to IP₃ is regulated by $[Ca^{2+}]_s$, the channels initially open in response to IP₃ but then close with decreasing [Ca²⁺]_s until IP₃-dependent Ca²⁺ loss is balanced by Ca²⁺ entry on the SERCA pump. The differences between the predictions of these two models would be further exaggerated with blockade of the SERCA pump. No effect on the status of the Ca²⁺ channels would be expected in the former all-or-none model. However, the resulting fall in $[Ca^{2+}]_{s}$ expected in the latter steady-state model would presumably lead to a further closing of Ca^{2+} channels.

More recently, two additional mechanisms have been proposed to account for quantal Ca2+ release. Hajnoczky and Thomas (1994) have presented evidence that IP₃dependent Ca²⁺ channels are inactivated by IP₃ in a timedependent manner in permeabilized hepatocytes ($t_{1/2} \sim 15$ s). Thus, they suggest that Ca^{2+} release by submaximal doses of IP₃ terminates before completely emptying intracellular stores, giving rise to quantal release. This model is also necessarily of the steady-state type since complete closure of the channels would result in refilling of the stores. In this regard, the inactivation documented by Hajnoczky and Thomas is, in fact, incomplete and reversible $(t_{1/2} \sim 30 \text{ s})$. Hirose and Iino (1994), on the other hand, have argued that quantal release in permeabilized vascular smooth muscle cells is due to heterogeneity of intracellular Ca²⁺ stores, but that this heterogeneity is due to differing densities of equally IP₃-sensitive Ca^{2+} channels in different stores. Thus, the extent of IP₃-induced Ca²⁺ release varies from store to store owing to their differing pump/leak ratios, giving rise to an apparent heterogeneity in IP₃ sensitivity. This model is therefore also of the steady-state type but, like the all-or-none model discussed above, predicts that the IP₃-sensitive Ca²⁺ channels remain open throughout the response to IP₃.

In what follows, we characterize IP_3 -dependent Ca^{2+} release from the intracellular stores of permeabilized HSY cells. In our experiments, we place particular emphasis on the open or closed status of the IP_3 -sensitive Ca^{2+} channels since this characteristic figures heavily in the distinctions among the above models.

Ca²⁺ Release in Permeabilized HSY Cells

When intact HSY cells loaded with mag-fura-2 as described in *Materials and Methods* were examined visually under the fluorescence microscope, the dye appeared to be uniformly distributed throughout the cytoplasm. After several minutes of exposure to 50 µg/ml saponin (see *Materials and Methods*), ~75% of the intracellular fluorescence was lost, presumably as a result of permeabilization of the plasma membrane and release of cytosolic dye (~50% of the cells were permeabilized within 2.5–3-min exposure to saponin). The remaining fluorescence appeared as a diffuse ring encircling the (darker) cell nucleus (not shown). Subsequent washing had little effect on the remaining dye, consistent with the hypothesis that it was trapped in a membrane-bound compartment. In addition, in the absence of stimuli, this fluorescent signal changed little with time (see examples below), indicating that the compartment(s) being monitored were stable and that there was negligible dye leakage or bleaching under our experimental conditions. Since mag-fura-2 is sensitive to both $[Ca^{2+}]$ and $[Mg^{2+}]$ ($K_d \approx 53 \mu$ M and 1.5 mM, respectively) (Raju et al., 1989), the mag-fura-2 fluorescent ratio could reflect the concentrations of either or both of these ions in the compartment(s) it monitors.

Fig. 1 A shows the effects of IP₃ and heparin on the magfura-2 fluorescence ratio recorded from a saponin-permeabilized HSY cell bathed in ICM (see Materials and Methods). The application of 0.3 μ M IP₃ causes a rapid and marked decrease in the ratio that is largely reversed by heparin (100 µg/ml). As already mentioned, it is well documented (Hofer and Machen, 1993; Short et al., 1993; Renard-Rooney et al., 1993; Glennon et al., 1992; Hajnoczky and Thomas, 1994) that under appropriate conditions, Ca²⁺-sensitive dyes such as mag-fura-2 can accumulate in intracellular organelles and be used to monitor their Ca²⁺ content. These observations, together with the well-known behavior of heparin as a competitive inhibitor of the IP₃ receptor, strongly suggest that the effects on the mag-fura-2 signal seen in Fig. 1 A are due to changes in the calcium concentration in the IP₃-sensitive store. More specifically, this experiment is consistent with the release of Ca^{2+} from this store due to the IP₃-induced opening of the Ca²⁺ channel, followed by its reuptake via the SERCA pump after the closing of the channel in response to heparin. Further evidence for the Ca²⁺ dependence of the IP₃-sensitive component of the mag-fura-2 signal is shown in Fig. 1 B. Here we monitor the mag-fura-2 ratio in a permeabilized HSY cell after treatment with a near-maximal concentration of IP₃ (10 μ M; see below), followed by the removal of IP_3 , Mg^{2+} , and Ca^{2+} from ICM. The readdition of Mg^{2+} to ICM (free $[Mg^{2+}] \approx 0.1 \text{ mM}$) has no effect on the magfura-2 ratio (solutions with free [Mg²⁺] up to 1.4 mM were tested with no effect; not shown), but readdition of Ca^{2+} causes a complete recovery to the level seen before the application of IP₃, again consistent with the refilling of the IP₃-sensitive store via the SERCA pump. Taken together, these results indicate that the IP₃-sensitive changes in the mag-fura-2 signal recorded from these cells is a direct measure of changes in $[Ca^{2+}]_{s}$.

