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A variety of medical treatment and diagnostic procedures rely on flexible instruments
such as catheters and endoscopes to navigate through tortuous and soft anatomies
like the vasculature. Knowledge of the interaction forces between these flexible
instruments and patient anatomy is extremely valuable. This can aid
interventionalists in having improved awareness and decision-making abilities,
efficient navigation, and increased procedural safety. In many applications, force
interactions are inherently distributed. While knowledge of their locations and
magnitudes is highly important, retrieving this information from instruments with
conventional dimensions is far from trivial. Robust and reliable methods have not
yet been found for this purpose. In this work, we present two new approaches to
estimate the location, magnitude, and number of external point and distributed forces
applied to flexible and elastic instrument bodies. Both methods employ the knowledge
of the instrument’s curvature profile. The former is based on piecewise polynomial-
based curvature segmentation, whereas the latter on model-based parameter
estimation. The proposed methods make use of Cosserat rod theory to model the
instrument and provide force estimates at rates over 30 Hz. Experiments on a Nitinol
rod embedded with a multi-core fiber, inscribed with fiber Bragg gratings, illustrate the
feasibility of the proposed methods with mean force error reaching 7.3% of the
maximum applied force, for the point load case. Furthermore, simulations of a rod
subjected to two distributed loads with varying magnitudes and locations show a mean
force estimation error of 1.6% of the maximum applied force.
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1 INTRODUCTION

Nowadays, flexible instruments and robots are increasingly being used for medical treatment and
diagnostic purposes. Thanks to their compliant nature they can navigate through tortuous paths and
adjust their shape according to the surrounding environment. Examples of suchmedical procedures are
endovascular aneurysm repair, angioplasty and stenting, thrombolytic therapy, endoscopic
gastroscopy, and colonoscopy De Greef et al. (2009); Burgner-Kahrs et al. (2015); Heunis et al.
(2018). All these procedures require navigating a flexible instrument through a deformable lumen. For
example, in endovascular aneurysm repair a stent catheter is moved through the vaculature. Exerting
high forces on soft tissue, for short or extended periods of time, may cause a diversity of complications
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including perforation, symptomatic intracerebral hemorrhage,
bleeding and ischemic complications Balami et al. (2018); Lv
et al. (2011); Kavic and Basson (2001). As a consequence, the
demand for sensorized instruments relaying crucial real-time
information such as: position, shape, and interaction force is
ever increasing Shi et al. (2017); Wu et al. (2021); Galloway
et al. (2019); Trejos et al. (2010); Haidegger et al. (2009).

The problem of estimating externally applied forces on
robotic manipulators is not new. There has been an
abundance of works carried out on rigid link robots (Jung
et al., 2006; Colome et al., 2013; Daly and Wang, 2014; Hu
and Xiong, 2018), and more recently, on soft/continuum robots
(Yasin and Simaan, 2020; Sadati et al., 2020; Xu and Simaan,
2010; Gao et al., 2020). Regarding the latter, most of the previous
works focused on estimating the contact force at the tip of the
manipulator/instrument, rather than along the whole body. For
example, Rucker et al. employed an Extended Kalman Filter
(EKF) approach and the Cosserat rod model to estimate tip
forces using pose measurements and a kinematic-static model of
the robot (Rucker and Webster, 2011). Similarly, Hasanzadeh
et al.made use of pose measurements, and introduced their own
quasi-static piecewise circular arc model of the catheter to
estimate the tip force (Hasanzadeh and Janabi-Sharifi, 2016).
Back et al. use shape information and a simplified Cosserat rod
model which can be rapidly solved using an iterative
optimization algorithm to estimate forces at the tip of a
catheter (Back et al., 2015). Hooshiar et al. estimate tip
forces by employing Bezier spline shape approximations and
an inverse Cosserat rod model (Hooshiar et al., 2020). Sadati
et al. employed force sensor readings at the base of a continuum
appendage and the Cosserat rod model for tip load estimation
(Sadati et al., 2020). Further examples of previous works on tip
force estimation using kinematic models can be found in
(Khoshnam et al., 2015; Khan et al., 2017).

As tip force estimation was well understood in recent years,
increasing attention was directed towards estimating forces along
the length of the flexible instrument body. Qiao et al. made use of
curvature measurements using multi-core fibers (MCFs) inscribed
with fiber Bragg grating (FBG) sensors, a Cosserat rod model, and
linear segmentation of curvature to estimate 2D lateral point forces
subjected to an elastic rod body. The feasibility was tested on a
Nitinol rod with two point loads (Qiao et al., 2019). In a later work,
Qiao et al. employed an extended Kalman filter and pose
information in combination with a Cosserat rod model to
estimate point loads (Qiao et al., 2021). The approach was
validated using two point loads on a thin Nitinol rod. Aloi et al.
proposed a method to estimate distributed loads on an elastic rod
using a Cosserat rod model and constrained nonlinear
optimization. The method was tested using one, two and three
point loads in diverse lateral directions along the cross-sectional
plane. The paper focused on the feasibility of the proposed method
but had a large computational cost and limited use in real-time
applications (Aloi and Rucker, 2019). Heunis et al. (Heunis et al.,
2019) and Venkiteswaran et al. (Venkiteswaran et al., 2019)
modelled a continuum manipulator subjected to multiple
external loads using a pseudo rigid body (PRB) model. The
location of external loads is assumed to be known a priori.

