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Abstract

Dairy cows at dry-off undergo several management and physiological changes, resulting in

alterations in plasma biomarkers of inflammation, oxidative stress, and immune system.

High milk yield at the end of lactation exacerbates these responses. The underlying mecha-

nism of these changes has yet to be elucidated. We hypothesized altered leukocyte gene

expression after dry-off and different responses in cows with different milk yield. Thirteen

Holstein dairy cows were sampled at the turn of dry-off to investigated whole blood leuko-

cyte gene expression and were grouped according to the average milk yield during the last

week of lactation: low (< 15 kg/d) and high milk yield (> 15 kg/d). Blood samples were col-

lected in PAXgene tubes (Preanalytix, Hombrechtikon, Switzerland) at -7, 7, and 34 days

from dry-off (DFD) to measure mRNA abundance of 37 genes. Normalized gene abundance

data were subjected to MIXED model ANOVA (SAS Institute Inc., Cary, NC). Compared

with -7 DFD, at 7 DFD RNA abundance of lipoxygenase genes (ALOX5, ALOX15) and mye-

loperoxidase (MPO) increased, and that of the antioxidant gene (SOD2) decreased. Mean-

while, genes related to recognition and immune mediation (CD16, MYD88, TLR2), migration

and cell adhesion (CX3CR1, ITGAL, ITGB2, TLN1), and the antimicrobial gene MMP9 were

downregulated at 7 or 34 DFD, whereas the antimicrobial IDO1 gene was upregulated.

Compared with low-producing cows, cows with high milk yield at dry-off cows had upregu-

lated expression of the pro-inflammatory cytokines IL8 and IL18 and a greater reduction in

transcript abundance of the toll-like receptor (TLR) recognition-related gene TLR2. Overall,

the dry-off confirmed to be a phase of intense changes, triggering an inflammatory response

and somewhat suppressing leukocyte immune function. In cows with high milk yield during

the week before dry-off, the inflammatory response was exacerbated.

Introduction

At dry-off, dairy cows have to face the transition from a lactating to a non-lactating state. After

halting of milk removal, active mammary gland involution begins [1, 2] and many behavioral
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and physiological modifications happen [3, 4]. Milk synthesis stops, the mammary epithelium

is partially renewed, different proteases are activated, and the permeability of tight junctions

between epithelial cells increases [5]. Moreover, diet is changed and rumen papillae need to

adapt [6]. Altogether, these changes affect metabolism, inflammation, and oxidative stress,

even though at a lower degree than in the periparturient period [4]. In particular, blood NEFA

increased immediately after dry-off, and concentrations of liver enzymes indicators, positive

acute-phase proteins, and nitrogen species increased after dry-off, whereas negative APPs and

antioxidant species decreased [4, 7]. Moreover, blood total leukocytes count decreased, mainly

due to the reduction in neutrophils and monocytes [4, 7].

With the increase of genetic merit and the improvements in nutrition and management,

cows that approach the scheduled dry-off day maintaining high milk yields are increasingly

common [8]. In these cows, the metabolic and inflammatory response at dry-off is exacerbated

and mammary gland involution is impaired [9]. Therefore, high milk production before dry-

off represents a threat to cow’s udder health in the following lactation, and a safety threshold

of 15 Kg/day has been proposed [9] In a previous study, Mezzetti et al. [7] observed that cows

with an average milk yield above 15 Kg/day during the week before dry-off had an increased

inflammatory response compared with those having a milk yield below this threshold.

Altered gene expression has been reported around calving in neutrophils [10] and leuko-

cytes [11, 12], whereas the effects of dry-off on leukocytes gene expression have been poorly

investigated. Nevertheless, insights on molecular changes of the immune cells at dry-off can

provide information for a more accurate management of this fundamental physiological phase

of the high-yielding dairy cow.

We hypothesized that leukocyte gene expression would differ around dry-off and between

cows with high and low milk production before dry-off. Thus, we investigated the effect of dry

off on genes involved in recognition, immune mediation, migration, cell adhesion, antimicro-

bial mechanisms, inflammatory cascade, oxidative stress, and the leukotriene pathway in leu-

kocytes from cows with different milk yields during the week before dry-off.