In Fig. 1 C we demonstrate that permeabilized HSY cells exhibit the now familiar pattern associated with quantal Ca^{2+} release. Here, a series of increasingly larger concentrations of IP₃ were applied to a single permeabilized mag-fura-2-loaded HSY cell. After each application, the mag-fura-2 ratio ($[Ca^{2+}]_S$) rapidly falls to a new lower value where it remains until the next increase in [IP₃]. Upon removal of IP₃, the ratio quickly recovers to its prestimulus value.

Evidence that Ca²⁺ Release in HSY Cells Is a Steady-state Process

When the SERCA pump inhibitor thapsigargin was applied to permeabilized HSY cells in complete ICM, little

Figure 1. Responses of single, permeabilized HSY cells to IP₃ and other agents. Mag-fura-2 fluorescence, displayed in ratio mode, was monitored in permeabilized HSY cells as described in *Materials and Methods*. The presence of various agents in the medium bathing the cells is indicated by the horizontal bars at the top of each panel. (A) A single cell bathed in ICM was exposed to 0.3 μ M IP₃ and then to to 0.3 μ M IP₃ plus 100 μ g/ml heparin as indicated. (B) A single cell initially bathed in ICM was exposed to 10 μ M IP₃ and then successively to Ca²⁺/Mg²⁺-free ICM, Ca²⁺-free ICM, and complete ICM as indicated (the free Ca²⁺ and Mg²⁺ concentrations in complete ICM are 50 nM and 0.1 mM, respectively). (C) A single cell in ICM was exposed to successively larger concentrations of IP₃ as indicated.

change in the mag-fura-2 ratio was observed (Fig. 2 A), indicating that the passive Ca²⁺ permeability of the IP₃-sensitive store is relatively low in this system. However, when thapsigargin was applied after a submaximal concentration of IP₃ (0.3 μ M; see also Fig. 1 C and below), a decrease in the mag-fura-2 ratio toward a new lower value was seen (Fig. 2 B). As already discussed, this behavior is consistent with a steady state model for intracellular Ca²⁺ release. In this same experiment, the addition of 10 µM IP₃ induced further Ca²⁺ release, and no recovery was observed after IP₃ removal consistent with a complete (irreversible) inhibition of the SERCA pump by thapsigargin. The experiments shown in Fig. 2, C and D, demonstrate that the thapsigargin-induced decrease in the mag-fura-2 ratio seen in Fig. 2 B is IP₃-dependent. In these experiments, the SERCA pump was inhibited by Mg²⁺ removal. A similar result to that seen with thapsigargin was observed when Mg²⁺ was removed in the presence of IP₃ (Fig. 2 C), but in contrast, when both IP₃ and Mg^{2+} were removed from ICM, the mag-fura-2 ratio was unaffected (Fig. 2 D). In this latter experiment, however, the ratio does fall as before when IP₃ is readded, consistent with the hypothesis that this Ca²⁺ loss does indeed occur via the IP₃-sensitive Ca²⁺ channel.

Figure 2. Responses of permeabilized HSY cells to SERCA pump inhibition. Mag-fura-2 fluorescence was monitored as in Fig. 1. Single cells in ICM were exposed to thapsigargin (*ThG*; 1 μ M), Mg²⁺-free ICM, and/or various concentrations of IP₃ (0.3 μ M or 10 μ M) as indicated. The presence of agents in the medium is indicated by the horizontal bars at the top of each panel.

Evidence that IP₃ Channels Close as $[Ca^{2+}]_S$ Decreases

The left panel of Fig. 3 shows the results of an experiment that was designed to study the effect of the presence of IP₃ on the rate of refilling of depleted IP₃-sensitive stores. Here, a series of maneuvers were carried out on the same permeabilized HSY cell. First (trace *a*, which has been superimposed on trace *b*), IP₃-sensitive Ca²⁺ stores were depleted with a transient exposure to 10 μ M IP₃ in Mg²⁺-free ICM, and then 90 s later Mg²⁺ was added and the cell was allowed to recover to its original [Ca²⁺]_S. Next (trace *b*), stores were again emptied with 10 μ M IP₃, but this time Mg²⁺ was added in the presence of 0.3 μ M IP₃. Several of the models discussed above propose that Ca²⁺ channels

remain open in the presence of IP₃ when IP₃-sensitive stores are depleted. If this is the case, one would expect a slower initial rate of filling in the presence of 0.3 μ M IP₃ than in its absence, since the size of the fillable Ca²⁺ pool would be decreased by those stores whose Ca2+ channels are open. But it is clear from comparison of traces a and bthat the initial rates of increase of the mag-fura-2 ratio seen after Mg²⁺ addition in the presence and absence of $0.3 \mu M IP_3$ are indistinguishable (the relevant time period is shown in expanded format in the right-hand panel of Fig. 3; in five experiments of this type, no detectable difference in initial recovery rates in the presence and absence of IP₃ was observed). As the stores fill, however, the mag-fura-2 ratio monitored in the presence of $0.3 \mu M IP_3$ does begin to deviate from that measured in its absence, consistent with a gradual opening of Ca²⁺ channels. Finally, as expected, in the presence of 0.3 µM IP₃ the magfura-2 ratio stabilizes at a value consistent with a partial reloading of IP₃-sensitive stores. Similar results have been previously obtained with ⁴⁵Ca²⁺ fluxes into liver microsomes (Tregear et al., 1991) and permeabilized rat hepatocytes (Nunn and Taylor, 1992).