Heunis et al. made use of three-dimensional shape information
provided by FBG sensors inside the catheter. Ryu et al. employed
shape information, a redundant kinematics model, and an
extension of the Cosserat rod model to estimate point loads
(Ryu et al., 2020). Lastly, Massari et al. combined machine
learning and FBG sensors to develop a tactile sensor capable of
estimating the magnitude and location of normal loads exerted on
the surface (Massari et al., 2020). The sensor, in theory, can be
attached onto the external surface of flexible instruments. Although
promising, it is limited with regards to the area of which a force can
be exerted upon. In other words, it cannot cover the full
circumferential surface of a circular instrument.

In this paper, two new approaches to estimate the number,
location, and magnitude of external forces applied onto a flexible
and elastic instrument body are proposed. Both approaches rely
on Cosserat rod theory as the underlying modelling principle.
Additionally, both approaches depart from the availability of
curvature measurements. In this work, an MCF inscribed with
FBGs is embedded within the instrument’s central working
channel to obtain discretized curvature measurements along its
length. However, any other method or sensing technology that
could also provide similar curvature measurements would suffice.
The first estimation approach makes use of piecewise polynomial
curvature segmentation, while the second approach employs
model-based optimization. The strategies are: 1) initially
developed and experimentally tested for two-dimensional
point forces applied anywhere along the instrument’s body,
and 2) further adapted to estimate both point forces and
distributed forces, where a simulation study is provided to
prove its feasibility. Note that neither prior knowledge or
estimate is required regarding the location of the forces nor an
initial identification of whether it is a point force or a
distributed force.

According to the above, the contributions of this paper
provide the following:

1. force estimationmethods that require no prior knowledge of the
force interaction, but only knowledge of the two-dimensional
curvature profile

2. three new piecewise polynomial-based curvature
segmentation algorithms to estimate the number, location,
and magnitude of external point forces to high accuracy

3. two new estimation-based approaches that solely employ curvature
measurements to estimate the number, location, and magnitude of
external point anddistributed forces to high accuracy, which can be
readily extended to include any types of loads

4. static and quasi-static experimental and simulation-based
validations of the proposed methods up to three loads
applied simultaneously

The rest of this paper is organized as follows: Section 2 briefly
introduces the principles of curvature measurement using FBGs
and the basic equations of Cosserat rod theory that are used in
this work. Section 3 describes the two force estimation
approaches in detail. Section 4 covers the experimental setup
and the various experimental test configurations. Section 5
presents the results that were obtained. Section 6 will cover
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the method used for distributed force estimation and a
corresponding simulation study. Finally, section 7 provides a
conclusion and discussion of the proposed estimation
approaches, and comments on future work prospects.

2 SENSING AND MODEL PRINCIPLES

2.1 Curvature Sensing
FBGs detect variation of strain based on the change of periodicity
of a grating, and its refractive index. The Bragg wavelength λB is
the wavelength of the light that is reflected back from the grating.
The total change in strain can be due to a mechanical strain ϵ, or
thermal expansion due to a temperature change ΔT . Considering
small temperature shifts, the change in Bragg wavelength can be
expressed as:

λB − λB0
λB0

� ΔλB
λB0

� SεΔε + STΔT , (1)

where λB0 is the grating’s unstrained Bragg wavelength, Δϵ is the
change in strain with respect to the unstrained state, and Sϵ and
ST are the strain and temperature sensitivity coefficients,
respectively. MCFs normally contain a central core that
coincides with the fiber’s neutral axis, in addition to a number
of symmetrically positioned outer cores. Gratings located within
the central core are only sensitive to strain due to axial loading
and temperature fluctuations; they are not sensitive to bending as
the length of the neutral axis will not alter upon bending. Axial
strain is generally assumed to be negligible, and thus the change in
wavelength due to temperature change can be simply known by
measuring the wavelength shift in the central core (ΔλB,1). For the
outer cores, the temperature contribution STΔT is thus known
from the central core, and Eq. 1 can be rewritten as:

Δϵi � ΔλB,i
SϵλB0 ,i

− ΔλB,1
SϵλB0 ,1

, (2)

where Δϵi is the change in strain in the ith core. The relationship
between the strain in each core ϵi and the corresponding

curvature κ can be obtained from the geometry as depicted in
Figure 1, and expressed as:

ϵi � − κr sin(θb − 3π
2
− θi), (3)

where r is the distance of the outer cores to the central core
assuming a symmetrical configuration (i.e. r is equal for all outer
cores), and θi is the angle of the ith. core with respect to the x-axis,
which intersects the second core. As can be seen from Eq. 3, the
two unknowns are curvature κ and bend angle θb, where θb is
defined as the angle between the x-axis and the curvature vector.
Hence only two outer core strain measurements are needed to
solve for them. However, additional cores can be used to improve
the result and reduce errors. A closed-form solution can be
obtained for the curvature κ and the bend angle θb by
defining an apparent curvature vector κapp Moore and Rogge
(2012); Al-Ahmad et al. (2020):

κapp � −∑N
i�1

εi
r
cos θîi −∑N

i�1

εi
r
sin θîj, (4)

κ � 2
∣∣∣∣κapp∣∣∣∣
N

, (5)

θb � ∠κapp, (6)

where î and ĵ are the unit vectors along the x- and y-axes
respectively, N is the number of outer cores, and ∠ represents
the vector angle. The bend angle θb in Eq. 6 is obtained using the
atan2 function. If a MCF contains n FBGs located at discrete
intervals along its centerline, Eqs. 5 and 6 have to be computed n
times. This results in a set of curvatures κ[j] and bend angles θb[j]
along the fiber’s length with j ∈ [1, n].