Materials and methods

Animal management and PAXgene tubes sampling

All procedures were approved by the Università Cattolica Animal Welfare Committee and car-

ried out in accordance with Italian laws on animal experimentation (DL n. 26, 04/03/2014)

and ethics (Authorization of Italian Health Ministry N 1047/2015-PR). The trial was per-

formed at the Università Cattolica del Sacro Cuore research dairy barn. The details about ani-

mal management and sampling procedure are described in previous work [7]. Briefly, 13

Holstein dairy cows (parity 1.9 ± 1.1; mean ± SD) were housed in individual tied stalls with

controlled environmental conditions and milked twice daily until dry-off. Cows were abruptly

dried off 55 days before the expected calving day and treated with an intramammary antibiotic

and an injection of internal teat sealant (Mamyzin-A; Haupt Pharma Latina S.r.l, Italy). Before

dry-off, cows were individually fed with the lactation diet. For 10 days after dry-off, cows were

fed grass hay only. Afterward, dry period ration was administered. The diet composition was

previously reported [7]. According to the average milk yield during the week before dry-off,

cows were retrospectively divided into two groups, with a threshold of 15 Kg/day: low milk

yield (LM; n = 7; 10.6 ± 3.7 Kg/d) and high milk yield (HM; n = 6; 16.5 ± 5.3 Kg/d). At -7, 7,

and 34 days from dry-off (DFD), blood samples were collected through jugular venipuncture

into PAXgene Blood RNA System tubes (Preanalytix, Hombrechtikon, Switzerland) for RNA

extraction.
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RNA extraction, cDNA synthesis, and gene expression

RNA extraction from PAXgene tubes was performed according to the manufacturer’s protocol

(Blood RNA Kit Handbook, PreAnalitix GmbH, Qiagen, Hilden, Germany), as described pre-

viously [11] and described in S1 Appendix. Afterward, RNA was quantified using the Qubit

RNA BR Assay Kit (Invitrogen, Thermo Fisher Scientific, Waltham, MA), and RNA quality

was assessed with the Experion Automated Electrophoresis System (Bio-Rad, Hercules, CA).

The average RNA quality was 9.5 ± 0.6 (mean ± SD). Samples were diluted to 100 ng RNA/μL

using nuclease-free water, and synthesis of cDNA was carried out with a reverse transcription

kit (RevertAid RT Reverse Transcription Kit; Thermo Fisher Scientific). Diluted cDNA (4 μL)

was combined with 6 μL of a 5 μL 1 × SYBR Green Master Mix (Applied Biosystems, Woolston

Warrington, UK) + 0.4 μL each of 10 μM forward and reverse primers + 0.2 μL of nuclease-

free water mixture., qPCR was performed with an Optical 384-Well Reaction Plate (CFX384

Touch; BioRad, Hercules, CA, USA), running three replicates for each sample. The qPCR effi-

ciency and quantification cycle values were obtained for each reaction using LinReg-PCR

(Version 2017.1; Amsterdam UMC, Amsterdam, the Netherlands). Genes selected for tran-

script analysis were those related to leukotrienes and oxidative status (ALOX5, ALOX15,

SOD1, SOD2), inflammatory cascade (CASP1, IL1B, IL1R, IL4, IL6, IL6R, IL10, IL18, IRAK1,

IRAK4, NLRP3, S100A8, TNFRSF1A, TNF), migration and cell adhesion (CCR2, CD44,

CX3CR1, IL8, ITGAL, ITGB2, LGALS8, SELL, SELPLG, TLN1), recognition and immune

mediation (CD14, CD16, MYD88, TLR2), and antimicrobial strategies (IDO1, LCN2, MMP9,

MPO, TLN2). The final data were normalized using the geometric mean of three internal con-

trol genes: ACTB, YWHAZ, and SDHA. Gene names and functions, primer information, and

primer sequencing results are included in Supporting tables. The stability of the normalization

factor of these three control genes was assessed using GeNorm software and no improvement

in stability was obtained with the addition of a fourth endogenous control gene.

Statistical analysis

Normalized arbitrary mRNA abundance data were analyzed using the repeated measure

mixed model, with the MIXED procedure of SAS version 9.4 (SAS Institute Inc., Cary, NC).

