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SUMMARY

Allosteric regulation is found across all domains of life, yet we still lack simple, predictive 

theories that directly link the experimentally tunable parameters of a system to its input-output 

response. To that end, we present a general theory of allosteric transcriptional regulation using the 

Monod-Wyman-Changeux model. We rigorously test this model using the ubiquitous simple 

repression motif in bacteria by first predicting the behavior of strains that span a large range of 

repressor copy numbers and DNA binding strengths and then constructing and measuring their 

response. Our model not only accurately captures the induction profiles of these strains, but also 

enables us to derive analytic expressions for key properties such as the dynamic range and [EC50]. 

Finally, we derive an expression for the free energy of allosteric repressors that enables us to 

collapse our experimental data onto a single master curve that captures the diverse phenomenology 

of the induction profiles.
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Allosteric regulation is found across all domains of life, yet we still lack simple, predictive 

theories that link the experimentally tunable parameters of such systems to their input-output 

response. We present a general theory of allosteric transcriptional regulation that is rigorously 

tested using a well-characterized regulatory system in bacteria. Our model not only accurately 

captures our data, but also enables us to derive analytic expressions for key phenotypic properties 

and is broadly applicable to other regulatory systems in bacteria.

INTRODUCTION

Understanding how organisms sense and respond to changes in their environment has long 

been a central theme of biological inquiry. At the cellular level, this interaction is mediated 

by a diverse collection of molecular signaling pathways. A pervasive mechanism of 

signaling in these pathways is allosteric regulation, in which the binding of a ligand induces 

a conformational change in some target molecule, triggering a signaling cascade (Lindsley 

and Rutter, 2006). One of the most important examples of such signaling is offered by 

transcriptional regulation, whereby a transcription factor’s propensity to bind to DNA will 

be altered upon binding to an allosteric effector.

Despite allostery’s ubiquity, we lack a formal, rigorous, and generalizable framework for 

studying its effects across the broad variety of contexts in which it appears. A key example 

of this is transcriptional regulation, in which allosteric transcription factors can be induced 

or corepressed by binding to a ligand. An allosteric transcription factor can adopt multiple 

conformational states, each of which has its own affinity for the ligand and for its DNA 

target site. In vitro studies have rigorously quantified the equilibria of different 

conformational states for allosteric transcription factors and measured the affinities of these 

states to the ligand (Harman, 2001; Lanfranco et al., 2017). Despite these experimental 

observations, the lack of a coherent quantitative model for allosteric transcriptional 

regulation has made it impossible to predict the behavior of even a simple genetic circuit 

across a range of regulatory parameters.
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The ability to predict circuit behavior robustly—that is, across both broad ranges of 

parameters and regulatory architectures—is important for multiple reasons. First, in the 

context of a specific gene, accurate prediction demonstrates that all components relevant to 

the gene’s behavior have been identified and characterized to sufficient quantitative 

precision. Second, in the context of genetic circuits in general, robust prediction validates 

the model that generated the prediction. Possessing a validated model also has implications 

for future work. For example, when we have sufficient confidence in the model, a single 

dataset can be used to accurately extrapolate a system’s behavior in other conditions. 

Moreover, there is an essential distinction between a predictive model, which is used to 

predict a system’s behavior given a set of input variables, and a retroactive model, which is 

used to describe the behavior of data that has already been obtained. We note that even some 

of the most careful and rigorous analysis of transcriptional regulation often entails only a 

retroactive reflection on a single experiment. This raises the fear that each regulatory 

architecture may require a unique analysis that cannot carry over to other systems, a worry 

that is exacerbated by the prevalent use of phenomenological functions (e.g., Hill functions 

or ratios of polynomials) that can analyze a single dataset but cannot be used to extrapolate a 

system’s behavior in other conditions (Setty et al., 2003; Poelwijk et al., 2011; Vilar and 

Saiz, 2013; Rogers et al., 2015; Rohlhill et al., 2017).

This work explores what happens when theory takes center stage, namely, when we first 

write down the equations governing a system and describe its expected behavior across a 

wide array of experimental conditions, and only then do we set out to experimentally 

confirm these results. Building upon previous work (Garcia and Phillips, 2011; Brewster et 

al., 2014; Weinert et al., 2014) and the work of Monod, Wyman, and Changeux (Monod et 

al., 1965), we present a statistical mechanical rendering of allostery in the context of 

induction and corepression (shown schematically in Figure 1A, henceforth referred to as the 

MWC model) and use it as the basis of parameter-free predictions, which we then test 

experimentally. More specifically, we study the simple repression motif—a widespread 

bacterial genetic regulatory architecture in which binding of a transcription factor occludes 

binding of an RNA polymerase, thereby inhibiting transcription initiation. The MWC model 

stipulates that an allosteric protein fluctuates between two distinct conformations, an active 

and an inactive state, in thermodynamic equilibrium (Monod et al., 1965). During induction, 

for example, effector binding increases the probability that a repressor will be in the inactive 

state, weakening its ability to bind to the promoter and resulting in increased expression. To 

test the predictions of our model across a wide range of operator binding strengths and 

repressor copy numbers, we design an Escherichia coli genetic construct in which the 

binding probability of a repressor regulates gene expression of a fluorescent reporter.

In total, the work presented here demonstrates that one extremely compact set of parameters 

can be applied self-consistently and predictively to different regulatory situations including 

simple repression on the chromosome, cases in which decoy binding sites for repressor are 

put on plasmids, cases in which multiple genes compete for the same regulatory machinery, 

cases involving multiple binding sites for repressor leading to DNA looping, and induction 

by signaling (Garcia and Phillips, 2011; Garcia et al., 2011; Brewster et al., 2012, 2014; 

Boedicker et al., 2013a, 2013b). Thus, rather than viewing the behavior of each circuit as 

giving rise to its own unique input-output response, the MWC model provides a means to 
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characterize these seemingly diverse behaviors using a single unified framework governed 

by a small set of parameters.

RESULTS

Characterizing Transcription Factor Induction Using the Monod-Wyman-Changeux Model

We begin by considering a simple repression genetic architecture in which the binding of an 

allosteric repressor occludes the binding of RNA polymerase (RNAP) to the DNA (Ackers et 

al., 1982; Buchler et al., 2003). When an effector (hereafter referred to as an “inducer” for 

the case of induction) binds to the repressor, it shifts the repressor’s allosteric equilibrium 

toward the inactive state as specified by the MWC model (Monod et al., 1965). This causes 

the repressor to bind more weakly to the operator, which increases gene expression. Simple 

repression motifs in the absence of inducer have been previously characterized by an 

equilibrium model in which the probability of each state of repressor and RNAP promoter 

occupancy is dictated by the Boltzmann distribution (Ackers et al., 1982; Buchler et al., 

2003; Vilar and Leibler, 2003; Bintu et al., 2005a; Garcia and Phillips, 2011; Brewster et al., 

2014) (we note that non-equilibrium models of simple repression have been shown to have 

the same functional form that we derive below; Phillips, 2015). We extend these models to 

consider allostery by accounting for the equilibrium state of the repressor through the MWC 

model.