The above observations are consistent with the hypothesis that the Ca²⁺ channels activated by 0.3 μ M IP₃ are closed in Ca²⁺ stores depleted by 10 µM IP₃ and only open after the stores have partially refilled. In the experiment shown in Fig. 4, we test directly whether Ca^{2+} channels are opened by IP_3 in Ca^{2+} -depleted stores. In this experiment, we take advantage of earlier demonstrations that Mn²⁺ is also a substrate for the IP₃-sensitive Ca²⁺ channel (Renard-Rooney et al., 1993; Short et al., 1993; Hajnoczky and Thomas, 1994), and of the fact that Mn^{2+} entry into a magfura-2-loaded compartment can be monitored by its quenching of mag-fura-2 fluorescence. These measurements were carried out in an EGTA-free medium (CaS) (see Materials and Methods) to avoid the changes in $[Ca^{2+}]$ induced by displacement of Ca²⁺ from EGTA by Mn²⁺. In the cell studied in Fig. 4, we first partially depleted intracellular Ca^{2+} stores by adding 0.3 μ M IP₃ to CaS. This addition dramatically increases mag-fura-2 fluorescence at 360 nm

Time (s)

Figure 4. IP_3 -dependent Mn^{2+} entry into filled and partially depleted IP_3 -sensitive Ca^{2+} stores in permeabilized HSY cells. Magfura-2 fluorescence was monitored in a single permeabilized HSY cell as described in *Materials and Methods*. The signals recorded with excitation wavelengths of 344 nm (isosbestic wavelength) and 360 nm are shown in A and B, respectively. The cell was initially equilibrated with Ca^{2+} in ICM and then exposed to CaS, CaS plus 0.3 μ M IP₃, CaS plus 0.15 mM MnCl₂, CaS plus both IP₃ and MnCl₂, or to ICM as indicated by the horizontal bars above A.

excitation (Fig. 4 B) but has little effect on the signal at 344 nm (Fig. 4 A). When IP₃ is removed from CaS and replaced by Mn²⁺, a slow decrease in the mag-fura-2 signals at both 344 and 360 nm is seen (Fig. 4) with no change in their ratio (not shown). This result is consistent with the slow permeation of Mn²⁺ into mag-fura-2-loaded compartment(s) and the concomitant quenching of mag-fura-2 fluorescence. Under these Ca²⁺-depleted conditions, the later readdition of IP₃ in the presence of Mn^{2+} produces no change in the rate of fluorescence quenching, indicating that IP₃ induces no detectable component of Mn^{2+} entry. However, in the remainder of the experiment, we demonstrate that when IP₃-sensitive stores are reloaded with Ca^{2+} and then reexposed to 0.3 μ M IP₃ in the presence of Mn²⁺, a dramatic quenching of mag-fura-2 fluorescence at 344 nm excitation is observed (Fig. 4 A). This latter result indicates that this concentration of IP₃ is indeed capable of inducing Mn²⁺ entry into mag-fura-2-loaded stores when these stores are filled with Ca^{2+} .

It is also worth emphasizing that mag-fura-2 fluorescence quenching is, in fact, expected to be more sensitive to Mn^{2+} entry in Ca^{2+} -depleted stores than in Ca^{2+} -filled stores since in the former case, there is less Ca^{2+} available to compete with Mn^{2+} for the dye. Thus, the experiment shown in Fig. 4 provides strong evidence that IP₃-sensitive Ca^{2+} channels in permeabilized HSY cells close in response to depletion of internal Ca^{2+} stores by IP₃.

Estimate of $[Ca^{2+}]_S$ in Permeabilized HSY Cells

Determination of $[Ca^{2+}]_S$ in permeabilized HSY cells is

complicated by the possibility that some mag-fura-2 could be sequestered into non-IP3-sensitive compartments, and by the fact that this dye is sensitive to both $[Ca^{2+}]$ ($K_d \approx 53$ μ M) and [Mg²⁺] ($K_d \approx 1.5$ mM). The experimental protocol illustrated in Fig. 5 was devised in an attempt to examine these problems. The details of the experimental procedure are described in the figure legend, but the essence of the experiment is as follows. The internal Ca^{2+} stores of a single permeabilized HSY cell were first loaded with Ca²⁺ in ICM, and then the cell was exposed to $10 \,\mu\text{M}$ IP₃ in the absence of ATP and Mg^{2+} . Points a and b indicated in Fig. 5 B thus correspond to filled and depleted IP₃-sensitive stores, respectively. The cell was then switched back to complete ICM to refill and then briefly exposed to Mn²⁺ in the presence of IP₃ to allow Mn^{2+} entry into IP₃-sensitive stores and a partial quenching of the mag-fura-2 therein. The cell was next switched back to ICM to reload and then reexposed to $10 \,\mu\text{M}$ IP₃. Thus, the points labeled c and d in Fig. 5 B again correspond to filled and depleted stores, respectively, this time with some quenching of magfura-2 by Mn²⁺.

The magnitudes of the IP₃-sensitive and IP₃-insensitive mag-fura-2 signals at points a, b, c, and d in the above experiment can now be calculated by making the following assumptions: (i) the Ca²⁺ and Mg²⁺ concentrations in the IP₃-sensitive store at points a and c are the same, (ii) the Ca²⁺ and Mg²⁺ concentrations in the IP₃-sensitive store at points b and d are the same, and (iii) the magnitude of the IP₃-insensitive signal is constant over the course of the experiment. In particular, we assume that Mn²⁺ quenching of the IP₃-insensitive signal is small. The results shown in Fig. 5 A confirm that there is relatively little fluorescence quenching by Mn²⁺ in the absence of IP₃. The effect of relaxing assumption (iii) are discussed below.