2.2 Cosserat Rod Model
The Cosserat rod theory presents a nonlinear mechanics-based
model describing elastic rod deformations with regards to
internal and external forces. Unlike simpler continuum robot
modelling techniques, often relying on constant curvature
assumptions, the Cosserat rod model provides accurate and
geometrically exact solutions, even for large deflections and
curvatures. Figure 2 shows an example of an elastic rod
subjected to a variety of external forces. The model is
characterized by a set of equilibrium equations and a set of
constitutive equations.

FIGURE 1 | (A) cross-sectional view of a four core MCF where λi
represents the wavelength in the ith core, r is the distance between the center
of the ith core and the fiber’s central axis, and θb is the angle of the bending
plane with respect to the x-axis which intersects the second core, (B)
isometric view of a segment with four cores and two FBG sets, i.e. four FBGs
at a given cross-section, separated by a center-to-center distance lz .

FIGURE 2 | A deformed elastic rod parametrized by arc length s
subjected to a set of point forces F1 and F2, and distributed forces f1 and f2.
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2.2.1 Equilibrium Equations
These equations describe the relationship between external
forces, namely distributed forces and distributed moments,
and internal reactions, namely internal forces and internal
moments. The equilibrium equations which are given as a set
of first order differential equations and parametrized by the arc
length s can be written as Antman (2005):

dn
ds

� −ûn − f , (7)

dm
ds

� −ûm − v̂n − l, (8)

where n and m are [3 × 1] internal force and internal moment
vectors, respectively, û and v̂ are the [3 × 3] angular and linear
strain matrices in skew-symmetric form, respectively, and f and l
are the [3 × 1] external distributed force and distributed moment
vectors, respectively. Note that all frames and vectors are given
with respect to the rod’s material frame (also known as body
frame) with their origins being along the rod’s centreline, see
Figure 2.

2.2.2 Constitutive Equations
These equations describe the relationship between internal forces
and moments with linear and angular strains as:

v � K−1
v n + v0, (9)

u � K−1
u m + u0, (10)

where v and u are the [3 × 1] linear and angular strain vectors,
respectively, K−1

v is the [3 × 3] shear and axial stiffness matrix,
K−1

u is the [3 × 3] bending and torsional stiffness matrix, and v0
and u0 are the [3 × 1] reference linear and angular strain vectors,
respectively. Note that the angular strain u in Eq. 10
corresponds to:

u � ⎡⎢⎢⎢⎢⎢⎣ κ cos θbκ sin θb
0

⎤⎥⎥⎥⎥⎥⎦, (11)

where κ is the curvature given in Eq. 5 and θb is the bend angle
given in Eq. 6.

2.2.3 Boundary Conditions
The following assumptions made in this work are outlined first:

• the rod’s axial stiffness is much larger than the rod’s bending
stiffness

• there is no, or negligible, linear strain, i.e. v � v0 � [0, 0, 1]T ,
such that axial forces are disregarded

• there is no, or negligible torsion, i.e. u[3] � 0
• external loads are limited to point forces and distributed
forces; there are no point moments nor distributed
moments applied on the rod

The equilibrium and constitutive sets of equations are
commonly solved using one of two constraint-based
approaches: 1) an approach based on a boundary value
problem (BVP), or 2) an approach based on an initial value

problem (IVP). The BVP approach would require knowledge of
the internal force n and internal moment m at the rod’s
“boundaries”, i.e. at the base of the rod s � 0, and at the tip of
the rod s � L, where L is the rod’s length. However, the internal
forces and moments are commonly unknown at the base.
Iterative methods, e.g. shooting methods, are commonly
employed to reduce the BVP into a system of solvable IVPs.
Alternatively, considering that the rod is rigidly fixed, or
cantilevered, at s � 0, it is known that the internal force n and
internal moment m are both zero at s � L if there is no external
force/moment on the tip. Otherwise, the internal force/moment
at the tip is equal to the external force/moment. Hence the
problem can be reformulated as an IVP starting from s � L
with boundary conditions n � 0 and m � 0 (or n � Fext and
m � Mext), and solving backwards towards s � 0.

Notice that the set of equilibrium equations do not contain
terms for externally applied point forces F nor point momentsM.
The way to include them is to divide the integration process into a
smaller set of integrations based on the number and location of
the external point loads, and including them as a boundary
condition to the internal reactions at that location. For
example, suppose that a rod is subjected to a point force FL/2

and a point moment ML/3 at locations s � L/2 and s � L/3,
respectively. The solution can then be found by dividing the
problem into three integration sets, starting with n � 0 andm � 0
at s � L, then n− � n+ + FL/2 at s � L/2, and finally m− � m+ +
ML/3 at s � L/3. Here, the - and + indicates the value of n orm just
before the given location (towards s � 0) and just after the given
location (towards s � L), respectively.