Thermodynamic models of gene expression begin by enumerating all possible states of the 

promoter and their corresponding statistical weights. As shown in Figure 2A, the promoter 

can either be empty, occupied by RNAP, or occupied by either an active or an inactive 

repressor. The probability that RNAP binds to the promoter depends upon the protein copy 

numbers, which we denote as P for RNAP, RA for active repressor, and RI for inactive 

repressor. We note that repressors fluctuate between the active and inactive conformation in 

thermodynamic equilibrium, such that RA and RI will remain constant for a given inducer 

concentration (Monod et al., 1965). We assign the repressor a different DNA binding affinity 

in the active and inactive state. In addition to the specific binding sites at the promoter, we 

assume that there are NNS non-specific binding sites elsewhere (i.e., on parts of the genome 

outside the simple repression architecture) where the RNAP or the repressor can bind. All 

specific binding energies are measured relative to the average non-specific binding energy. 

Thus, ΔεP represents the energy difference between the specific and non-specific binding for 

RNAP to the DNA. Likewise, ΔεRA and ΔεRI represent the difference in specific and 

nonspecific binding energies for repressor in the active or inactive state, respectively.

Thermodynamic models of transcription (Ackers et al., 1982; Buchler et al., 2003; Vilar and 

Leibler, 2003; Bintu et al., 2005a, 2005b; Kuhlman et al., 2007; Daber et al., 2011; Garcia 

and Phillips, 2011; Brewster et al., 2014; Weinert et al., 2014) posit that gene expression is 

proportional to the probability that the RNAP is bound to the promoter pbound, which is 

given by
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pbound =

P
NNS

e
−βΔεP

1 +
RA

NNS
e

−βΔεRA +
RI

NNS
e

−βΔεRI + P
NNS

e
−βΔεP

, (Equation 1)

with β = 1
kBT  where kB is the Boltzmann constant and T is the temperature of the system. As 

kBT is the natural unit of energy at the molecular length scale, we treat the products βΔεj as 

single parameters within our model. Measuring pbound directly is fraught with experimental 

difficulties, as determining the exact proportionality between expression and pbound is not 

straightforward. Instead, we measure the fold-change in gene expression due to the presence 

of the repressor. We define fold-change as the ratio of gene expression in the presence of 

repressor relative to expression in the absence of repressor (i.e., constitutive expression), 

namely,

fold‐change ≡
pbound(R > 0)
pbound(R = 0) . (Equation 2)

We can simplify this expression using two well-justified approximations: (1) 

P
NNS

e
−βΔεP ≪ 1, implying that the RNAP binds weakly to the promoter (NNS = 4.6 × 106, P 

≈ 103 (Klumpp and Hwa, 2008), ΔεP ≈ −2 to −5 kBT (Brewster et al., 2012), so that 

P
NNS

e
−βΔεP ≈ 0.01) and (2) 

RI
NNS

e
−βΔεRI ≪ 1 +

RA
NNS

e
−βΔεRA, which reflects our assumption 

that the inactive repressor binds weakly to the promoter of interest. Using these 

approximations, the fold-change reduces to the form

fold‐change ≈ 1 +
RA

NNS
e

−βΔεRA
−1

≡ 1 + pA(c) R
NNS

e
−βΔεRA

−1
, (Equation 3)

where in the last step we have introduced the fraction pA(c) of repressors in the active state 

given a concentration c of inducer, such that RA(c) = pA(c)R. Since inducer binding shifts 

the repressors from the active to the inactive state, pA(c) grows smaller as c increases 

(Marzen et al., 2013).

We use the MWC model to compute the probability pA(c) that a repressor with n inducer 

binding sites will be active. The value of pA(c) is given by the sum of the weights of the 

active repressor states divided by the sum of the weights of all possible repressor states (see 

Figure 2B), namely,
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pA(c) =
1 + c

KA

n

1 + c
KA

n
+ e

−βΔεAI 1 + c
KI

n , (Equation 4)

where KA and KI represent the dissociation constant between the inducer and repressor in 

the active and inactive states, respectively, and ΔεAI = εI − εA is the free energy difference 

between a repressor in the inactive and active state (the quantity e−ΔεAI is sometimes 

denoted by L [Monod et al., 1965; Marzen et al., 2013] or KRR* [Daber et al., 2011]). In this 

equation, c
KA

 and c
KI

 represent the change in free energy when an inducer binds to a 

repressor in the active or inactive state, respectively, while e−βΔεAI represents the change in 

free energy when the repressor changes from the active to inactive state in the absence of 

inducer. Thus, a repressor that favors the active state in the absence of inducer (ΔεAI > 0) 

will be driven toward the inactive state upon inducer binding when KI < KA. The specific 

case of a repressor dimer with n = 2 inducer binding sites is shown in Figure 2B.

Substituting pA(c) from Equation 4 into Equation 3 yields the general formula for induction 

of a simple repression regulatory architecture (Phillips, 2015), namely,

fold‐change = 1 +
1 + c

KA

n

1 + c
KA

n
+ e

−βΔεAI 1 + c
KI

n
R

NNS
e

−βΔεRA

−1

. (Equation 5)

While we have used the specific case of simple repression with induction to craft this model, 

the same mathematics describe the case of corepression in which binding of an allosteric 

effector stabilizes the active state of the repressor and decreases gene expression (see Figure 

1B). A notable property of this model is that we shift from induction (governed by KI < KA) 

to corepression (KI > KA) as the ligand transitions from preferentially binding to the inactive 

repressor state to stabilizing the active state. Furthermore, this general approach can be used 

to describe a variety of other motifs such as activation, multiple repressor binding sites, and 

combinations of activator and repressor binding sites (Bintu et al., 2005b; Brewster et al., 

2014; Weinert et al., 2014).

