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Abstract

Familial hypercholesterolemia (FH) is a genetic disorder with an increased risk of early-
onset coronary artery disease. Although some clinically diagnosed FH cases are caused by
mutations in LDLR, APOB, or PCSK9, mutation detection rates and profiles can vary across
ethnic groups. In this study, we aimed to provide insight into the spectrum of FH-causing
mutations in Koreans. Among 136 patients referred for FH, 69 who met Simon Broome crite-
ria with definite family history were enrolled. By whole-exome sequencing (WES) analysis,
we confirmed that the 3 known FH-related genes accounted for genetic causes in 23 pa-
tients (33.3%). A substantial portion of the mutations (19 of 23 patients, 82.6%) resulted
from 17 mutations and 2 copy number deletions in LDLR gene. Two mutations each in the
APOB and PCSK9 genes were verified. Of these anomalies, two frameshift deletions in
LDLR and one mutation in PCSK9were identified as novel causative mutations. In particu-
lar, one novel mutation and copy number deletion were validated by co-segregation in their
relatives. This study confirmed the utility of genetic diagnosis of FH through WES.
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Introduction

Familial hypercholesterolemia (FH) is a genetic disorder characterized by high levels of serum
low-density lipoprotein cholesterol (LDL-C) and an increased risk of premature coronary ar-
tery disease. It is commonly caused by loss-of-function mutations in LDLR, mutations in
APOB, or less-frequent gain-of-function mutations within PCSK9. FH is clinically diagnosed
based on serum cholesterol levels, physical examinations, and family history. Clinical diagnos-
tic criteria and guidelines have been developed by experts in this field, though controversies re-
main. [1] The confirmation of mutations through DNA testing can allow for targeted family
screening. It has also been proven to be highly efficient for patient identification. [2]

To this date, several genetic techniques are available for the diagnosis of FH. Assay systems
that are designed for the most common mutations have typically been used. [3] However, ge-
netic screening through conventional molecular diagnostic techniques has limitations for effec-
tive FH diagnosis due to the wide variety of types and locations of mutations in known genes
[4], as well as the existence of undiscovered or potential FH-causing genes. [5-7] Next-genera-
tion sequencing (NGS) is a powerful tool for discovering genetic mutations in large genomic
regions and novel disease-related genes. Several studies have demonstrated the utility of NGS
in the diagnosis of FH. [8-10]

In the present study, we utilized whole-exome sequencing (WES) in Korean FH patients to
provide insight into the spectrum of mutations causing FH. We also investigated clinical phe-
notypes in FH patients with and without mutations.

Materials and Methods
Patient enroliment

Patients with FH and their family members were recruited at nine sites in Korea. Each center’s
Institutional Review Board (IRB) approved the protocol. Initially 136 suspicious patients were
referred for FH, and among them, 66 were excluded due to uncertain family history. One pa-
tient was a family member of a formerly enrolled proband and was also excluded. Ultimately,
the exomes of 69 FH patients were analyzed. All subjects or their representatives gave written
informed consent. All clinical investigations were conducted in accordance with the principles
of the Declaration of Helsinki. This study was approved by the IRB of Severance Hospital at
Yonsei University College of Medicine in Korea (IRB No.: 4-2008-0267).

Clinical and laboratory Assessment

The clinical diagnosis of FH is based on the Simon Broome criteria of the UK. [11] Specifically,
the criteria for definite FH were defined as total cholesterol (T'C) > 290 mg/dL or

LDL-C > 190 mg/dL the presence of tendon xanthomas in either the patient or relatives, or ge-
netic evidence of mutations in LDLR, APOB or PCSK9. The criteria for possible FH were de-
fined as the cholesterol levels described above, with the addition of a family history of
premature myocardial infarction or raised cholesterol > 290 mg/dL. At the time of enrollment,
each patient underwent medical history interviews, comprehensive physical examinations, and
laboratory assessments.