3 BODY FORCE ESTIMATION

In this section, two independent force estimation methods are
proposed. The first group is based on piecewise polynomial
segmentation of measured curvature, while the second group
is based on model parameter estimation.

3.1 Piecewise Polynomial-Based
Segmentation of Curvature
3.1.1 General Approach
Let us first consider the case where only point forces are applied
onto the rod. Looking back at the Cosserat rod’s constitutive
equations, it can be seen that the internal moment m can be
computed in Eq. 10 given knowledge of the angular strain vector
u. Notice that the stiffness matrix Ku and reference angular strain
u0 are constants, and that u can be obtained from the measured
curvature as seen in Eq. 11. Accordingly, the internal moment
computed in Eq. 10 can be numerically derived with respect to
the arc length s. From the equilibrium equations, the derived
internal moment can be replaced in Eq. 8 to compute the internal
force n (given that l � 0 was assumed). Generally, the resulting
force profile of n should be continuous. However, when external
loads with finite application length are applied, a discontinuity
would occur. From this observation, the magnitudes and
locations of the external point forces Fext could be found at
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the break points (see Figure 3), i.e. points of discontinuity, in the
internal force profile such that Fext � n− − n+. The main
drawback with this approach is that the curvature
measurements obtained from the MCF tend to be somewhat
noisy. Moreover, numerical derivation further amplifies the
noise, which jeopardizes the quality of the force estimation.

3.1.2 Polynomials With n Degree
Let us now represent the curvature profile of a rod, subjected to a
diversity of external forces, as a series of polynomials, each with
its own degree n. According to the theory of elasticity, for a rod
with constant flexural rigidity, the order of the curvature profile
resulting from a given force type would be two degrees higher
than the force profile itself. For example, a point force has a
degree n � −1 and would result in a linear curvature profile,
n � 1. Similarly, a distributed force with constant magnitude has
a degree n � 0 and would result in a quadratic curvature profile
n � 2. Hence, to overcome the noisy curvature measurements
problem stated previously, the curvature profile can be segmented
into a series of 1st order polynomials for point loads, or a series of
1st and 2nd order polynomials for distributed loads, or a
combination of distributed loads and point loads. Note
however, that for the final case, segmenting the curvature
profile into both linear and quadratic segments is a very
challenging task. Especially when there are sparse and discrete
curvature measurements available, and when a quadratic segment
can be very well approximated by a linear segment with negligible
error. Accordingly, to prove the principle behind this approach,
the estimation will be limited to point forces only, where an
alternative technique will be provided in the second group of
estimation methods for distributed forces.

3.1.3 Generic Concept
The concept behind piecewise polynomial-based segmentation of
curvature, for the point forces case, is illustrated in Figure 3.
Starting from a discrete set of noisy curvature measurements
(green dots), a set of linear segments are to be constructed (blue
lines) that resemble as close as possible the “ideal” theoretical
curvature (dashed red lines). Several linear segmentation

techniques can be found in literature, see Lovrić et al. (2014)
for a review. The most common algorithms include: sliding
window, top-down, and bottom-up. Qiao et al. previously
employed a top-down linear segmentation approach to
estimate one or two point forces applied on a Nitinol rod
Qiao et al. (2019). The problem with top-down segmentation
approaches, or most conventional linear segmentation
approaches for that matter, is that they typically do not
consider a penalty on the number of segments constructed.
Furthermore, the top-down segmentation algorithm is known
for its potential inflexibility in determining the break points
Lovrić et al. (2014).

3.2 Piecewise Polynomial-Based
Segmentation Algorithms
Three alternative linear segmentation algorithms that are specific to
the body force estimation problem and provide additional control
where possible are proposed. All of the following algorithms start with
raw curvature measurements that are merely interpolated to allow for
a larger resolution along the arc length.

Algorithm 1 Curvature error thresholding

3.2.1 Curvature Error Thresholding
This curvature segmentation algorithm is illustrated in
Algorithm 1, and the different properties are described in
Table 1. The concept behind this method is that it iteratively
varies the number of polynomial segments from [1...Nsegs,max],
computes the error between the reconstructed segments and the
measured curvature, and finally chooses the segments resulting in
an error just below a predefined error ϵk,thresh.

3.2.2 Force Magnitude Thresholding
This curvature segmentation algorithm is illustrated in
Algorithm 2, and the different properties are described in
Table 1. The concept behind this method is that the measured
curvature is initially segmented into a user-defined number of
segments Nsegs. These segments are then used to compute the

FIGURE 3 | Example plot illustrating the differences between the
theoretical, measured, and estimated curvature profiles.
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forces using the Cosserat rodmodel. If a forcemagnitude is lower than
a predefined minimum magnitude Fmin (this happens when the
change in slope is very small), the corresponding two segments
that caused this force are merged into one segment. The process
repeats until there are no more forces below the predefined threshold.

3.2.3 Curvature Slope Change Thresholding
This method relies on the change point detection algorithm used
in the findBrkPnts () function, see Killick et al. (2012). This time
however, instead of defining the number of segments to find the
break points, a minimum slope change Δdκ/dsmin is provided.
The algorithm consequently finds the number and location of
break points, and the curvature is segmented accordingly.