The formula presented in Equation 5 enables us to make precise quantitative statements 

about induction profiles. Motivated by the broad range of predictions implied by Equation 5, 

we designed a series of experiments using the lac system in E. coli to tune the control 

parameters for a simple repression genetic circuit. As discussed in Figure 1C, previous 

studies from our lab have provided well-characterized values for many of the parameters in 

our experimental system, leaving only the values of the MWC parameters (KA, KI, and 

ΔεAI) to be determined. We note that while previous studies have obtained values for KA, 

KI, and L = e−βΔεAI (O’Gorman et al., 1980; Daber et al., 2011), they were either based 
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upon biochemical experiments or in vivo conditions involving poorly characterized 

transcription factor copy numbers and gene copy numbers. These differences relative to our 

experimental conditions and fitting techniques led us to believe that it was important to 

perform our own analysis of these parameters. After inferring these three MWC parameters 

(see STAR Methods section “Inferring Allosteric Parameters from Previous Data” for details 

regarding the inference of ΔεAI, which was fitted separately from KA and KI), we were able 

to predict the input/output response of the system under a broad range of experimental 

conditions. For example, this framework can predict the response of the system at different 

repressor copy numbers R, repressor-operator affinities ΔεRA, inducer concentrations c, and 

gene copy numbers (see Appendix A, accessible through https://doi.org/10.22002/D1.743).

Experimental Design

We test our model by predicting the induction profiles for an array of strains that could be 

made using previously characterized repressor copy numbers and DNA binding energies. 

Our approach contrasts with previous studies that have parameterized induction curves of 

simple repression motifs, as these have relied on expression systems where proteins are 

expressed from plasmids, resulting in highly variable and unconstrained copy numbers 

(Murphy et al., 2007, 2010; Daber et al., 2009, 2011; Sochor, 2014). Instead, our approach 

relies on a foundation of previous work as depicted in Figure 1C. This includes work from 

our laboratory that used E. coli constructs based on components of the lac system to 

demonstrate how the Lac repressor (LacI) copy number R and operator binding energy ΔεRA 

affect gene expression in the absence of inducer (Garcia and Phillips, 2011). Rydenfelt et al. 

(2014) extended the theory used in that work to the case of multiple promoters competing 

for a given transcription factor, which was validated experimentally by Brewster et al. 

(2014), who modified this system to consider expression from multiple-copy plasmids as 

well as the presence of competing repressor binding sites.

The present study extends this body of work by introducing three additional biophysical 

parameters, ΔεAI, KA, and KI, which capture the allosteric nature of the transcription factor 

and complement the results shown by Garcia and Phillips (2011) and Brewster et al. (2014). 

Although the current work focuses on systems with a single site of repression, in STAR 

Methods, section “Inferring Allosteric Parameters from Previous Data,” we utilize data from 

Brewster et al. (2014) in which multiple sites of repression are explored to characterize the 

allosteric free energy difference ΔεAI between the repressor’s active and inactive states. As 

explained in that section, this additional dataset is critical because multiple degenerate sets 

of parameters can characterize an induction curve equally well, with the ΔεAI parameter 

compensated by the inducer dissociation constants KA and KI (see Figure S4). After fixing 

ΔεAI as described in STAR Methods, we can use data from single-site simple repression 

systems to determine the values of KA and KI.

We determine the values of KA and KI by fitting to a single induction profile using Bayesian 

inferential methods (Sivia and Skilling, 2006). We then use Equation 5 to predict gene 

expression for any concentration of inducer, repressor copy number, and DNA binding 

energy and compare these predictions against experimental measurements. To obtain 

induction profiles for a set of strains with varying repressor copy numbers, we used modified 
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lacI ribosomal binding sites from Garcia and Phillips (2011) to generate strains with mean 

repressor copy number per cell of R = 22 ± 4, 60 ± 20, 124 ± 30, 260 ± 40, 1,220 ± 160, and 

1,740 ± 340, where the error denotes SD of at least three replicates as measured by Garcia 

and Phillips (2011). We note that R refers to the number of repressor dimers in the cell, 

which is twice the number of repressor tetramers reported by Garcia and Phillips (2011); 

since both heads of the repressor are assumed to always be either specifically or non-

specifically bound to the genome, the two repressor dimers in each LacI tetramer can be 

considered independently. Gene expression was measured using a yellow fluorescent protein 

(YFP) gene, driven by a lacUV5 promoter. Each of the six repressor copy number variants 

were paired with the native O1, O2, or O3 lac operator (Oehler et al., 1994) placed at the 

YFP transcription start site, thereby generating 18 unique strains. The repressor-operator 

binding energies (O1 ΔεRA = −15.3 ± 0.2 kBT, O2 ΔεRA = −13.9 ± 0.2 kBT, and O3 ΔεRA = 

−9.7 ± 0.1 kBT) were previously inferred by measuring the fold-change of the lac system at 

different repressor copy numbers, where the error arises from model fitting (Garcia and 

Phillips, 2011). Additionally, we were able to obtain the value ΔεAI = 4.5 kBT by fitting to 

previous data as discussed in STAR Methods, section “Inferring Allosteric Parameters from 

Previous Data”. We measure fold-change over a range of known isopropyl β-D-1-

thiogalactopyranoside (IPTG) concentrations c, using n = 2 inducer binding sites per LacI 

dimer and approximating the number of non-specific binding sites as the length in base-pairs 

of the E. coli genome, NNS = 4.6 × 106.

Our experimental pipeline for determining fold-change using flow cytometry is shown in 

Figure 3. In brief, cells were grown to exponential phase, in which gene expression reaches 

steady state (Scott et al., 2010), under concentrations of the inducer IPTG ranging between 0 

and 5 mM. We measure YFP fluorescence using flow cytometry and automatically gate the 

data to include only single-cell measurements (see STAR Methods, section “Flow 

Cytometry”). To validate the use of flow cytometry, we also measured the fold-change of a 

subset of strains using the established method of single-cell microscopy (see Appendix B 

accessible through https://doi.org/10.22002/D1.743). We found that the fold-change 

measurements obtained from microscopy were indistinguishable from that of flow cytometry 

and yielded values for the inducer binding constants KA and KI that were within error.