Analysis² of three experiments of the type shown in Fig. 5 yields average mag-fura-2 fluorescence ratios of 5.52 ± 0.17 and 0.80 ± 0.04 for filled and depleted IP₃-sensitive stores, respectively. This latter value is very close to R_{min} for mag-fura-2 in our experimental system (R_{min} ≈ 0.73 ; see *Materials and Methods*) indicating that the [Mg²⁺] in the IP₃-sensitive stores of these cells is well below the K_d of mag-fura-2 for Mg²⁺. These calculations also indicate that the IP₃-sensitive store contains $56 \pm 6\%$ of the sequestered mag-fura-2, and that the mag-fura-2 ratio for the IP₃-insensitive store is 1.11 ± 0.05 (the magnitudes of the calculated mag-fura-2 signals from IP₃-insensitive

^{2.} Expressing the problem as an algebraic one: at each point a, b, c, and d, there are four unknown quantities (the fluorescent signals from the IP₃sensitive and IP3-insensitive compartments at 344 and 360 nm, respectively), making 16 unknowns in all. Using s and i to denote the IP₃-sensitive and IP3-insensitive compartments, respectively, we denote these four signals at point a as F(a,344,s), F(a,344,i), F(a,360,s), and F(a,360,i). Thus, the total fluorescent signal at point a with 344 nm excitation is simply F(a,344,s) + F(a,344,i). From assumption (iii) we have that the IP₃-insensitive signals are constant, i.e., F(a,344,i) = F(b,344,i) = F(c,344,i) =F(d,344,i) and F(a,360,i) = F(b,360,i) = F(c,360,i) = F(d,360,i) reducing the problem to 10 unknowns. From assumptions (i) and (ii) we have F(a,344,s)/F(a,360,s) = F(c,344,s)/F(c,360,s) and F(b,344,s)/F(b,360,s) =F(d,344,s)/F(d,360,s), respectively. The above two equations, together with the eight values of the total 344- and 360-nm fluorescent signals at each point, results in a system of 10 equations in 10 unknowns that is easily solved by algebraic methods. Note that it is not necessary to assume that the Mn^{2+} content of the IP₃-sensitive store is the same at points c and d.

Figure 5. Estimation of $[Ca^{2+}]_{s}$. Mag-fura-2 fluorescence was monitored in a single permeabilized HSY cell as described in *Materials and Methods*. The signals recorded with excitation wavelengths of 344 nm and 360 nm are shown in *A* and *B*, respectively. The cell was initially equilibrated with Ca²⁺ in complete ICM and then exposed to Mg²⁺/ATP-free ICM, Mg²⁺/ATP-free ICM plus 10 μ M IP₃, Mg²⁺/ATP-free ICM plus 1.05 mM MnCl₂, or Mg²⁺/ ATP-free ICM plus both IP₃ and MnCl₂, as indicated by the horizontal bars above *A* (CaCl₂ was omitted from Mn²⁺-containing media). The significance of the dashed lines and points labeled *a*, *b*, *c*, and *d* in *A* and *B* are explained in the text. *C* shows [Ca²⁺]_s calculated as described in the text and in *Materials and Methods*.

stores in the experiment illustrated in Fig. 5 are indicated as dashed lines in A and B).

Assuming, as indicated above, that most of the magfura-2 signal from IP₃-sensitive stores is due to Ca^{2+} , we illustrate in Fig. 5 C the calculated $[Ca^{2+}]_S$ corresponding to the traces shown in Fig. 5, A and B. By this method the average value of $[Ca^{2+}]_S$ in fully loaded IP₃-sensitive stores of permeabilized HSY cells was found to be 694 \pm 52 μ M (n = 3). The effect of possible quenching of the IP₃-insensitive signal by Mn^{2+} (relaxation of assumption *[iii]*) on this calculation can be estimated as follows. Consider first the mag-fura-2 fluorescent signal at 360 nm excitation shown in Fig. 5 B. Since $[Ca^{2+}]_S$ is the same at points a and c (assumption [i]), the decrease in this signal between these two points $(11 \pm 3\%; n = 3)$ must be solely due to the effects of Mn^{2+} quenching. It is clear from Fig. 5 A that there is considerable quenching of the IP₃-sensitive signal, so it seems reasonable to assume that this quenching accounts for a large part of this decrease. If we assume, for example, that two-thirds of the decrease in the 360-nm signal between points a and c is due to quenching in the IP₃sensitive compartment, while one-third is due to quenching in the IP₃-insensitive compartment, we find that the average mag-fura-2 fluorescence ratios for filled and depleted IP₃-sensitive stores are now 7.26 \pm 0.17 and 0.79 \pm 0.05, respectively. The latter value is not significantly changed from the case where assumption (*iii*) holds (see above),

while the former corresponds to a $[Ca^{2+}]_{s}$ of 1545 \pm 130 μ M (n = 3). Thus, any breakdown in assumption (*iii*) will lead to higher estimates of $[Ca^{2+}]_{s}$ in filled IP₃-sensitive stores.