The fixed effects were milk yield at dry-off (MY; LM and HM), sampling day (DFD; -7, 7, and

34), and their interaction (MY�DFD), whereas cows were included as random effect. All

means were compared using the PDIFF statement of SAS and Dunnett’s adjustment was

applied to compare sampling days (7 and 34 DFD) with the reference timepoint (-7 DFD). Sig-

nificant differences were declared at P� 0.05.

Results and discussion

At dry-off, milking is stopped and mammary involution begin [4, 5], and, at the same time,

energy content of the diet is dramatically reduced and rumen need to adapt [6, 13]. Therefore,

the dry-off represents a potentially stressful event of the lactation cycle of dairy cows [14], with

relevant effects on the subsequent lactation, which leads to huge alterations in plasma bio-

markers of inflammation, metabolism, liver function, and oxidative stress [4, 7]. These

responses are exacerbated in high-yielding dairy cows [7, 9]. Mammary gland gene expression

is altered at the turn of dry-off [15, 16], but information about circulating leukocyte gene

expression in this phase is lacking. Thus, we investigated the effect of dry off on peripheral

blood leukocyte RNA abundance of genes involved in several pathways in cows with different

average milk production during the last week before dry-off.
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Effects of dry-off on gene expression

In the present study, we evaluated mRNA abundance in circulating leukocytes. Blood leuko-

cyte profile is affected by mammary involution, due to the migration of white blood cells to the

mammary gland [4, 17, 18]. Therefore, some changes in mRNA abundance might be related to

differential expression of genes in a specific leukocyte population. Dry-off affected (P< 0.05)

transcript abundance of genes involved in inflammatory cascade (NLRP3), leukotriene regula-

tion (ALOX5, ALOX15), recognition and immune mediation (CD16, MYD88, TLR2), migra-

tion and cell adhesion (CX3CR1, ITGAL, ITGB2, TLN1), antimicrobial strategies (IDO1,

MMP9, MPO), and oxidative stress (SOD2).

The mRNA abundance of the gene encoding for NOD-like receptor protein 3 inflamma-

some (NLRP3) was reduced after dry-off (Fig 1). NLRP3 is mainly expressed in monocytes and

macrophages [19]. Its activation has been reported due to a variety of unrelated stimuli that

induce cellular stress [20], and also by reactive oxygen species (ROS) [21], while nitric oxide

inhibits the activation of the NLRP3 inflammasome [22]. We observed a reduced monocytes

percentage on total leukocytes count (S6 Table) and an increased plasma concentration of

nitric oxide were found after dry-off, probably accounting for the reduced NLRP3 expression

found in the present study. Arachidonate 5-Lipoxygenase (ALOX5) and arachidonate

15-Lipoxygenase (ALOX15) are genes involved in the leukotriene pathway and the inflamma-

tory process. The enzyme ALOX5 catalyzes the oxidation of arachidonic acid into leukotriene

A4. It is increased during inflammation and is also involved in homeostasis restoration [23].

Through its pathway, it also produces hydroxyl and hydroperoxyl derivatives that are often ele-

vated during inflammation [24]. ALOX5 exists in the cytoplasm and nucleoplasm of cells, and

its upregulation may occur during the maturation of leukocytes [25]. ALOX15 plays a pivotal

role in the resolution of inflammation [26], through the formation of key lipid mediators (e.g.,

lipoxins and resolvins) but through arachidonic acid metabolism also produces eicosanoids

that act as pro-inflammatory mediators [27, 28] and are capable of generating ROS, metabo-

lites strictly related to oxidative stress [29]. Therefore, their upregulation one week after dry-

off (Fig 2) might suggest the activation of the inflammatory cascade after dry-off, but also the

need for a modulatory mechanism that allows a rapid termination of the inflammatory process

linked to the drastic changes taking place after milking cessation.