Determination of the In Vivo MWC Parameters

The three parameters that we tune experimentally are shown in Figure 4A, leaving the three 

allosteric parameters (ΔεAI, KA, and KI) to be determined by fitting. We used previous LacI 

fold-change data (Brewster et al., 2014) to infer that ΔεAI = 4.5 kBT (see STAR Methods, 

section “Inferring Allosteric Parameters from Previous Data”). Rather than fitting KA and KI 

to our entire dataset of 18 unique constructs, we performed Bayesian parameter estimation 

on data from a single strain with R = 260 and an O2 operator (ΔεRA = −13.9 kBT; Garcia 

and Phillips, 2011) shown in Figure 4D (white circles). Using Markov chain Monte Carlo, 

we determine the most likely parameter values to be KA = 139−22
+29 × 10−6 M and 

KI = 0.53−0.04
+0.04 × 10−6 M, which are the modes of their respective distributions, where the 

superscripts and subscripts represent the upper and lower bounds of the 95th percentile of the 

parameter value distributions (see Figure 4B). Unfortunately, we are not able to make a 
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meaningful value-for-value comparison of our parameters with those of earlier studies 

(Daber et al., 2009, 2011) because of uncertainties in both gene copy number and 

transcription factor copy numbers in these studies, as illustrated by the plots in Appendix A 

(https://doi.org/10.22002/D1.743). We then predicted the fold-change for the remaining 17 

strains with no further fitting (see Figures 4C–4E) together with the specific phenotypic 

properties described and discussed in detail below (see Figures 4F–4J). The shaded regions 

in Figures 4C–4J denote the 95% credible regions. Factors determining the width of the 

credible regions are explored in Appendix C, accessible through https://doi.org/10.22002/

D1.743.

We stress that the entire suite of predictions is based upon the induction profile of a single 

strain. Our ability to make such a broad range of predictions stems from the fact that our 

parameters of interest, such as the repressor copy number and DNA binding energy, appear 

as distinct physical parameters within our model. While the single dataset in Figure 4D 

could also be fit using a Hill function, such an analysis would be unable to predict any of the 

other curves in the figure (see STAR Methods, section “Alternate Characterizations of 

Induction”). Phenomenological expressions such as the Hill function can describe data, but 

lack predictive power and are thus unable to build our intuition, help us design de novo 
input-output functions, or guide future experiments (Kuhlman et al., 2007; Murphy et al., 

2007).

Comparison of Experimental Measurements with Theoretical Predictions

We tested the predictions shown in Figure 4 by measuring fold-change induction profiles in 

strains with a broad range of repressor copy numbers and repressor binding energies as 

characterized in Garcia and Phillips (2011). With a few notable exceptions, the results shown 

in Figure 5 demonstrate agreement between theory and experiment. We note that there was 

an apparently systematic shift in the O3 ΔεRA = −9.7 kBT strains (Figure 5C) and all of the 

R = 1,220 and R = 1,740 strains. This may be partially due to imprecise previous 

determinations of their ΔεRA and R values. By performing a global fit whereby we infer all 

parameters including the repressor copy number R and the binding energy ΔεRA, we found 

better agreement for these strains, although a discrepancy in the steepness of the response 

for all O3 strains remains (see STAR Methods, section “Global Fit of All Parameters”). We 

considered a number of hypotheses to explain these discrepancies such as including other 

states (e.g., non-negligible binding of the inactive repressor), relaxing the weak promoter 

approximation, and accounting for variations in gene and repressor copy number throughout 

the cell cycle, but none explained the observed discrepancies. As an additional test of our 

model, we considered strains using the synthetic Oid operator that exhibits an especially 

strong binding energy of ΔεRA = −17 kBT (Garcia and Phillips, 2011). The global fit agrees 

well with the Oid microscopy data, although it asserts a stronger Oid binding energy of 

ΔεRA = −17.7 kBT (see Appendix D, accessible through https://doi.org/10.22002/D1.743).

To ensure that the agreement between our predictions and data is not an accident of the 

strain we used to perform our fitting, we also inferred KA and KI from each of the other 

strains. As shown in STAR Methods section “Comparison of Parameter Estimation and 

Fold-Change Predictions across Strains” and Figure 5D, the inferred values of KA and KI 
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depend minimally upon which strain is chosen, indicating that these parameter values are 

highly robust. We also performed a global fit using the data from all 18 strains in which we 

fitted for the inducer dissociation constants KA and KI, the repressor copy number R, and the 

repressor-DNA binding energy ΔεRA (see STAR Methods, section “Global Fit of All 

Parameters”). The resulting parameter values were nearly identical to those fitted from any 

single strain. For the remainder of the text we continue using parameters fitted from the 

strain with R = 260 repressors and an O2 operator.

Predicting the Phenotypic Traits of the Induction Response

A subset of the properties shown in Figure 1 (i.e., the leakiness, saturation, dynamic range, 

[EC50], and effective Hill coefficient) are of significant interest to synthetic biology. For 

example, synthetic biology is often focused on generating large responses (i.e., a large 

dynamic range) or finding a strong binding partner (i.e., a small [EC50]) (Brophy and Voigt, 

2014; Shis et al., 2014). While these properties are all individually informative, when taken 

together they capture the essential features of the induction response. We reiterate that a Hill 

function approach cannot predict these features a priori, whereas the MWC model can 

predict the full suite of traits as shown in Figures 4F–4J.

Using our model, Equation 5, we determine analytic expressions for the five phenotypic 

traits of interest. These results build upon extensive work by Martins and Swain (2011), who 

computed many such properties for ligand-receptor binding within the MWC model. We 

begin by analyzing the leakiness, which is the minimum fold-change observed in the 

absence of ligand, given by

leakiness = fold‐change (c = 0)

= 1 + 1
1 + e

−βΔεAI

R
NNS

e
−βΔεRA

−1

(Equation 6)

and the saturation, which is the maximum fold-change observed in the presence of saturating 

ligand,

saturation = fold‐change (c ∞ )

= 1 + 1

1 + e
−βΔεAl KA

KI

n
R

NNS
e

−βΔεRA

−1

.

(Equation 7)
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Systems that minimize leakiness repress strongly in the absence of effector while systems 

that maximize saturation have high expression in the presence of effector. Together, these 

two properties determine the dynamic range of a system’s response, which is given by the 

difference

dynamic range = saturation − leakiness. (Equation 8)

These three properties are shown in Figures 4F–4H. We discuss these properties in greater 

detail in STAR Methods, section “Properties of Induction Titration Curves.” Figures 6A–6C 

show that the measurements of these three properties, derived from the fold-change data in 

the absence of IPTG and the presence of saturating IPTG, closely match the predictions for 

all three operators.

Two additional properties of induction profiles are the [EC50] and effective Hill coefficient, 

which determine the range of inducer concentration in which the system’s output goes from 

its minimum to maximum value. The [EC50] denotes the inducer concentration required to 

generate a system response Equation 5 halfway between its minimum and maximum value,

fold‐change (c = [EC50]) = leakiness+saturation
2 . (Equation 9)

The effective Hill coefficient h, which quantifies the steepness of the curve at the [EC50] 

(Marzen et al., 2013), is given by

h = 2 d
dlog(c) log fold‐change (c) − leakiness

dynamic range c = [EC50]
. (Equation 10)

Figures 4I and 4J shows how the [EC50] and effective Hill coefficient depend on the 

repressor copy number. In STAR Methods section “Properties of Induction Titration 

Curves,” we discuss the analytic forms of these two properties as well as their dependence 

on the repressor-DNA binding energy.