The IP₃ Dose Response

Taken together, the results shown in Figs. 2, 3, and 4 are consistent with a steady-state model of IP₃-induced Ca²⁺ release in HSY cells in which Ca2+ efflux via the IP3 receptor Ca^{2+} channel is regulated by $[Ca^{2+}]_{S}$. In his original paper proposing this mechanism to explain quantal Ca²⁺ release, Irvine (1990) suggested that the effect of reduced $[Ca^{2+}]_{S}$ might be manifested as reduced sensitivity of the IP₃-sensitive Ca²⁺ channel to IP₃. A test of this hypothesis in HSY cells is given in the experiment illustrated in Fig. 6. In Fig. 6 A we show a typical dose-response pattern to IP_3 in a small cluster of permeabilized cells (see figure legend for details). This experiment was carried out in the absence of Mg²⁺ and thus is indicative of IP₃-dependent Ca²⁺ efflux in the absence of the SERCA pump. The data are illustrated as the mag-fura-2 ratio vs. time; however, numerical calculations (not shown) demonstrate that this ratio is approximately a linear function of $\log([Ca^{2+}])$ over the range 0.1–10 times the K_d of mag-fura-2 for Ca²⁺ (53 μ M), which is the expected range of $[Ca^{2+}]_{s}$ in this type of experiment (see Fig. 5 C). The IP₃ dose response was quantitated by determining the rate of change of the mag-fura-2 ratio with time (which is proportional to the rate of change of $[Ca^{2+}]_S$ at four levels of $[Ca^{2+}]_S$ labeled 10%, 20%, 40%, and 60% in Fig. 5 A. These represent 10, 20, 40, and 60% decreases, respectively, in the IP₃-sensitive component of the mag-fura-2 ratio (the IP₃-sensitive component was taken to be the decrease in the ratio induced by >50-s incubation with 10 µM IP₃). From the estimation of $[Ca^{2+}]_{s}$ in Fig. 5, it can be shown that these levels correspond to \sim 40, 60, 80, and 90% decreases, respectively, in $[Ca^{2+}]_{s}$ (our numerical calculations indicate that these estimates of percent Ca²⁺ loss are relatively independent of the size of the IP₃-insensitive store).

The rates determined for the various $[IP_3]$ (traces a-e) at each level of $[Ca^{2+}]_s$ were normalized to the rates observed at 10 μ M IP₃ at that level (trace e). If the dose response for Ca²⁺ release were the same for each level of $[Ca^{2+}]_s$, one would expect these normalized dose responses to be identical. However, analysis of the averaged data from six experiments of this type (Fig. 5 B) using a paired t test indicates that the IP₃ dose response shifts significantly toward higher values of [IP₃] at each decreased level of $[Ca^{2+}]_s$. More specifically, all data points labeled d in Fig. 5 B are significantly different from one another (P < 0.015) decreasing from right to left, as are all points labeled c (P < 0.03), b (P < 0.05), and a (P < 0.05) except for the two points marked with asterisks for which P = 0.08 (marginally significantly different).

Applicability of Proposed Mechanisms for Quantal Ca^{2+} Release to IP_3 -dependent Ca^{2+} Release from HSY Cells

As already stated, our results provide strong evidence in favor of the steady-state model for intracellular Ca^{2+} release originally proposed by Irvine (1990). In contradiction to the model suggesting that intracellular Ca^{2+} stores

Figure 6. [IP₃] dependence of Ca^{2+} loss from permeabilized HSY cells. (A) Mag-fura-2 fluorescence was monitored at 0.2-s intervals from a cluster of four permeabilized HSY cells using a pinhole aperture 125 µm in diameter. This time resolution was necessary in order to resolve the initial rates of mag-fura-2 fluorescence change at higher concentrations of IP₃, and several cells were needed in order to have a sufficient signal. The cells were repeatedly equilibrated with Ca^{2+} in ICM and then exposed to various concentrations of IP₃ in Mg²⁺-free ICM (a, 0.1 µM; b, 0.3 µM; c, 0.5 µM; d, 1.0 µM; e, 10 µM). In experiments of this type, a second exposure to the same concentration of IP₃ yielded an almost identical response to the first (not shown). The experiment illustrated is typical of six experiments carried out on clusters of three to five permeabilized HSY cells. (B) The derivatives of the curves illustrated in A were determined using the smoothing procedure of Savitzky and Golay (see below). The derivatives of traces a, b, c, and d at each of the values of the mag-fura-2 ratio labeled 10%, 20%, 40%, and 60% in A were normalized to the values observed for trace e (see text). The results shown are the averages of six experiments analyzed and normalized in this way. Thus, each group of bars corresponds to a normalized IP₃ dose response (a, 0.1 µM; b, 0.3 µM; c, 0.5 µM; d, 1.0 µM) at the mag-fura-2 ratio value indicated. The significance of the asterisks is given in the text.

Briefly stated, the method of Savitsky and Golay (Press et al., 1992) involves fitting a window of data points to a polynomial to determine the smoothed value of the slope at the central point of the window. In our calculations, we used a second degree polynomial and a window whose size varied from 5 points at early times after the application of IP_3 (when the response to IP_3 was rapid) to 25 points at longer times.

respond to IP₃ in an all-or-none fashion, and to the more recent model of Hirose and Iino (1994), our data indicate that IP₃-sensitive Ca²⁺ channels close as intracellular stores are depleted (Figs. 3 and 4). The model of Hirose and Iino also predicts that the IP₃ dose response should be independent of $[Ca^{2+}]_s$ in the absence of the SERCA pump (Hirose and Iino, 1994), which is likewise not the case in our experimental system (Fig. 6).