For the three aforementioned methods, the output curvature
segments segsOut are used in the constitutive Eq. 10 to compute
the internal moment m. The procedure then continues as
explained previously in Section 3, A.1 to compute the
magnitudes and locations of the applied external forces. Note
that while the illustrated algorithms are restricted to linear
curvature segmentation, they can be readily extended to
combine both linear and quadratic curvature segmentation.

Algorithm 2 Force magnitude thresholding

3.3 Model-Based Estimation
Here, a predefined number N of forces and locations are estimated,
where N must be larger or equal to the actual number of applied
forces Nact . If it is strictly larger, it will become clear that the
magnitudes of those forces additional to Nact will be equal to
zero, or have a very small value. Let us now consider a function
g(χ) that requires an input χ and returns an output κ such that:

χ �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fx1
Fy1
L1

Fx2
Fy2
L2

«
FxN
FyN
LN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and κ �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

κx1
κx2
«

κxM
κy1
κy2
«

κyM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (12)

where Fxi and Fyi are the magnitudes of the x and y components of
the ith external point force relative to the rod’s body frame,
respectively. Li is the location of the external point force
expressed as arc length s � Li. κxj and κyj are the magnitudes
of the x and y components of the jth curvature measurement along
the arc length, and M the total number of curvature
measurements over the total length. The function g(χ)
provides the forward kinematics of the Cosserat rod model,
which is basically the inverse of the process described in
Section 3, A. The estimation objective is to find χ given
measured κ and forward kinematics function g(χ).
3.3.1 Least-Squares Optimization
An optimization algorithm typically finds a set of
optimization parameters based on minimizing a desired

TABLE 1 | Definition of elements in the different algorithms.

Property Definition

ϵκ,thresh User defined curvature error threshold
Nsegs,max User defined maximum number of segments to iterate over
κmeas Measured curvature from MCF
forceLocs Estimated force locations
segsOut A sequence of interconnected linear curvature segments
brkPnts Structure to store the break points for each iteration; break points are locations of discontinuity in the curvature profile
segsMat Structure to store the segmented curvature for each iteration
errorsVec Vector to store the error between κmeas and segsMat{i} for each iteration
Fmin User defined minimum detectable force
Nsegs User defined a priori estimate on the number of segments
fmin Minimum estimated force
findBrkPnts (i, κmeas ) Function to compute the optimal location of break points based on a desired number of break points i and a linear

computational cost function, see Killick et al. (2012) for details
createSegments (brkPnts{i}, κmeas ) Function to segment κmeas into a series of straight lines based on the given break points brkPnts{i}
indMinError (ϵκ,thresh, errorsVec) Function that starts from iteration i � 1, checks if the error in errorsVec[i] falls below ϵκ,thresh; if it does, it returns the number of

break points according to the current iteration i, otherwise it increments i and repeats the process
findMinForce (segsOut) Function that propagates segsOut through the cosserat rod model and returns the minimum estimated force
mergeBrkPnts (forceLocs) Function that merges the previously estimated break points based on the location where fmin is found
mergeSegs (segsOut) Function that merges the previously estimated curvature segments based on the location where fmin is found
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cost function Θ(χ, κmeas). In this case, the cost function is
defined as:

Θ(χ, κmeas) � argmin((g(χ) − κmeas)2), (13)

where κmeas is the measured curvature vector using the
MCF. Hence, the goal is to minimize the error between the
measured curvature κmeas and the estimated curvature
g(χ) � κ, defined by the optimization parameters χ. While
there is a myriad of optimization algorithms available in
the literature, the interior, bounds-constrained trust
region algorithm for nonlinear optimization is employed
Le et al. (2017).

3.3.2 Unscented Kalman Filter (UKF)
In a similar way to optimization algorithms, Kalman filters can be
used to estimate model parameters. In this case, the model
parameters are the point force magnitudes and locations
defined in χ. Compared to the linear Kalman filter (KF) or the
Extended Kalman filter (EKF), the UKF is advantageous as it can
accurately estimate the true mean and covariance of the states, in
addition to the posterior mean and covariance to a third order for
any nonlinearity. The EKF can only achieve first order accuracy.
In addition, the computational complexity of the UKF is in the
same order as that of the EKF Wan and Van Der Merwe (2000).
Finally, the UKF avoids the need to compute the state and
measurement function jacobians, which sometimes have to be
computed numerically.

The state transition model and the measurement model of the
UKF are described as:

xk � xk−1 + wk, (14)

zk � h(xk) + vk, (15)

where xk are the states at time step k such that xk � χ, h(xk) is the
measurement function such that h(xk) � g(xk), zk is the
measurement at time step k, and wk ∼ N (0, Qk) and
vk ∼ N (0, Rk) are the process and measurement noise,
respectively. Qk and Rk are the process and measurment noise
covariance matrices at time step k, and are found by manual
tuning. Note that the states xk , i.e. the magnitudes and locations
of the point loads, are assumed to evolve through random walk. The
remainder of the UKF equations follow the process outlined in Wan
and Van Der Merwe (2000), and are omitted here for brevity.