Figures 6D and 6E shows the estimated values of the [EC50] and the effective Hill 

coefficient overlaid on the theoretical predictions. Both properties were obtained by fitting 

Equation 5 to each individual titration curve and computing the [EC50] and effective Hill 

coefficient using Equations 9 and 10, respectively. We find that the predictions made with 

the single strain fit closely match those made for each of the strains with O1 and O2 

operators, but the predictions for the O3 operator are markedly off. In STAR Methods 

section “Alternate Characterizations of Induction,” we show that the large, asymmetric error 

bars for the O3 R = 22 strain arise from its nearly flat response, where the lack of dynamic 

range makes it impossible to determine the value of the inducer dissociation constants KA 
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and KI, as can be seen in the uncertainty of both the [EC50] and effective Hill coefficient. 

Discrepancies between theory and data for O3 are improved, but not fully resolved, by 

performing a global fit or fitting the MWC model individually to each curve (see STAR 

Methods, sections “Global Fit of All Parameters” and “Comparison of Parameter Estimation 

and Fold-Change Predictions across Strains”). It remains an open question as to how to 

account for discrepancies in O3, in particular regarding the significant mismatch between 

the predicted and fitted effective Hill coefficients.

Data Collapse of Induction Profiles

Our primary interest heretofore was to determine the system response at a specific inducer 

concentration, repressor copy number, and repressor-DNA binding energy. However, the cell 

does not necessarily “care about” the precise number of repressors in the system or the 

binding energy of an individual operator. The relevant quantity for cellular function is the 

fold-change enacted by the regulatory system. This raises the question: given a specific 

value of the fold-change, what combination of parameters will give rise to this desired 

response? In other words, what trade-offs between the parameters of the system will produce 

the same mean cellular output? These are key questions both for understanding how the 

system is governed and for engineering specific responses in a synthetic biology context. To 

address these questions, we follow the data collapse strategy used in a number of previous 

studies (Sourjik and Berg, 2002; Keymer et al., 2006; Swem et al., 2008), and rewrite 

Equation 5 as a Fermi function,

fold‐change = 1
1 + e−F(c) , (Equation 11)

where F(c) is the free energy of the repressor binding to the operator of interest relative to 

the unbound operator state in kBT units (Keymer et al., 2006; Swem et al., 2008; Phillips, 

2015), which is given by

F(c) =
ΔεRA
kBT − log

1 + c
KA

n

1 + c
KA

n
+ e

−βΔεAI 1 + c
KI

n − log R
NNS

. (Equation 12)

The first term in F(c) denotes the repressor-operator binding energy, the second the 

contribution from the inducer concentration, and the last the effect of the repressor copy 

number. We note that elsewhere, this free energy has been dubbed the Bohr parameter since 

such families of curves are analogous to the shifts in hemoglobin binding curves at different 

pHs known as the Bohr effect (Mirny, 2010; Phillips, 2015; Einav et al., 2016).

Instead of analyzing each induction curve individually, the free energy provides a natural 

means to simultaneously characterize the diversity in our 18 induction profiles. Figure 7A 
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demonstrates how the various induction curves from Figures 4C–4E all collapse onto a 

single master curve, where points from every induction profile that yield the same fold-

change are mapped onto the same free energy. Figure 7B shows this data collapse for the 

216 data points in Figures 5A–5C, demonstrating the close match between the theoretical 

predictions and experimental measurements across all 18 strains.

There are many different combinations of parameter values that can result in the same free 

energy as defined in Equation 12. For example, suppose a system originally has a fold-

change of 0.2 at a specific inducer concentration and then operator mutations increase the 

ΔεRA binding energy (Garcia et al., 2012). While this serves to initially increase both the 

free energy and the fold-change, a subsequent increase in the repressor copy number could 

bring the cell back to the original fold-change level. Such trade-offs hint that there need not 

be a single set of parameters that evoke a specific cellular response, but rather that the cell 

explores a large but degenerate space of parameters with multiple, equally valid paths.

DISCUSSION

Since the early work by Monod, Wyman, and Changeux (Monod et al., 1963, 1965), an 

array of biological phenomena have been tied to the existence of macromolecules that switch 

between inactive and active states. Examples can be found in a wide variety of cellular 

processes, including ligand-gated ion channels (Auerbach, 2012), enzymatic reactions 

(Velyvis et al., 2007; Einav et al., 2016), chemotaxis (Keymer et al., 2006), quorum sensing 

(Swem et al., 2008), G-protein-coupled receptors (Canals et al., 2012), physiologically 

important proteins (Milo et al., 2007; Levantino et al., 2012), and beyond. One of the most 

ubiquitous examples of allostery is in the context of gene expression, where an array of 

molecular players bind to transcription factors to influence their ability to regulate gene 

activity (Huang et al., 2011; Li et al., 2014). A number of studies have focused on 

developing a quantitative understanding of allosteric regulatory systems. Martins and Swain 

(2011) and Marzen et al. (2013) analytically derived fundamental properties of the MWC 

model, including the leakiness and dynamic range described in this work, noting the inherent 

trade-offs in these properties when tuning the model’s parameters. Work in the Church and 

Voigt labs, among others, has expanded on the availability of allosteric circuits for synthetic 

biology (Lutz and Bujard, 1997; Moon et al., 2012; Rogers et al., 2015; Rohlhill et al., 

2017). Recently, Daber et al. (2009) theoretically explored the induction of simple 

repression within the MWC model and experimentally measured how mutations alter the 

induction profiles of transcription factors (Daber et al., 2011). Vilar and Saiz analyzed a 

variety of interactions in inducible lac-based systems including the effects of 

oligomerization and DNA folding on transcription factor induction (Saiz and Vilar, 2008; 

Vilar and Saiz, 2013). Other work has attempted to use the lac system to reconcile in vitro 
and in vivo measurements (Tungtur et al., 2011; Sochor, 2014).

Although this body of work has done much to improve our understanding of allosteric 

transcription factors, there have been few attempts to explicitly connect quantitative models 

to experiments. Here, we generate a predictive model of allosteric transcriptional regulation 

and then test the model against a thorough set of experiments using well-characterized 

regulatory components. Specifically, we used the MWC model to build upon a well-
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established thermodynamic model of transcriptional regulation (Bintu et al., 2005a; Garcia 

and Phillips, 2011), allowing us to compose the model from a minimal set of biologically 

meaningful and experimentally accessible parameters. We argue that one would not be able 

to generate such a wide array of quantitative predictions by using a Hill function, which 

abstracts away the biophysical meaning of the parameters into phenomenological parameters 

(Forsén and Linse, 1995). Furthermore, our model reveals systematic relationships between 

behaviors that previously were only determined empirically.