Hajnoczky and Thomas (1994) propose partial closure of IP₃-sensitive Ca²⁺ channels to explain quantal Ca²⁺ release, but they argue that this is due to the time-dependent inactivation of these channels by IP₃ itself. However, several observations indicate that this explanation is not applicable to our results. First, the inactivation documented by Hajnoczky and Thomas was reversible upon IP₃ removal. But in our experiments we have seen no evidence of this phenomenon. For example, in experiments like that shown in Fig. 5, when IP₃ is removed after partial depletion of intracellular stores and then later readded, we see no evidence of the enhanced IP₃-dependent Ca²⁺ loss one would expect if the receptor were resensitized in the absence of IP₃ (not shown). Very similar observations have recently been reported by Parys et al. (1995) who monitored IP3-dependent ⁴⁵Ca²⁺ release from permeabilized A7r5 cells. A number of other groups have also failed to detect desensitization of the IP₃ receptor by IP₃ (Meyer and Stryer, 1990; Ferris et al., 1992; Finch et al., 1991; Bootman et al., 1994; Oldershaw et al., 1992; Bezprozvanny and Ehrlich, 1994). Secondly, as already emphasized in the discussion of Fig. 3, our results indicate that the Ca²⁺ channels activated by 0.3 μ M IP₃ are closed in previously depleted Ca²⁺ stores and slowly open with time as $[Ca^{2+}]_{s}$ increases. This sequence of events is exactly the

opposite of what would be expected if IP₃ acts to inactivate the channel with time. Finally, as demonstrated directly in the experiment illustrated in Fig. 4, the differences in channel permeability we observe at high and low [Ca²⁺]_s are quite dramatic; IP₃-dependent Mn²⁺ entry was obvious and substantial in filled stores but undetectable in depleted stores. In contrast, the inactivation observed by Hajnoczky and Thomas (1994) was rather small ($\sim 10\%$) at the free calcium concentration of our ICM (50 nM; see Materials and Methods). Even at 300 nM Ca²⁺, where most of their measurements were carried out, these authors found that IP₃-sensitive channels retained \sim 40% of their activity after prolonged incubation with IP₃ (Hajnoczky and Thomas, 1994). These levels of residual channel activity in depleted stores should have been easily detectable in Fig. 4 of the present study. Thus, aside from the other points raised above, we conclude that it is extremely unlikely that the effect observed by Hajnoczky and Thomas (1994) can account for our results.

Concluding Remarks

The quantal or incremental release of Ca^{2+} from intracellular stores appears to be a rather general phenomenon and thus to reflect an intrinsic characteristic or characteristics of the IP₃-sensitive compartment. The two models originally proposed to account for this effect—the steadystate model of Irvine and the "all-or-none" model—have dominated most of the experimental work and discussion (Missiaen et al., 1994; Bootman, 1994). Several authors have presented evidence that IP₃-induced Ca²⁺ release is a steady-state process and that the sensitivity of IP₃-sensitive Ca²⁺ stores is modulated by $[Ca^{2+}]_{s}$ as required by the model of Irvine (Nunn and Taylor, 1992; Loomis-Husselbee and Dawson, 1993; Tregear et al., 1991; Missiaen et al., 1992; Parys et al., 1993). Others, however, have failed to observe an effect of luminal Ca²⁺ loading on IP₃-dependent release (Shuttleworth, 1992; Combettes et al., 1993; Combettes et al., 1992; Sayers et al., 1993; Hirose and Iino, 1994). Because of these latter observations, as well as for other reasons, a number of investigators have proposed all-or-none Ca²⁺ release as an explanation for their data (Taylor and Potter, 1990; Oldershaw et al., 1991; Bootman et al., 1992; Muallem et al., 1989; Shuttleworth, 1992; Combettes et al., 1993; Combettes et al., 1992; Sayers et al., 1993). A discussion of the differences between these results obtained using a wide variety of cell types and experimental methodologies is beyond the scope of the present article. However, one possible significant difference between many of these earlier reports and our own is that the signal we have monitored is a direct reflection of $[Ca^{2+}]_{s}$, the central parameter in the model of Irvine. Measurements of Ca^{2+} uptake or release reported in some previous studies may not provide an accurate reflection of changes in $[Ca^{2+}]_s$ owing to the (as yet uncharacterized) Ca^{2+} buffering capacity of the IP₃-sensitive store.

It should also be pointed out that direct experimental evidence for intracellular Ca^{2+} stores with differing sensitivities to IP₃ has been found (Parker and Ivorra, 1990; Kasai et al., 1993; Thorn et al., 1993; Tortorici et al., 1994). However, there is at present no evidence that these stores release Ca^{2+} in an all-or-none manner. Indeed, the existence of these stores is quite consistent with the steady-state model of Irvine. In this model, stores with differing $[Ca^{2+}]_s$, due, for example, to varying levels of SERCA pumping capacity or passive Ca^{2+} leak, would be expected to have different sensitivities to IP₃.

In conclusion, our data provide strong evidence that IP₃sensitive Ca²⁺ release in HSY cells conforms to the steadystate model of Irvine. Our results demonstrate that Ca²⁺ release in these cells is a steady-state phenomenon (Fig. 2) in which the permeability of the IP₃ channels markedly decreases with decreasing $[Ca^{2+}]_S$ (Figs. 3 and 4). Consistent with this observation a pattern resembling quantal release is seen in permeabilized HSY cells even in the absence of SERCA pump activity (Fig. 6 A). Also, as suggested by Irvine, we find that the sensitivity of IP₃-induced Ca²⁺ release decreases with decreasing $[Ca^{2+}]_S$ (Fig. 6). Finally, our data indicate that $[Ca^{2+}]_S$ in fully loaded stores approaches extracellular levels (Fig. 5), consistent with similar pumping capacities for the SERCA pump and the plasma membrane Ca²⁺-ATPase.