The dry-off also affected the RNA abundance of Pathogen Associated Molecular Patterns

-related genes (Fig 3). CD16, which is involved in the removal of the antigen-antibody complex

from the circulation, had a lower abundance after dry-off, which can lead to a lower innate

immune system efficiency against pathogens. However, CD16 is a cluster of differentiation

molecule found on the surface of natural killer cells, neutrophils, monocytes, and macrophages

[30]. The reduced CD16 expression could be partially explained by the decrease in the number

of these cells observed after dry-off [7] Similar responses were observed in genes involved in

the toll-like receptors (TLRs) signaling, such as the myeloid differentiation primary response

gene 88 (MYD88) and TLR2. TLRs recognize foreign non-self molecular products, initiating

an inflammatory response against invading pathogens, consisting of alerting the body to infec-

tion, neutralizing pathogens, and repairing damaged tissues [31]. In particular, TLR2 has bac-

terial peptidoglycan and lipoproteins as ligands [32]. After pathogens invasion, microbial

products signal through TLRs on tissue-resident mast cells and macrophages, activate these

cells to produce proinflammatory cytokines, which coordinates the recruitment of leukocytes

together with the antimicrobial function [31]. MYD88 acts as a signaling transductor of TLRs

(not only of TLR2), by which is recruited [33]. The lower abundance during the week after

dry-off of TLR2 and MYD88 might be a proxy of the suppression of the immune system activ-

ity in this phase. However, the exact reason why dry-off depressed immune system remains
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Fig 1. mRNA abundance of genes involved in the inflammatory cascade. Changes from -7 days from dry-off (DFD) to 34 DFD in dairy cows with

high (HM; red line) or low (LM; blue line) milk yield at dry-off in mRNA abundance (mean ± SEM) for gene expression of genes involved in the

inflammatory cascade: CASP1 (Caspase 1), IL1B (Interleukin 1 Beta), IL1R (Interleukin 1 Receptor), IL4 (Interleukin 4), IL6 (Interleukin 6), IL6R
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unknown. First, we analyzed RNA abundance in circulating leukocytes and their transcrip-

tome could be different from that of milk or mammary tissue. We could hypothesize that the

mammary gland has priority over other tissues during this phase of involution and remodel-

ing, as is the case of the metabolic priority of the mammary gland in early lactation [34]. Dur-

ing involution, leukocyte concentration in the mammary gland increases [35], whereas

decreased in the bloodstream [7], likely due to migration to the mammary gland. Moreover,

blood phagocytic cells are more efficient than their milk counterparts [36, 37]. Therefore, even

with a lower expression of related genes, they might be able to cope with systemic stimuli, at

the same time prioritizing mammary gland immunity. Additionally, the switch from the high-

energy diet of lactation to hay-feeding first and high-fiber dry period diet then might have

played a role. Plasma NEFA concentration increased during the days following the dry-off [7]

and they are known to have an immunosuppressive effect [38].

The suppression state of leukocyte immune function could be confirmed also by the genes

related to migration and cell adhesion, that were downregulated after dry-off (Fig 2). Abrupt

cessation of milking and the beginning of active involution leads to the recruitment of immune

cells into the mammary gland [2, 18]. To avoid an excessive rate of migration, it would be pos-

sible to hypothesize that the migration capacity of circulating cells, not absorbed by the mam-

mary gland, might be inhibited. A similar negative feedback mechanism was proposed for the

control of neutrophils diapedesis and chemotaxis mediated by lysozyme in severe local inflam-

matory processes to prevent excessive tissue damage [39]. The protein CX3C chemokine

receptor 1 (CX3CR1) is the receptor for CX3CL1, also known as fractalkine. It is expressed in

immune and non-immune cells and their interaction mediates the chemotaxis of immune

cells [40]. The combination of integrin alpha L chain (ITGAL) and the beta 2 chain (ITGB2)

forms the lymphocyte function-associated antigen-1 (LFA-1), which has a relevant role in the

extravasation of immune cells from the bloodstream to tissues [41]. In this case, the main tar-

get was probably the mammary gland, which faces huge challenges in the transition from milk-

ing to dry period. The cytoskeletal protein Talin-1 (TLN1) is also involved in neutrophil

chemotaxis [42]. Together, the decrease in the mRNA abundance of these genes after dry-off

might suggest a reduced leukocytes migration capacity, as observed in other studies after calv-

ing [10, 43]. Additionally, in the present study, the effect of these genes was maintained over

one month after dry-off (34 DFD), likely indicating a persistency of this condition. Meanwhile,

the antibiotic therapy at dry-off might have influenced these processes, even though, without a

comparison with cows that did not receive the antibiotic therapy, we could not confirm this

speculation. Alongside the immunosuppression noted after the dry-off, the antibiotic therapy

may have reduced the bacterial load in the udder, causing the lack of immune system

activation.