One such property is the dynamic range, which is of considerable interest when designing or 

characterizing a genetic circuit, and is revealed to have an interesting property: although 

changing the value of ΔεRA causes the dynamic range curves to shift to the right or left, each 

curve has the same shape and in particular the same maximum value. This means that strains 

with strong or weak binding energies can attain the same dynamic range when the value of R 
is tuned to compensate for the binding energy. This feature is not immediately apparent from 

the IPTG induction curves, which show very low dynamic ranges for several of the O1 and 

O3 strains. Without the benefit of models that can predict such phenotypic traits, efforts to 

engineer genetic circuits with allosteric transcription factors must rely on trial and error to 

achieve specific responses (Rogers et al., 2015; Rohlhill et al., 2017). Other calculable 

properties, such as leakiness, saturation, [EC50], and the effective Hill coefficient, agree well 

with experimental measurement. One exception is the titration profile of the weakest 

operator, O3. While performing a global fit for all model parameters marginally improves 

the prediction of all properties for O3 (see STAR Methods, section “Global Fit of All 

Parameters”), a noticeable difference remains when inferring the effective Hill coefficient or 

the [EC50]. We further tried including additional states (such as allowing the inactive 

repressor to bind to the operator), relaxing the weak promoter approximation, accounting for 

changes in gene and repressor copy number throughout the cell cycle (Jones et al., 2014), 

and refitting the original binding energies from Garcia et al. (2011), but such generalizations 

were unable to account for the O3 data. It remains an open question as to how the 

discrepancy between the theory and measurements for O3 can be reconciled.

Despite the diversity observed in the induction profiles of each of our strains, our data are 

unified by their reliance on fundamental biophysical parameters. In particular, we have 

shown that our model for fold-change can be rewritten in terms of the free energy Equation 

12, which encompasses all of the physical parameters of the system. This has proved to be 

an illuminating technique in a number of studies of allosteric proteins (Sourjik and Berg, 

2002; Keymer et al., 2006; Swem et al., 2008). Although it is experimentally straightforward 

to observe system responses to changes in effector concentration c, framing the input-output 

function in terms of c can give the misleading impression that changes in system parameters 

lead to fundamentally altered system responses. Alternatively, if one can find the “natural 

variable” that enables the output to collapse onto a single curve, it becomes clear that the 

system’s output is not governed by individual system parameters, but rather the 

contributions of multiple parameters that define the natural variable. Plotting the fold-change 

data against their respective free energies leads to a clean collapse onto a single curve (see 

Figure 7). This enables us to analyze how parameters can compensate each other. For 

example, rather than viewing strong repression as a consequence of low IPTG concentration 
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c or high repressor copy number R, we can now observe that strong repression is achieved 

when the free energy F(c) ≤ −5 kBT, a condition which can be reached in a number of ways.

While our experiments validated the theoretical predictions in the case of simple repression, 

we expect the framework presented here to apply much more generally to different 

biological instances of allosteric regulation. For example, we can use this model to study 

more complex systems such as when transcription factors interact with multiple operators 

(Bintu et al., 2005a). We can further explore different regulatory configurations such as 

corepression, activation, and coactivation, each of which are found in E. coli (see Appendix 

E, accessible through https://doi.org/10.22002/D1.743). This work can also serve as a 

springboard to characterize not just the mean but the full gene expression distribution and 

thus quantify the impact of noise on the system (Eldar and Elowitz, 2010). Another 

extension of this approach would be to theoretically predict and experimentally verify 

whether the repressor-inducer dissociation constants KA and KI or the energy difference 

ΔεAI between the allosteric states can be tuned by making single amino acid substitutions in 

the transcription factor (Daber et al., 2011; Phillips, 2015). Finally, we expect that the kind 

of rigorous quantitative description of the allosteric phenomenon provided here will make it 

possible to construct biophysical models of fitness for allosteric proteins similar to those 

already invoked to explore the fitness effects of transcription factor binding site strengths 

and protein stability (Gerland and Hwa, 2002; Berg et al., 2004; Zeldovich and 

Shakhnovich, 2008). In total, our approach shows that a thermodynamic formulation of the 

MWC model supersedes phenomenological fitting functions for understanding 

transcriptional regulation by allosteric proteins.

STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

GitHub Repository DOI 10.5281/zenodo.1163620

Additional Supplemental Information CaltechDATA Repository https://doi.org/10.22002/D1.743

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Rob Phillips (phillips@pboc.caltech.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial Strains and DNA Constructs—All strains used in these experiments were 

derived from E. coli K12 MG1655 with the lac operon removed, adapted from those created 

and described in Garcia and Phillips (2011). Briefly, the operator variants and YFP reporter 

gene were cloned into a pZS25 background which contains a lacUV5 promoter that drives 

expression as is shown schematically in Figure 2. These constructs carried a kanamycin 

resistance gene and were integrated into the galK locus of the chromosome using λ Red 

recombineering (Sharan et al., 2009). The lacI gene was constitutively expressed via a 
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PLtetO-1 promoter (Lutz and Bujard, 1997), with ribosomal binding site mutations made to 

vary the LacI copy number as described in Salis et al. (2009) using site-directed mutagenesis 

(Quickchange II; Stratagene), with further details in Garcia and Phillips (2011). These lacI 
constructs carried a chloramphenicol resistance gene and were integrated into the ybcN 
locus of the chromosome. Final strain construction was achieved by performing repeated P1 

transduction (Thomason et al., 2007) of the different operator and lacI constructs to generate 

each combination used in this work. Integration was confirmed by PCR amplification of the 

replaced chromosomal region and by sequencing. Primers and final strain genotypes are 

listed in Tables S1 and S2, respectively.

It is important to note that the rest of the lac operon (lacZYA) was never expressed. The 

LacY protein is a transmembrane protein which actively transports lactose as well as IPTG 

into the cell. As LacY was never produced in our strains, we assume that the extracellular 

and intracellular IPTG concentration was approximately equal due to diffusion across the 

membrane into the cell as is suggested by previous work (Fernández-Castané et al., 2012).