TC, triglycerides (TGs), high-density lipoprotein cholesterol (HDL-C), and LDL-C were
measured in all subjects. Patients fasted and avoided alcohol and smoking for at least 12 hours
prior to blood sampling. Samples were analyzed within 4 hours by laboratories that were certi-
fied by the Korean Society of Laboratory Medicine.
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Control Group

Exome sequencing data of Koreans without the FH phenotype were used as controls (n = 390).
We collected 95 raw exome data sets from the National Biobank of Korea. The other 295
exome data sets were generated at Yonsei University. All control data sets were processed
under the same analysis pipeline that processed the FH patients’ exomes. The control group
had no conditions that were known to affect plasma lipid levels.

WES and data analysis

Exome sequencing was performed by the Agilent SureSelect Enrichment System, according to
the manufacturer's protocol. Due to differences in collection times, the SureSelect All Exon
50Mb kit was used in 44 patients for the first set of exome analysis, whereas the SureSelect All
Exon V4+UTRs kit was used in 25 patients for the second set of exome analysis. Sequencing of
exome was performed on Illumina HiSeq2000/2500 platforms with 101-bp and 150-bp paired-
end sequencing for each set. The sequencing paired reads were mapped to the reference ge-
nome, NCBI Build 37 (hgl19), by Novoalign (v2.07.18). Primarily aligned reads were re-aligned
locally near indels and were further processed with recalibrated quality scores, using the Ge-
nome Analysis Toolkit (v2.3.6). [12, 13] PCR duplicates were removed by Picard (v1.6.7). Se-
quencing data are accessible at Sequence Read Archive (http://trace.ncbi.nlm.nih.gov/Traces/
sra/; accession number SRA: SRA245003). Variant calls were conducted using the Unified
GATK Genotyper (v2.3.6) and retained only if being called with a minimum of 8x coverage.
The summary of the overall exome sequencing data for each set is shown in S1 Table. Addi-
tionally, annotations and functional effect predictions for single nucleotide variants (SNVs)
were performed by PolyPhen-2 (v2.2.2), [14] SIFT, [15] and ANNOVAR. [16] Small indels
were annotated by ANNOVAR. Additionally, we rescreened total variants for splicing sites and
variable promoter regions, which were likely to be missed by conventional annotation pro-
grams. For splicing site variants, we screened +50bp of exons from all transcript isoforms that
were downloaded from the UCSC Table Browser. We screened for known pathogenic variants
in the promoters of LDLR, APOB, and PCSK9 by referring to the public database (The Human
Gene Mutation Database, HGMD). Finally, we inferred changes in copy number from exome-
sequenced reads by the CoONIFER (COpy Number Inference From Exome Reads) algorithm,
[17] which utilizes singular value decomposition normalization. Copy number variants were
validated by the TagMan Copy Number Assay (S2 Table).

Pathogenicity prediction and mutation validation

Pathogenic mutations in LDLR, APOB, and PCSK9 were classified based on previously re-
ported causal variants from public databases (LOVD-LDLR, LSBD-UMD-LDLR,
LOVD2-LDLR, and HGMD). The pathogenicity of unreported variants in LDLR, APOB, and
PCSK9 were predicted based on the 1) deleterious effects of amino acid changes and evolution-
ary conservation, as predicted by Polyphen-2 and SIFT algorithms, 2) frequency in 390 Korean
controls and public databases (1000 Genomes Project, dbSNP135, and NHLBI GO Exome Se-
quencing Project [ESP]), and 3) co-segregation of identical variants in family members, if avail-
able. The predicted deleterious mutations that were absent in controls yet present in affected
family members were classified as novel pathogenic mutations. All variants classified as known
or novel pathogenic mutations in the three FH genes were confirmed by Sanger sequencing.
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Results
Clinical characteristics of study subjects

The characteristics of enrolled patients are shown in Table 1. We found that 23 of 69 patients
harbored FH-linked mutations in LDLR, APOB, or PCSK9. We defined mutation-positive pa-
tients by confirming known and novel genetic aberrations in these three genes. All other pa-
tients were classified as mutation negative. Compared to mutation-negative patients,
mutation-positive patients were more frequently males with higher LDL-C levels (223+39 mg/
dL vs. 246+41 mg/dL; p = 0.02). In addition, mutation-positive patients tended to be younger
than mutation-negative patients. However, there was no difference in history of coronary ar-
tery disease between the two groups.