4 EXPERIMENTS

4.1 Description of the Experimental Setup
Figure 4 illustrates the force estimation experimental setup. The setup
comprises a Nitinol rod Figure 4 ⑥ with an outer diameter of
2.16mm and an inner diameter of 1.65mm. The rod is horizontally
clamped to an aluminium frame using a chuckwith a through hole. A
low-friction PTFE tube with outer diameter of 1.60mm and inner
diameter of 0.25mm is inserted into the lumen of the Nitinol rod.
Accordingly, a MCF fiber with an outer diameter of 0.2 mm is
inserted into the PTFE tube. At the proximal end, the PTFE tube is
rigidly fixed to the Nitinol rod using adhesives. Similarly, the MCF is
also rigidly fixed to the PTFE tube using adhesives. The Nitinol rod
and PTFE tube combination have a flexural rigidity of 0.048 Nm2.
The MCF (FBGS International NV, Geel, Belgium) has one central
core, three outer cores, and a total of 18 FBG sets with a 10mm FBG
separation distance (see lz in Figure 1) covering a total length of
170mm. Cable suspended weights Figure 4 ⑤ are used to apply
point forces onto the rod in the direction of gravity. An ATI Nano17
six DoF force sensor (ATI Industrial Automation, North Carolina,
United States) Figure 4 ③ is attached to a cable, which is wrapped
around the Nitinol rod. This construction allows applying a known
force (measured by the ATI nano17) in an arbitrary direction on the
rod. An NDI electromagnetic tracking (EM) system (Northern
Digital, Waterloo, Canada) Figure 4 ① is employed to determine
the transformation between the cable tension force measured in the
Nano17 sensor frame and the rod’s body frame. One EM tracking
sensor Figure 4 ② is thus attached collinearly with the tensioned
cable, and another is attached to the base of the rod. An optical fanout
and interrogation system (FBGS International, Geel, Belgium)
Figure 4 ⑦ is used to measure the wavelength shifts of the FBG
sets within the MCF.

4.2 Calibration of EM Tracking SensorsWith
ATI Force Sensor
An EM tracking sensor is rigidly fixed to the cable attached to the
ATI force sensor. The total applied force onto the Nitinol rod is

FIGURE 4 | Force estimation experimental setup comprising: ①
electromagnetic (EM) field generator, ② electromagnetic tracking (EM)
sensors,③ ATI Nano17 six DoF force sensor,④ tensioned cable to transmit a
force to the Nitinol rod, ⑤ weights suspended by gravity, ⑥ Nitinol rod
with an MCF embedded internally,⑦ optical fanout and interrogator systems,
⑧ monitor to display wavelength spectra. Forces F1 and F3 are applied by
suspending known weights, and force F2 is applied along an adjustable
direction by pulling on the ATI Nano17 six DoF force sensor which is attached
to a cable that encircles the Nitinol rod.
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equal to the tension force within this cable such that
Ftot,ATI �

������������������
F2
x,ATI + F2

y,ATI + F2
z,ATI

√
� F2, where F2 is the cable

tension force as shown in Figure 4. Note that the weight of
the cable is negligible compared to the applied forces. The z-axis
of the EM tracking sensor frame is aligned with the cable and
rigidly fixed in that configuration. To calibrate the direction of F2
with respect to the rod’s body frame, two additional EM tracking
sensors are used. The first is rigidly attached to the base of the rod
at s � 0, and the second is attached at the tip of the rod at s � L.
The tip of the rod is then moved (by hand) in a spiral path and
both EM tracking sensor data and the rod shape are recorded [see
Al-Ahmad et al. (2020) for the method used to reconstruct the
rod’s shape]. The rigid transformation matrix rodTEM between the
EM frames and the rod’s shape is found using the rigid Iterative
Closest Point (ICP) registration algorithm. Any EM frame can
now be transformed to the base EM frame and consequently to
the rod’s frame (hence the tip EM sensor is no longer needed and
is removed). The cable tension force F2, which is aligned with the
z axis of the cable EM frame is then transformed to the base EM
frame and consequently to the rod’s body frame.

4.3 Description of Experiments
The following parameters were used in the experiments:
ϵκ,thresh � 0.05, Nsegs,max � 5, Fmin � 0.2 N, Nsegs � 5, and
Δdκ/dsmin � 0.45 m−1. Note that ϵκ,thresh is a normalized value.
Furthermore, N � 4, Rk � diag [repmat (0.01 m−1, 1, 2M)], and
Qk � diag [repmat (0.1 N, 0.1 N, 0.1m, 1, N)] where the function
repmat (matIn, Nrow, Ncol) returns a matrix that is a repetition of
the input matrix matIn for Nrow rows and Ncol columns, and the
function diag (matIn) returns a diagonal matrix based on the elements
of matIn.

Experiments were carried out for one, two and three point
forces being applied onto the rod at a given time. Furthermore, for
each load configuration, the location of the forces were changed/
interchanged along the arc length and their magnitude was varied
between 0−5.25 N. The ATI force sensor attached to the cable was
also rotated slowly around the rod’s centreline to vary the applied
two-dimensional forces quasi-statically. The mean, maximum,
and standard deviation of the change in force magnitudes with
respect to the ATI nano17 frame were 0.8 N/s, 16.9 N/s and
0.9 N/s respectively. The algorithms were running using c++ code
on a Intel(R) Core(TM) i7-8850H, 2.60 GHz dual core processor
on an Ubuntu 16.04 operating system.