To make this theory applicable to transcription factors with any number of DNA binding 

domains, we used a different definition for repressor copy number than has been used 

previously. We define the LacI copy number as the average number of repressor dimers per 

cell whereas in Garcia and Phillips (2011), the copy number is defined as the average 

number of repressor tetramers in each cell. To motivate this decision, we consider the fact 

that the LacI repressor molecule exists as a tetramer in E. coli (Lewis et al., 1996) in which a 

single DNA binding domain is formed from dimerization of LacI proteins, so that wild-type 

LacI might be described as dimer of dimers. Since each dimer is allosterically independent 

(i.e., either dimer can be allosterically active or inactive, independent of the configuration of 

the other dimer) (Daber et al., 2009), a single LacI tetramer can be treated as two functional 

repressors. Therefore, we have simply multiplied the number of repressors reported in 

Garcia and Phillips (2011) by a factor of two. This factor is included as a keyword argument 

in the numerous Python functions used to perform this analysis, as discussed in the code 

documentation.

A subset of strains in these experiments were measured using fluorescence microscopy for 

validation of the flow cytometry data and results. To aid in the high-fidelity segmentation of 

individual cells, the strains were modified to constitutively express an mCherry fluorophore. 

This reporter was cloned into a pZS4*1 backbone (Lutz and Bujard, 1997) in which 

mCherry is driven by the lacUV5 promoter. All microscopy and flow cytometry experiments 

were performed using these strains.

Growth Conditions for Flow Cytometry Measurements—All measurements were 

performed with E. coli cells grown to mid-exponential phase in standard M9 minimal media 

(M9 5X Salts, Sigma-Aldrich M6030; 2 mM magnesium sulfate, Mallinckrodt Chemicals 

6066-04; 100 μM calcium chloride, Fisher Chemicals C79-500) supplemented with 0.5% 

(w/v) glucose. Briefly, 500 μL cultures of E. coli were inoculated into Lysogeny Broth (LB 

Miller Powder, BD Medical) from a 50% glycerol frozen stock (−80°C) and were grown 

overnight in a 2 mL 96-deep-well plate sealed with a breathable nylon cover (Lab Pak - 

Nitex Nylon, Sefar America, Cat. No. 241205) with rapid agitation for proper aeration. After 

Razo-Mejia et al. Page 16

Cell Syst. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



approximately 12 to 15 hr, the cultures had reached saturation and were diluted 1000-fold 

into a second 2 mL 96-deep-well plate where each well contained 500 μL of M9 minimal 

media supplemented with 0.5% w/v glucose (anhydrous D-Glucose, Macron Chemicals) and 

the appropriate concentration of IPTG (Isopropyl β-D-1-thiogalactopyranoside, Dioxane 

Free, Research Products International). These were sealed with a breathable cover and were 

allowed to grow for approximately 8 hr. Cells were then diluted ten-fold into a round-bottom 

96-well plate (Corning Cat. No. 3365) containing 90 μL of M9 minimal media supplemented 

with 0.5% w/v glucose along with the corresponding IPTG concentrations. For each IPTG 

concentration, a stock of 100-fold concentrated IPTG in double distilled water was prepared 

and partitioned into 100 μL aliquots. The same parent stock was used for all experiments 

described in this work.

E. coli Primer and Strain List—Here we provide additional details about the genotypes 

of the strains used, as well as the primer sequences used to generate them. E. coli strains 

were derived from K12 MG1655. For those containing R = 22, we used strain HG104 which 

additionally has the lacYZA operon deleted (positions 360,483 to 365,579) but still contains 

the native lacI locus. All other strains used strain HG105, where both the lacYZA and lacI 
operons have both been deleted (positions 360,483 to 366,637).

All 25x+11-yfp expression constructs were integrated at the galK locus (between positions 

1,504,078 and 1,505,112) while the 3*1x-lacI constructs were integrated at the ybcN locus 

(between positions 1,287,628 and 1,288,047). Integration was performed with λ Red 

recombineering (Sharan et al., 2009) as described in Garcia and Phillips (2011) using the 

primers listed in Table S1. We follow the notation of Lutz and Bujard (Lutz and Bujard, 

1997) for the nomenclature of the different constructs used. Specifically, the first number 

refers to the antibiotic resistance cassette that is present for selection (2 = kanamycin, 3 = 

chloramphenicol, and 4 = spectinomycin) and the second number refers to the promoter used 

to drive expression of either YFP or LacI (1 = PLtetO-1, and 5 = lacUV5). Note that in 25x

+11-yfp, x refers to the LacI operator used, which is centered at +11 (or alternatively, begins 

at the transcription start site). For the different LacI constructs, 3*1x-lacI, x refers to the 

different ribosomal binding site modifications that provide different repressor copy numbers 

and follows from Garcia and Phillips (2011). The asterisk refers to the presence of FLP 

recombinase sites flanking the chloramphenicol resistance gene that can be used to lose this 

resistance. However, we maintained the resistance gene in our constructs. A summary of the 

final genotypes of each strain is listed in Table S2. In addition, each strain also contained the 

plasmid pZS4*1-mCherry and provided constitutive expression of the mCherry fluorescent 

protein. This pZS plasmid is a low copy (SC101 origin of replication) where like with 3*1x-

lacI, mCherry is driven by a PLtetO-1 promoter.

METHOD DETAILS

In this method details section we provide extensive and rigorous explanation of both the 

theoretical and experimental results shown in this work. First in the “Flow Cytometry” 

section we detail the specifications of the equipment and the corresponding settings used to 

experimentally determine the fold-change in gene expression. We also provide an 
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explanation of the pipeline used to process the raw data, and compare the flow cytometry 

results with other indirect measurements of gene expression.

In the next section “Inferring Allosteric Parameters from Previous Data” we specify how we 

inferred the free energy difference between the active and inactive state of the repressor 

using data from Brewster et al. (2014). In combination with an extension of the theory that 

accounts for competition for transcription factors between multiple binding sites we show 

how this data can lead to an estimate of the ΔεAI parameter from the model.

The “Alternate Characterizations of Induction” section explores the use of alternative 

formulations for the allosteric nature of the transcriptional repressor. By comparing our 

MWC formulation with the Hill function we explain the advantages and limitations of the 

approach presented in the main text.

For the “Global Fit of All Parameters” section we follow a different procedure than the one 

followed in the main text in which only two parameters were fit to a single data set. In this 

section we use all of the experimental data and perform a Bayesian parameter inference 

where all model parameters including the repressor copy number and the repressor-DNA 

binding energy are allowed to vary. By doing so we show that the minimum set of 

parameters fit in the main text gives almost as good characterization as including all the 

extra degrees of freedom.