Detection and validation of known mutations in three FH-linked genes

The exomes of 69 FH patients were analyzed, as described (Fig 1). Of the 23 patients with mu-
tations in 3 FH-linked genes, known causal mutations were found in 18 patients (Table 2).
Among them, 15 patients were identified as having pathogenic mutations in LDLR. Specifically,
two patients had the p.P685L mutation and four patients had either the p.E228X or p.E228K
mutation. During preliminary screening by Sanger sequencing prior to WES, we found three
more patients with the p.P685L mutation, which suggests the presence of potential mutational

Table 1. Clinical characteristics of enrolled familial hypercholesterolemia patients.

Age, years
Gender, Male
Medical history
Hypertension
Diabetes mellitus
Coronary artery disease
Smoking
Family history
Myocardial infarction
Total cholesterol>290 mg/dL
Clinical classification of FH
Definite
Possible
Physical findings
Body mass index, kg/m?
Xanthoma
Laboratory values
Total cholesterol, mg/dL
Triglyceride, mg/dL
HDL-cholesterol, mg/dL
LDL-cholesterol, mg/dL

Total (n = 69) Mutation (-) (n = 46) Mutation (+) (n = 23) P*
54+13 56112 50114 0.09
29 (42) 15 (33) 14 (61) 0.03
33 (48) 23 (50) 10 (43) 0.61
6 (9) 4(9) 2(9) 1.00
25 (36) 17 (37) 8 (35) 0.86
15 (22) 10 (22) 5 (22) 1.00
38 (55) 23 (50) 15 (65) 0.23
43 (61) 26 (57) 16 (70) 0.30
17 (25) 10 (22) 7 (30) 0.43
52 (75) 36 (78) 16 (70)

25.0+3.6 25.1+3.5 25.0+3.9 0.96
17 (25) 12 (26) 5 (22) 0.69
316148 30850 330143 0.08
174485 184194 15560 0.19
47.4+11.2 48.5+10.9 45.2+11.8 0.26
230+41 223139 246141 0.02

*Chi-square test or t-test was used where appropriate.

Values are mean + standard deviation or n (%).

HDL: high-density lipoprotein; LDL: low-density lipoprotein; Mutation (-): No known or novel pathogenic mutations in three FH-linked genes (LDLR, APOB,
PCSK9); Mutation (+): Known or novel pathogenic mutations in LDLR, APOB, or PCSK9.

doi:10.1371/journal.pone.0126706.1001
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Fig 1. Exome sequencing analysis of familial hypercholesterolemia (FH). The steps for identifying FH-causing variants in three genes are shown, in
addition to the subsequent genetic analyses of whole-exome sequencing data that led to the identification of pathogenicity.

doi:10.1371/journal.pone.0126706.g001

hotspots in Korean FH cases. In addition, both the p.R257W and p.D589N homozygous muta-
tions were found in one patient. This patient had an LDL-C level of 340 mg/dL, which was rela-
tively higher than those of patients with only one heterozygous mutation. Two patients
harbored the p.R3527Q mutation in APOB, the most common causal variation of APOB in
other populations. [18] Lastly, one patient had the p.E32K mutation in PCSKO9. [19, 20]

Discovery and validation of novel mutations in the three FH-linked genes

In addition to known mutations, novel disruptive mutations were detected in three FH pa-
tients. Two novel mutations were predicted to disrupt the LDLR gene due to a frame shift
(Table 3). Neither mutation was observed in any control exome data or public databases. The
13-nt deletion mutation (¢.320_332del GACGTGCTCCCAG) was thought to be a pathogenic
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Table 2. Known pathogenic mutations in three FH-linked genes (n = 69).