We thank Dr. Bruce J. Baum for advice and encouragement during the course of this work.

Received for publication 24 July 1995 and in revised form 22 November 1995.

References

- Berridge, M.J. 1993. Inositol trisphosphate and calcium signalling. Nature (Lond.). 361:315-325.
- Bezprozvanny, I., and B.E. Ehrlich. 1994. Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium. J. Gen. Physiol. 104:821– 856.
- Bootman, M.D. 1994. Quantal Ca²⁺ release from InsP₃-sensitive intracellular Ca²⁺ stores. *Mol. Cell. Endocrinol.* 98:157–166.

- Bootman, M.D., M.J. Berridge, and C.W. Taylor. 1992. All-or-nothing Ca²⁺ mobilization from the intracellular stores of single histamine-stimulated HeLa cells. J. Physiol. (Camb.). 450:163–178.
- Bootman, M.D., T.R. Cheek, R.B. Moreton, D.L. Bennett, and M.J. Berridge. 1994. Smoothly graded Ca²⁺ release from inositol 1,4,5-trisphosphate-sensitive Ca²⁺ stores. J. Biol. Chem. 269:24783-24791.
- Clapham, D.E. 1995. Calcium signalling. Cell. 80:259-268.
- Combettes, L., M. Claret, and P. Champeil. 1992. Do submaximal InsP₃ concentrations only induce the partial discharge of permeabilized hepatocyte calcium pools because of the concomitant reduction of intraluminal Ca²⁺ concentration? FEBS (Fed. Eur. Biochem. Soc.) Lett. 301:287–290.
- Combettes, L., M. Claret, and P. Champeil. 1993. Calcium control on InsP₃induced discharge of calcium from permeabilized hepatocyte pools. *Cell Calcium*. 14:279–292.
- Ferris, C.D., and S.H. Snyder. 1992. Inositol 1,4,5-trisphosphate-activated calcium channels. Annu. Rev. Physiol. 54:469-488.
- Ferris, C.D., A.M. Cameron, R.L. Huganir, and S.H. Snyder. 1992. Quantal calcium release by purified reconstituted inositol 1,4,5-trisphosphate receptors. *Nature (Lond.)*. 356:350–352.
- Finch, E.A., T.J. Turner, and S.M. Goldin. 1991. Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. *Science (Wash. DC)*. 252: 443-446.
- Glennon, M.C., G.S.J. Bird, H. Takemura, O. Thastrup, B.A. Leslie, and J.W. Putney. 1992. In situ imaging of agonist-sensitive calcium pools in AR4-2J pancreatoma cells. J. Biol. Chem. 267:25568–25575.
- Grynkiewicz, G., M. Poenie, and R.Y. Tsien. 1985. A new generation of Ca²⁺ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440-3450.
- Hajnoczky, G., and A.P. Thomas 1994. The inositol trisphosphate calcium channel is inactivated by inositol trisphosphate. *Nature (Lond.)*. 370:474– 477.
- Hirose, K., II, and M. Iino 1994. Heterogeneity of channel density in inositol-1,4,5-trisphosphate-sensitive Ca²⁺ stores. *Nature (Lond.)*. 372:791–794.
- Hofer, A.M., and T.E. Machen. 1993. Technique for in situ measurement of calcium in intracellular inositol 1,4,5-trisphosphate-sensitive stores using the fluorescent indicator mag-fura-2. *Proc. Natl. Acad. Sci. USA*. 90:2598–2602.
 Irvine, R.F. 1990. "Quantal" Ca²⁺ release and the control of Ca²⁺ entry by inos-
- Irvine, R.F. 1990. "Quantal" Ca²⁺ release and the control of Ca²⁺ entry by inositol phosphates: a possible mechanism. FEBS (Fed. Eur. Biochem. Soc.) Lett. 263:5–9.
- Kasai, H., Y.X. Li, and Y. Miyashita. 1993. Subcellular distribution of Ca²⁺ release channels underlying Ca²⁺ waves and oscillations in exocrine pancreas. *Cell*. 74:669–677.
- Loomis-Husselbee, J.W., and A.P. Dawson. 1993. A steady-state mechanism can account for the properties of inositol 2,4,5-trisphosphate-stimulated Ca²⁺ release from permeabilized L1210 cells. *Biochem. J.* 289:861–866.
- Marshall, I.C.B., and C.W. Taylor. 1993. Regulation of inositol 1,4,5-trisphosphate receptors. J. Exp. Biol. 184:161-182.
- Meyer, T., and L. Stryer. 1990. Transient calcium release induced by successive increments of inositol 1,4,5-trisphosphate. Proc. Natl. Acad. Sci. USA. 87: 3841–3845.
- Mikoshiba, K. 1993. Inositol 1,4,5-trisphosphate receptor. Trends Pharmacol. Sci. 14:86–89.
- Missiaen, L., H. De Smedt, G. Droogmans, and R. Casteels. 1992. Ca²⁺ release induced by inositol 1,4,5-trisphosphate is a steady-state phenomenon controlled by luminal Ca²⁺ in permeabilized cells. *Nature (Lond.)*. 357:599-602.
- Missiaen, L., J.B. Parys, H. De Smedt, M. Oike, and R. Casteels. 1994. Partial calcium release in response to submaximal inositol 1,4,5-trisphosphate receptor activation. Mol. Cell. Endocrinol. 98:147-156.
- Moran, A., and R.J. Turner. 1993. Secretagogue-induced RVD in HSY cells is due to K⁺ channels activated by Ca²⁺ and protein kinase C. Am. J. Physiol. 265:C1405-C1411.
- Muallem, S., S.J. Pandol, and T.G. Beeker. 1989. Hormone-evoked calcium release from intracellular stores is a quantal process. J. Biol. Chem. 264:205– 212.
- Nunn, D.L., and C.W. Taylor. 1992. Luminal Ca²⁺ increases the sensitivity of Ca²⁺ stores to inositol 1,4,5-trisphosphate. Mol. Pharmacol. 41:115–119.
- Oldershaw, K.A., D.L. Nunn, and C.W. Taylor. 1991. Quantal Ca²⁺ mobilization stimulated by inositol 1,4,5-trisphosphate in permeabilized hepatocytes. *Biochem. J.* 278:705–708.
- Oldershaw, K.A., A. Richardson, and C.W. Taylor. 1992. Prolonged exposure to inositol 1,4,5-trisphosphate does not cause intrinsic desensitization of the intracellular Ca²⁺-mobilizing receptor. J. Biol. Chem. 267:16312-16316.
- Parker, I., and I. Ivorra. 1990. Localized all-or-none calcium liberation by inositol trisphosphate. Science (Wash. DC). 250:977-979.
- Parys, J.B., L. Missiaen, H. De Smedt, and R. Casteels 1993. Loading dependence of inositol 1,4,5-trisphosphate-induced Ca²⁺ release in the clonal cell line A7r5. J. Biol. Chem. 268:25206–25212.
- Parys, J.B., L. Missiaen, H. De Smedt, I. Sienaert, R.H. Henning, and R. Casteels. 1995. Quantal release of calcium in permeabilized A7r5 cells is not caused by intrinsic inactivation of the inositol trisphosphate receptor. *Biochem. Biophys. Res. Commun.* 209:451–456.
- Pozzan, T., R. Rizzuto, P. Volpe, and J. Meldolesi. 1994. Molecular and cellular physiology of intracellular calcium stores. *Physiol. Rev.* 74:595–636.
- Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. 1992. Numerical Recipes in C. Cambridge University Press, Cambridge, UK. 994 pp.