5 RESULTS

In total, there were eight single force, six dual force, and three
triple force configurations. For each configuration the ATI force
sensor was rotated along the rod’s centreline to vary the lateral
x- and y-components of the force. This resulted in a total of
12,908 recorded forces applied onto the rod for all
configurations. Forces with magnitude less than Fmin

(defined earlier in Section 4, C) are discarded as they
are considered to be negligible in magnitude and rod
deformation. If a method estimates the number of forces to
be less than the actual number of forces, then the error for
the extra forces are the force magnitudes themselves and the
error for their locations are taken as zero. Table 2 shows a
summary of the results for the five force estimation methods
(three piecewise polynomial-based curvature segmentation
methods and two model-based estimation methods). Note
that the errors are defined as the absolute value of the
difference between ground truth and estimated forces/
locations.

It can be generally seen that the model-based estimation
methods provide an overall better performance compared to
their polynomial-based segmentation counterparts. This is
because they can more often correctly estimate the actual
number of forces, in addition to having a lower mean error on
the force locations. Note however, that the force magnitude errors
are comparable for all methods. The computational times of the
polynomial-based segmentation methods are significantly lower
however, taking around 1–2 ms for completion. The UKF
approach takes around 30ms, while the least-squares
optimization method takes over 8 s. This is the major drawback
of the least-squares optimization method, making it unusable for
practical real-time settings.

Figure 5 shows an example result for a configuration where
three external point forces are applied onto the rod. The forces at
the extremities are due to suspended weights, while the force in
the middle is due to the ATI force sensor and the attached cable.
The curvature profiles in the x- and y-directions clearly illustrate
how the different point forces in given directions correspond to
changes of slope. It can also be seen that the measured curvature,
which is a linear interpolation of the discrete curvature
measurements at each FBG location, deviates from the
ground truth curvature. This can be due to a variety of

TABLE 2 | Summary of force estimation results illustrating estimated force numbers and errors on magnitudes and locations. E(|| · ||) and σ(||ϵ· ||) represent the mean and
standard deviation of the absolute value of the error, respectively.

MethodResult

1.a 1.b 1.c 2.a 2.b

Computation time ∼ 1−2 ms ∼ 1−2 ms ∼ 1−2 ms ∼ 30 ms ∼ 8 s
Correct no. of forces 6,089 (47.2%) 10,158 (78.7%) 6,597 (51.1%) 9,845 (76.3%) 8,842 (68.5%)
E(∣∣∣∣∣∣∣∣ϵFX ∣∣∣∣∣∣∣∣) [N] 0.346 (6.6%) 0.422 (8.0%) 0.372 (7.1%) 0.326 (6.2%) 0.385 (7.3%)
E(∣∣∣∣∣∣∣∣ϵFY ∣∣∣∣∣∣∣∣) [N] 0.162 (3.1%) 0.294 (5.6%) 0.149 (2.8%) 0.213 (4.1%) 0.204 (3.9%)
E(||ϵL||) [M] 0.01160 (6.8%) 0.00910 (5.4%) 0.00973 (5.7%) 0.00785 (4.6%) 0.00714 (4.2%)
σ(∣∣∣∣∣∣∣∣ϵFX ∣∣∣∣∣∣∣∣) [N] 0.315 (6.0%) 0.345 (6.6%) 0.310 (5.9%) 0.309 (5.9%) 0.314 (6.0%)
σ(∣∣∣∣∣∣∣∣ϵFY ∣∣∣∣∣∣∣∣) [N] 0.242 (4.6%) 0.392 (7.5%) 0.253 (4.8%) 0.218 (4.2%) 0.222 (4.2%)
σ(||ϵL||) [M] 0.01551 (9.1%) 0.00681 (4.0%) 0.01040 (6.1%) 0.00567 (3.3%) 0.00588 (3.5%)
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reasons including: having a gap between the MCF and the inner
lumen of the surrounding tube, friction between the MCF and
the inner lumen of the surrounding tube which causes twist
during bending, and FBG sensor accuracy itself. These directly
impact the measured curvature κ and bend angle θb profiles,
which are the key to accurate force estimation. Figure 5 also
shows the deformed Nitinol rod and a comparison between the
ground truth shape, estimated shape, and the applied forces.
While the measured curvature may be noisy for direct force
estimation, it can be readily employed to reconstruct the shape
of the rod, with tip errors < 2 mm. Furthermore, the close
correspondence between the ground truth forces and locations
with the estimated forces and locations can also be clearly seen.
Notice that in this configuration, an extra force is estimated
(see Figure 5). However, because its magnitude is very small
compared to the other forces and less than Fmin, it is assumed
negligible and discarded. This is often the case since the model
assumes four applied forces a priori, while in reality, only one
to three forces are applied.

6 DISTRIBUTED FORCES

Thus far, the methods and experimental validations described
concerned point force estimation. However, in some applications
forces can be distributed. This section introduces some first works
explaining how distributed forces can be estimated. Note that

these methods concern distributed forces with constant
magnitude.