Gene

LDLR
LDLR
LDLR
LDLR
LDLR
LDLR
LDLR
LDLR
LDLR
LDLR
LDLR
LDLR
LDLR
APOB
PCSK9

Genomic coordinate

chr19:11213417
chr19:11216000
chr19:11216101
chr19:11216243
chr19:11216264
chr19:11216264
chr19:11217315
chr19:11227594
chr19:11224013
chr19:11226885
chr19:11231112
chr19:11221326
chr19:11222188
chr2:21229160

chr1:55505604

Nucleotide change*

c.268G>A
c.418G>A
c.519C>G
c.661G>A
c.682G>T
c.682G>A
c.769C>T
c.1765G>A
c. 1246C>T
c.1702C>G
c. 2054C>T
c.941-2A>G
c.1061-2A>G
¢.10580C>T
c.94G>A

Mutation type

Missense
Missense
Missense
Missense
Nonsense
Missense
Missense
Missense
Missense
Missense
Missense

Splicing, acceptor site (exon6-2nt)
Splicing, acceptor site (exon7-2nt)

Missense
Missense

Amino acid change

p.D9ON
p.E140K
p.C173W
p.D221N
p.E228X
p.E228K
p.R257W
p.D589N
p.R416W
p.L568V
p.P685L
Frameshift
Frameshift
p.R3527Q
p.E32K

Affected patients (frequency)

0.014)
0.014)
0.014)
0.014)
0.043)
0.014)
T(0.014)

1(
1
1
1
3(
1
1

1(0.014)
1(0.014)
2% (0.028)
1(0.014)
1(0.014)
2 (0.028)
1(0.014)

*Nucleotide location number was assigned according to the low-density lipoprotein receptor (LDLR; NM_000527), apolipoprotein B (APOB; NM_000384),

and proprotein convertase subtilisin/kexin type 9 (PCSK9; NM_174936) mRNA sequences.

TA patient (P49) with p.R257W (homozygote) and p.D589N (homozygote).
*Screening the remaining cohort by Sanger sequencing identified three more patients with p.P685L.
Variants were characterized in published studies and validated in the present study by Sanger sequencing.

doi:10.1371/journal.pone.0126706.t002

Table 3. Novel pathogenic mutations in three FH-linked genes (n = 69).

Gene

LDLR

LDLR

PCSK9 chr1:55518070

Detailed information of novel mutations

Genomic Nucleotide change* Mutation Amino
coordinate type acid
change
chr19:11215902— ¢.321_333del- Frameshift  p.
11215914 GACGTGCTCCCAG  deletion C109Sfs®
chr19:11240299 €.2500_2502del- Frameshift  p.
GATinsCl! deletion/ D834Rfs
insertion
C.643C>T Missense p.R215C

Pathogenicity’

MAF in Frequency
Korean in public
controls  databases*
(n =390)

0 Novel

0 Novel

0 Novel*

Polyphen-2
prediction
(probability)

NA

NA

Probably
damaging (1)

SIFT
prediction
(score)

NA

NA

Damaging
(0.008)

*Nucleotide location number was assigned according to the low-density lipoprotein receptor (LDLR; NM_000527) and proprotein convertase subtilisin/
kexin type 9 (PCSK9; NM_174936) mRNA sequences.
TPrediction for frameshift mutations of LDLR is not available from the Polyphen-2 and SIFT algorithms and is not marked.
*Public databases include the 1000 Genomes Project, doSNP135, and NHLBI GO Exome Sequencing Project.

$The frameshift mutation changes the cysteine at position 109, as four nucleotides after the deletion compensate for the frameshift effect until threonine

(108).

IThe replacement of nucleotides 2500 to 2502 (GAT) occurred by ‘C’ at the cis position.

#The p.R215H (c.644G>A) is a gain-of-function mutation in the catalytic domain of PCSK9. [22, 23] Variants were validated by Sanger sequencing.
NA: Not available.

doi:10.1371/journal.pone.0126706.t003
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A

P05-F01

A
$0000 0 W0

due to frame shift disruptions that introduced a premature stop codon. The p.D834Rfs muta-
tion resulted from two concurrent mutations (¢.2500_2502del GAT and ¢.2500insC) consecu-
tively at the cis-position and was confirmed as a D834Rfs/- heterozygous mutation, using the
Integrative Genomics Viewer (Fig 2). Though it occurred at a relatively posterior position
among the 860 coding region of LDLR, we could still confirm p.D834Rfs as causal variant that
co-segregated within the corresponding family (P05; Fig 2). One variant in PCSK9, p.R215C,
was identified within an evolutionarily conserved loop within the catalytic domain. [21] Con-
sidering that gain-of-function mutations within this loop have been confirmed, [22, 23] p.
R215C is likely to be a gain-of-function variant.