Moreover, dry-off, milk stasis, and mammary gland involution affected also genes involved

in antimicrobial strategies (Fig 3). Indolamine 2,3-dioxygenase (IDO1) encodes a protein that

catalyzes the degradation of the essential amino acid tryptophan, reducing its availability for

pathogens at the site of infection [44]. Myeloperoxidase (MPO) release stimulates neutrophils

killing of pathogens by phagocytosis or by antimicrobials release [45], catalyzes the production

of hypochlorous acid [46], and induces neutrophils activation [47]. Interestingly, MPO was

upregulated. The upregulation of both these genes shortly after dry-off might suggest a more

(Interleukin 6 Receptor), IL10 (Interleukin 10), IL18 (Interleukin 18), IRAK1 (Interleukin 1 Receptor-Associated Kinase 1), IRAK4 (Interleukin 1

Receptor-Associated Kinase 4), NLRP3 (NOD-Like Receptor Protein 3), S100A8 (S100 Calcium Binding Protein A8), TMFRSF1A (TNF Receptor

Superfamily Member 1A), TNFA (Tumor Necrosis Factor Alfa). P-values for main effect of milk yield at dry-off (My), day, and interaction of milk

yield × day (My�Day) are shown. Significant differences (P� 0.05) between groups on the same day are denoted with lowercase a and b, and

differences between -7 DFD and 7 or 34 DFD are denoted with an asterisk (�; P� 0.05) or a plus sign (+; P� 0.1).

https://doi.org/10.1371/journal.pone.0260745.g001
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Fig 2. mRNA abundance of genes involved in leukotrienes and oxidative status pathways and migration and cell adhesion. Changes from -7 days

from dry-off (DFD) to 34 DFD in dairy cows with high (HM; red line) or low (LM; blue line) milk yield at dry-off in mRNA abundance (mean ± SEM)

for gene expression of genes involved in leukotrienes and oxidative status pathways and migration and cell adhesion: ALOX5 (Arachidonate
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active innate immune system in this phase, in order to cope with milk and pathogens stasis in

the udder. These results are consistent with the increased lipoxygenase RNA abundance, sug-

gesting the activation of inflammatory response after dry-off. Meanwhile, matrix metallopro-

teinase 9 (MMP9) abundance was lower after dry-off. MMP9 is a collagenase of the gelatinase

B group, which are zinc dependent proteinases degrading at least one component of the

5-Lipoxygenase), ALOX15 (Arachidonate 15-Lipoxygenase), SOD1 (Superoxide Dismutase 1), SOD2 (Superoxide Dismutase 2), CCR2 (C-C

Chemokine Receptor Type 2), CD44 (Hematopoietic Cell E- and L-Selectin Ligand), CX3CR1 (CX3C Chemokine Receptor 1), IL8 (Interleukin 8),

ITGAL (Integrin Subunit Alpha L), ITGB2 (Integrin Subunit Beta 2), LGALS8 (Lectin, Galactoside-Binding, Soluble 8), SELL (Selectin L), SELPLG
(Selectin P Ligand), TLN1 (Talin 1). P-values for main effect of milk yield at dry-off (My), day, and interaction of milk yield × day (My�Day) are

shown. Significant differences (P� 0.05) between groups on the same day are denoted with lowercase a and b, and differences between -7 DFD and 7

or 34 DFD are denoted with an asterisk (�; P� 0.05) or a plus sign (+; P� 0.1).

https://doi.org/10.1371/journal.pone.0260745.g002

Fig 3. mRNA abundance of genes involved in recognition and immune mediation and antimicrobial strategies. Changes from -7 days from dry-off

(DFD) to 34 DFD in dairy cows with high (HM; red line) or low (LM; blue line) milk yield at dry-off in mRNA abundance (mean ± SEM) for gene

expression of genes involved in recognition and immune mediation and antimicrobial strategies: CD14 (Cluster of Differentiation 14), CD16 (Cluster of

Differentiation 16 or Fc Fragment of Igg Receptor IIIa), MYD88 (Myeloid Differentiation Primary Response Gene 88), TLR2 (Toll-Like Receptor 2),