6.1 Piecewise Polynomial-Based
Segmentation of Curvature
It was previously pointed out that it is possible to estimate
distributed forces using piecewise polynomial-based curvature
segmentation. The method must be extended to allow for 1)
second order polynomial detection, and 2) classification of
polynomial segments to first or second degree. However,
when curvature measurements are discrete, sparse, and
require interpolation to provide extra smoothness (as is the
case here since curvature measurements are only available at
10 mm intervals), it becomes very challenging to distinguish
between first order and second order polynomials, especially if
the curvature measurements are noisy as well. This task,
however, can be simplified if extra information was given a
priori such as the locations of the forces or the total number of
applied forces. Since this information is not assumed available,
we will not continue with this method for distributed forces
estimation.

6.2 Model-Based Estimation
6.2.1 Method Description
The model-based method is more general and flexible as the
underlying Cosserat rod theory is general and can be used to

FIGURE 5 | Example result for the case where three external point forces are applied onto the rod. (A) profile of the x-component of the curvature, (B) profile of the
y-component of the curvature, (C) deformed rod showing a comparison between the ground truth and estimated shape and applied forces.
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model the rod’s forward kinematics using any type of external
force. Hence, the strategy to estimate distributed forces is a simple
expansion to the method developed for point forces in Section
3B. The difference is in the model’s input vector χ, which is now
defined as:

χ �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fx1
fy1
Ls1

Le1

fx2
fy2
Ls2

Le2

«
fxN
fyN
LsN

LeN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

where fxi and fyi are the magnitudes of the x− and y− components
of the ith external distributed force, respectively, and Lsi and Lei
are the start and end locations of the distributed force along the
arc length. The output curvature vector κ and the forward
kinematics function g(χ) remain the same. The only
difference is that distributed forces f were set to zero in the
earlier implementation, whereas now they are not.

6.2.2 UKF Simulation
To illustrate the feasibility of the proposedmethod, a simulation study
is provided using the UKF approach. Note that the least-squares
optimization approach can be employed in theory, but is disregarded
in this study for its high computational cost. Here, two distributed
forces with varying magnitudes and locations are applied onto the
rod. The magnitudes and locations vary according to a sinusoidal
profile as shown in Figure 6A. Gaussian noise with zero mean and
0.01m−1 standard deviation was added to the curvature
measurements. The UKF estimation of the distributed force
magnitudes and locations is also shown for a simulation time of

5 s. Table 3 gives a summary on the absolute value of the errors
between the ground truth and estimated forces and locations. It is
clear that the UKF shows excellent performance in estimating both
their magnitudes and locations. When comparing the mean
magnitude and location errors with the experimental errors
shown in Table 2, it is evident they are lower, and that the
overall performance is better. Even though the results shown are
for a simulation study only, they do give an indication that the
performance in practice could be decent as well. Finally, a similar
simulation was carried out by applying one point force and one
distributed force. The same distributed force UKF model was
able to estimate the point force magnitude and location to the
same accuracy as outlined previously. This shows that the
distributed force model is a generic model allowing for the
estimation of generic force types.

7 CONCLUSION AND DISCUSSION

Estimation of forces along instrument bodies is a crucial aspect
in medical navigation and handling. However, estimating
such forces has proven to be challenging. Sensitive tactile
sensors could solve this problem, but designing them to be
robust and compact, featuring high spatial and force resolution
has been found extremely difficult. The recent advent of
compact MCFs opens up some opportunities for distributed
contact force sensing, as demonstrated in this work. Here
the instrument’s deformation itself can be exploited to
provide estimates of the external forces. Two approaches
have been developed to provide point and distributed force
estimations using curvature information exclusively from a
MCF. The resulting performance, for all methods, clearly
indicates their feasibility for body force estimation. The
different methods offer different advantages and result in
an average of around 64.4% correct number of forces
estimations, 5.5% force magnitude error, and 5.3%
location error.

In the latter methods, the model-based UKF has shown to
stand out when comparing accuracy, generalizability and
computational time of the different methods. Furthemore, it
must be noted that the Nitinol rod used in the validation
experiments has a relatively high flexural rigidity, EI �
0.048 Nm2. In reality, medical instruments tend to have lower
flexural rigidities. This is more beneficial as it allows for larger
curvatures and an easier distinction between consecutive segments.
It also overcomes minimum sensitivity issues regarding the MCF.
Hence the proposed methods will work better for instruments with
relatively low flexural rigidities. However, a key aspect to keep in
mind is the elasticity of the instrument, which is necessary to
ensure repeatability of the results.

FIGURE 6 | UKF simulation with two distributed forces applied onto a
rod. The magnitudes and locations are varying sinusoidally over time
(gt � ground truth, est � estimated).

TABLE 3 | Simulation distributed force estimation errors over time.

fx [N/m] fy [N/m] Ls [m] Le [m]

Mean 1.19 (1.6%) 0.47 (0.6%) 0.0018 (1.1%) 0.0017 (1.0%)
Max 10.21 (13.6%) 13.73 (18.3%) 0.0107 (6.3%) 0.0147 (8.6%)
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Finally, a generalized method to estimate externally applied
distributed forces was proposed, and illustrated that it can
actually be applied for both point forces and distributed
forces. Extensions to the proposed model can be easily
implemented for diverse types of external loads. Furthermore,
the feasibility of the proposed method was proved for forces with
varying magnitudes and locations. Meaning that the method not
only works for static loads, but also for quasi-static loads. Future
work will focus on validating this method experimentally on
elastic instruments with low flexural rigidities.
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