Copy number analysis and validation

In the CNV analysis, novel copy number deletions were detected in two patients. A fragment
spanning from exon 1 to exon 12 of LDLR was inferred as being lost in one patient (P25) by the
CoNIFER algorithm (Fig 3A). [17] The copy number was measured to be half of that of the
control by Tagman copy number assay, which detected intron 5 (Fig 3D). Another copy num-
ber deletion ranging from exon 8 to exon 12 of LDLR was detected and validated by Tagman
assay (Fig 3B and 3D). Notably, the copy number loss co-segregated in other affected family
members as well, indicating the deletion to be the causal alteration for FH in the corresponding
family (P17; Fig 3C and 3D).

*y
P05

5 ¢

P05-F02  P05-FO3

B
11,240,300bp
P5 P05-F0O1 P05-F02 P05-F03 '
Sex/Age W48 Fl66 Fr9 M7 -
TC (mg/dL) 386 321 145 146 ——
TG (mg/dL) 261 160 75 99  —
HDL-C (mg/dL) 40 29 44 42 ——
LDL-C (mg/dL) 290 218 89 92  S—
Sanger p.D834Rfs/WT p.D834Rfs/WT WT/WT WT/WT  S—
sequencing 160 160 160 160  S—
CAGAGCATGAT | CAGAGGATGAT CAGAGGATGAG CAGAGGATGAG [ —
. i 2 —
i N 1 ——
‘ﬁ(\;‘”"‘-‘/\/‘ M*A} I - —
ettt | A Aot |l =
T * * * =
C G G T G G T
T £ D v

LDLR

Fig 2. Pedigree analysis of a patient with LDLR p.D834Rfs/- mutation. (A) A simplified pedigree of the P05 family. The upper right arrow indicates the
proband; squares indicate males, and circles indicate females. Open and filled symbols indicate unaffected and affected individuals, respectively. Asterisks
indicate family members who underwent clinical examinations and molecular analyses. WT refers wild-type. (B) Clinical examination data and sequencing
chromatograms. Vertical arrows indicate the mutation site. (C) Integrative Genomics Viewer screenshot of p.D834Rfs/-. Sequencing reads show that a single

nucleotide substitution (G>C) and frameshift deletion (AT/-) occurred at the cis position.

doi:10.1371/journal.pone.0126706.9002
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Fig 3. Copy number variation (CNV) detection in LDLR. SVD-ZRPKM values were used to detect CNVs by the CoNIFER algorithm and were calculated
by transforming reads per kilobase per million values into standardized z-scores, based on the mean and standard deviation across all analyzed exomes. (A)
The SVD-ZRPKM regional plot of the P25 patient with a large copy number deletion in LDLR. (B) The SVD-ZRPKM regional plot of the P17 patient and family
member (P17-F01) with an inherited copy number deletion in LDLR. Green and blue indicate SVD-ZRPKM values of P17 and P17-F01, respectively. Values
are plotted based on P17. (C) Pedigree of the P17 patient with CNV. The upper right arrow indicates the proband; squares indicate males, and circles
indicate females. Open and filled symbols indicate unaffected and affected individuals, respectively. Asterisks indicate family members who underwent
clinical examinations and CNV analyses. (D) TagMan Copy Number Assay for P25, P17, and family members of P17. Red indicates the assay for P25 by
probe #1 within intron 5; blue indicates the assay for P17 and other members by probe #2 (overlapped from intron 10 to exon 11). The assay was performed
in duplicate and repeated. Results were plotted by CopyCaller software v.2.0.

doi:10.1371/journal.pone.0126706.g003

Discussion

In recent years, NGS has been applied in studies on FH and demonstrated as an efficient tool
to identify causing mutations in known and novel genes. [10, 24] The current study utilized
WES to identify FH-causing mutations in Korean FH cases and presented the values of WES in
the diagnosis of FH. The exome-based diagnosis was comprehensive, as it confirmed genetic
variations that were not merely limited to SNVs and included small insertions or deletions and
copy number variations. In fact, we confirmed 23 causative mutations in 3 known FH genes,
including 2 copy number deletions, through WES-based genetic testing. Importantly, this sug-
gests that newly generated DNA sequences can be used for the discovery and genetic diagnosis
of novel FH-causing genes without the need for additional costs. The WES data in genetically
undiagnosed patients from this study will be used for further analyses.