- Putney, J.W., and G.S.J. Bird. 1993. The signal for capacitative calcium entry. Cell. 75:199-201.
- Raju, B., E. Murphy, L.A. Levy, R.D. Hall, and R.E. London. 1989. A fluorescent indicator for measuring cytosolic free magnesium. Am. J. Physiol. 256: C540-C548.
- Renard-Rooney, D.C., G. Hajnoczky, M.B. Seitz, T.G. Schneider, and A.P. Thomas. 1993. Imaging of inositol 1,4,5-trisphosphate-induced Ca²⁺ fluxes in single permeabilized hepatocytes. *J. Biol. Chem.* 268:23601–23610.
- Sayers, L.G., G.R. Brown, R.H. Michell, and F. Michelangeli. 1993. The effects of thimersol on calcium uptake and inositol 1,4,5-trisphosphate-induced calcium release in cerebellar microsomes. Biochem. J. 289:883-887
- Short, A.D., M.G. Klein, M.F. Schneider, and D.L. Gill. 1993. Inositol 1,4,5-trisphosphate-mediated quantal Ca2+ release measured by high resolution imaging of Ca2+ within organelles. J. Biol. Chem. 268:25887-25893.
- Shuttleworth, T.J. 1992. Ca2+ from inositol trisphosphate-sensitive stores is not modulated by intraluminal [Ca²⁺]. J. Biol. Chem. 267:3573-3576. Taylor, C.W., and B.V.L. Potter. 1990. The size of inositol 1,4,5-trisphosphate-
- sensitive Ca2+ stores depends on inositol 1,4,5-trisphosphate concentration.

Biochem. J. 266:189--194.

- Thastrup, O., P.C. Cullen, B.K. Drobak, M.R. Hanley, and A.P. Dawson. 1990. Thapsigargin, a tumor promoter, discharges intracellular Ca²⁺ stores by spe-cific inhibition of the endoplasmic reticulum Ca²⁺-ATPase. Proc. Natl. Acad. Sci. USA. 87:2466-2470.
- Thorn, P., A.M. Lawrie, P.M. Smith, D.V. Gallacher, and O.H. Petersen. 1993. Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell. 74:661-668.
- Tortorici, G., B.X. Zhang, X. Xu, and S. Muallem. 1994. Compartmentalization of Ca²⁺ signaling and Ca²⁺ pools in pancreatic acini. J. Biol. Chem. 269: 29621-29628.
- Tregear, R.T., A.P. Dawson, and R.F. Irvine. 1991. Quantal release of Ca2+ from intracellular stores by InsP₃: tests of the concept of control of Ca^{2+} release by intraluminal Ca^{2+} . *Proc. R. Soc. Lond. B. Biol. Sci.* 243:263–268.
- Yanagawa, T., Y. Hayashi, S. Nagamine, H. Yoshida, Y. Yura, and M. Sato. 1986. Generation of cells with phenotypes of both intercalated duct type and myoepithelial cells in human parotid adenocarcinoma clonal cells grown in athymic nude mice. Virchows Arch. B Cell Pathol. 51:187-197.