IDO1 (Indoleamine 2,3-Dioxygenase 1), LCN2 (Lipocalin 2), MMP9 (Matrix Metallopeptidase 9), MPO (Myeloperoxidase), TLN2 (Talin 2). P-values

for main effect of milk yield at dry-off (My), day, and interaction of milk yield × day (My�Day) are shown. Significant differences (P� 0.05) between

groups on the same day are denoted with lowercase a and b, and differences between -7 DFD and 7 or 34 DFD are denoted with an asterisk (�; P� 0.05)

or a plus sign (+; P� 0.1).

https://doi.org/10.1371/journal.pone.0260745.g003
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extracellular matrix or basement membrane [48]. In this way, they assist neutrophils’ migra-

tion from blood to the site of inflammation. Therefore, MMP9 downregulation is consistent

with that of genes involved in migration and cell adhesion (CX3CR1, ITGAL, ITGB2, and

TLN1), and may be a signal of reduced immune cells migration capacity in the early dry

period. The previously hypothesized negative feedback system, mediated by lysozyme or by

another compound present in the mammary gland, might be implied. Opposite results have

been reported in mammary dry secretions [49, 50], where MMP9 dramatically increases dur-

ing mammary involution, due to neutrophils infiltration and degranulation. Therefore, it

seems that an increased immune system efficiency in the target site was paired with a reduced

migration capacity into the bloodstream.

The dramatic changes at the turn of dry-off (i.e. diet change and abrupt milking cessation)

resulted in oxidative stress, paired with an inflammatory response [7]. Superoxide dismutase

(SOD) enzymes are one of the most efficient antioxidant systems, catalyzing the reduction of

ROS [51]. In our study, SOD2 abundance was reduced during the week after dry-off (Fig 2). A

depletion of the antioxidant system was reported both after dry-off [7] and after calving [52].

Moreover, being SOD2 the mitochondrial superoxide dismutase directly involved with the

respiratory chain, its downregulation after dry-off might be related to the intense cell metabo-

lism [53], typical of active mammary gland involution [2, 5]. Genes associated with oxidative

stress, in particular in SOD2, were upregulated after dry-off [54]. However, in that research,

the expression of alveolar tissue was analyzed, which is directly involved in mammary gland

involution. In the present study, we analyzed blood leukocytes expression, and the different

responses observed could be related to this important difference in the studies.

Effects of milk yield at dry-off on gene expression

Milk yield before dry-off had a significant effect only on the abundance of genes involved in

the inflammatory cascade. In fact, HM cows had increased peripheral leukocyte mRNA abun-

dance of IL18 and IL8 related genes compared with LM (P = 0.04 and P = 0.02, respectively;

Figs 1 and 2). IL18 gene encodes a pro-inflammatory cytokine that enhances natural killer cell

activity, the proliferation of activated T cells, and induces interferon-γ production from spleen

cells, liver lymphocytes, and type-I T-helper cells [55], whereas IL8 mediates the chemotaxis of

neutrophils and other inflammatory cells from the blood into the mammary gland [56]. RNA

abundance of TLR2 decreased more markedly in HM cows (P = 0.10; Fig 3), likely suggesting a

greater reduction in innate immune system activity in these cows. These results are consistent

with previous findings of Mezzetti et al. [7], who observed increased inflammation after dry-

off in higher producing cows, likely due to longer mammary tissue remodeling required.

Conclusions

The dry-off alters blood biomarkers of nutrient metabolism, inflammation, and oxidative

stress. This study investigated peripheral blood leukocyte RNA abundance of genes involved

in pathways of inflammation, immune system, and oxidative stress. The dry-off triggered an

inflammatory response and increased oxidative stress. Peripheral leukocytes antimicrobial and

antioxidant capacity were somewhat impaired, but the exact reasons were unclear. In cows

that produced more than 15 kg/day during the week before dry-off, the inflammatory response

after dry-off was exacerbated. Therefore, the transition from lactation to the dry period needs

special attention, in particular in high-yielding cows. Further research on gene expression

would be needed in substrates closer to the mammary gland, such as the milk somatic cells,

mammary epithelial cells, or mammary tissue.
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