A DNA test, along with family screening, is confirmatory and clinically relevant, especial-
ly for individuals with borderline-high serum LDL-C levels. Furthermore, the co-segregation
analysis of variants in families provides strong evidence of the pathogenicity of undefined
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variants in genetic testing. During initial exploratory screening through WES analysis, we
found a total of four novel variants in LDLR with uncertain pathogenicity. Among them,
only two variants were found to be causative, based on in silico and family co-segregation
analyses. In the case of APOB, we found several novel variants with uncertain pathogenicity
located outside of LDLR-binding regions. All variants were ruled out by family co-segrega-
tion analysis.

Of the FH cases with confirmed mutations, one patient was homozygous for both p.R257W
and p.D589N mutations in LDLR and had relatively higher LDL-C levels than those of patients
with only one heterozygous mutation. The exact same double homozygous mutation has been
previously described in one Taiwanese patient with FH. [25] Both patients exhibited tendon
xanthomas without presenting typical homozygous phenotypes. Therefore, we hypothesize
that this mutation does not fully abolish LDLR activity. However, further functional studies are
needed.

Cholesterol levels in Asian FH patients are lower than those of Western patients. [26] The
mean LDL-C of patients in this study was 230 mg/dL, which was similar to that of Japanese pa-
tients [27] but lower than those of Chinese or Taiwanese patients. [25, 28] In our study, the
mutation carriers had significantly higher LDL-C levels. This finding is in accordance with
prior reports and indicates that a higher level of LDL-C is an important characteristic of muta-
tion-positive patients. [29, 30] The proportion of male was higher in mutation carriers. The
mean age of females was 57 years and higher than that of males. Post-menopausal females can
be subject to nonspecific elevation of blood cholesterol, which may have increased the number
of false-positive cases in our study. [31] The prevalence of coronary artery disease in our cohort
was 36%, and this can vary widely in Asian populations. [26] There was no difference in the
prevalence between patients with and without mutations.

The mutation detection rate in the 3 known FH genes was 33% in our study, which is lower
than those of recent reports. [25, 26, 32, 33] One possible reason is that the majority of subjects
were initially classified as possible FH patients whose mutation rates were lower than those of
definite FH patients. In addition, the low-sequencing coverage of known FH-causing genes, es-
pecially PCSK9, may have lowered the mutation detection rate (S1 Fig). Therefore, we cannot
rule out the possibility of undetected mutations in these regions. For the use of WES in the ge-
netic diagnosis of FH, further efforts are needed to improve coverage for regions with insuffi-
cient coverage in FH-causing genes. As sequencing costs are dropping, the cost for WES
becomes quite low. As a result, high-depth WES can achieve high coverage in FH-targeted
genes and display better diagnostic performance.

There are several points that haven’t fully covered for the genetic diagnosis in FH cases
without defined mutations. Originally, we set the values of WES in an attempt to identify novel
FH-causing genes, going beyond the confirmatory exome-based diagnosis of FH. However,
when applying existing statistical methods to reveal novel FH-causing genes, we found that the
tests were underpowered and could not fully verify the causality of putative genes. These were
mainly due to the small sample size. Furthermore, we could not define polygenic FH [34, 35]
through WES by calculating LDL-C gene scores, as most of these scores were calculated accord-
ing to the number of SNPs that occurred mostly in introns. Further research is needed to evalu-
ate polygenic cause in Korean FH cases without defined mutations.

In summary, we identified 23 mutations in known FH genes (19 in LDLR, two in APOB,
and two in PCSK9) using WES in 69 FH patients who met Simon Broome criteria with definite
family history. We also identified three new causative mutations: two frame shift deletions in
LDLR and one mutation in PCSKO9.
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