In section “Comparison of Parameter Estimation and Fold-Change Predictions across 

Strains” we perform a cross-comparison of the fitting procedure followed in the main text in 

which we use each of the single strains to fit the dissociation constants of the inducer, KA 

and KI, and use these values to predict the rest of the strains with the same operator. This 

comparison aims to show how the characterization of these dissociation constants is for the 

most part independent of the strain chosen for the fit as long as there is enough dynamic 

range in the strain to get a reliable estimate of these parameters.

Finally, in section “Properties of Induction Titration Curves” we derive the theoretical 

expressions for the induction curve properties shown in Figures 4 and 6.

Flow Cytometry—In this section, we provide information regarding the equipment used to 

make experimental measurements of the fold-change in gene expression in the interests of 

transparency and reproducibility. We also provide a summary of our unsupervised method of 

gating the flow cytometry measurements for consistency between experimental runs.

Equipment: Due to past experience using the Miltenyi Biotec MACSQuant flow cytometer 

during the Physiology summer course at the Marine Biological Laboratory, we used the 

same flow cytometer for the formal measurements in this work graciously provided by the 

Pamela Björkman lab at Caltech. All measurements were made using an excitation 

wavelength of 488 nm with an emission filter set of 525/50 nm. This excitation wavelength 

provides approximately 40% of the maximum YFP absorbance (Chroma Technology 

Corporation, 2016), and this was found to be sufficient for the purposes of these 

experiments. A useful feature of modern flow cytometry is the high-sensitivity signal 

detection through the use of photomultiplier tubes (PMT) whose response can be tuned by 
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adjusting the voltage. Thus, the voltage for the forward-scatter (FSC), side-scatter (SSC), 

and gene expression measurements were tuned manually to maximize the dynamic range 

between autofluorescence signal and maximal expression without losing the details of the 

population distribution. Once these voltages were determined, they were used for all 

subsequent measurements. Extremely low signal producing particles were discarded before 

data storage by setting a basal voltage threshold, thus removing the majority of spurious 

events. The various instrument settings for data collection are given in Table S3.

Experimental Measurement: Prior to each day’s experiments, the analyzer was calibrated 

using MACSQuant Calibration Beads (Cat. No. 130-093-607) such that day-to-day 

experiments would be comparable. A single data set consisted of seven bacterial strains, all 

sharing the same operator, with varying repressor copy numbers (R = 0, 22, 60, 124, 260, 

1220, and 1740), in addition to an autofluorescent strain, under twelve IPTG concentrations. 

Data collection took place over 2 to 3 hr. During this time, the cultures were held at 

approximately 4°C by placing the 96-well plate on a MACSQuant ice block. Because the ice 

block thawed over the course of the experiment, the samples measured last were 

approximately at room temperature. This means that samples may have grown slightly by 

the end of the experiment. To confirm that this continued growth did not alter the measured 

results, a subset of experiments were run in reverse meaning that the fully induced cultures 

were measured first and the uninduced samples last. The plate arrangements and 

corresponding fold-change measurements are shown in Figures S1A and S1B, respectively. 

The measured fold-change values in the reverse ordered plate appear to be drawn from the 

same distribution as those measured in the forward order, meaning that any growth that 

might have taken place during the experiment did not significantly affect the results. Both 

the forward and reverse data sets were used in our analysis.

Unsupervised Gating: Flow cytometry data will frequently include a number of spurious 

events or other undesirable data points such as cell doublets and debris. The process of 

restricting the collected data set to those data determined to be “real” is commonly referred 

to as gating. These gates are typically drawn manually (Maecker et al., 2005) and restrict the 

data set to those points which display a high degree of linear correlation between their 

forward-scatter (FSC) and side-scatter (SSC). The development of unbiased and 

unsupervised methods of drawing these gates is an active area of research (Lo et al., 2008; 

Aghaeepour et al., 2013).

For this study, we used an automatic unsupervised gating procedure to filter the flow 

cytometry data based on the front and side-scattering values returned by the MACSQuant 

flow cytometer. We assume that the region with highest density of points in these two 

channels corresponds to single-cell measurements. Everything extending outside of this 

region was discarded in order to exclude sources of error such as cell clustering, particulates, 

or other spurious events.

In order to define the gated region we fit a two-dimensional Gaussian function to the log10 

forward-scattering (FSC) and the log10 side-scattering (SSC) data. We then kept a fraction α 
∈ [0, 1] of the data by defining an elliptical region given by
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(x − μ)T∑−1(x − μ) ≤ χα
2(p), (Equation 13)

where x is the 2 × 1 vector containing the log(FSC) and log(SSC), μ is the 2 × 1 vector 

representing the mean values of log(FSC) and log(SSC) as obtained from fitting a two-

dimensional Gaussian to the data, and Σ is the 2 × 2 covariance matrix also obtained from 

the Gaussian fit. χα
2(p) is the quantile function for probability p of the chi-squared 

distribution with two degrees of freedom. Figure S2 shows an example of different gating 

contours that would arise from different values of α in Equation 13. In this work, we chose 

α = 0.4 which we deemed was a sufficient constraint to minimize the noise in the data. As 

explained in Appendix B on https://doi.org/10.22002/D1.743 in we compared our high 

throughput flow cytometry data with single cell microscopy, confirming that the automatic 

gating did not introduce systematic biases to the analysis pipeline. The specific code where 

this gating is implemented can be found in GitHub repository (http://doi.org/10.5281/

zenodo.1163620).

Comparison of Flow Cytometry with Other Methods: Previous work from our lab 

experimentally determined fold-change for similar simple repression constructs using a 

variety of different measurement methods (Garcia et al., 2011; Brewster et al., 2014). Garcia 

and Phillips used the same background strains as the ones used in this work, but gene 

expression was measured with Miller assays based on colorimetric enzymatic reactions with 

the LacZ protein (Garcia and Phillips, 2011). Brewster et al. (2014) used a LacI dimer with 

the tetramerization region replaced with an mCherry tag, where the fold-change was 

measured as the ratio of the gene expression rate rather than a single snapshot of the gene 

output.

Figure S3 shows the comparison of these methods along with the flow cytometry method 

used in this work. The consistency of these three readouts validates the quantitative use of 

flow cytometry and unsupervised gating to determine the fold-change in gene expression. 

However, one important caveat revealed by this figure is that the sensitivity of flow 

cytometer measurements is not sufficient to accurately determine the fold-change for the 

high repressor copy number strains in O1 without induction. Instead, a method with a large 

dynamic range such as the Miller assay is needed to accurately resolve the fold-change at 

such low expression levels.

Inferring Allosteric Parameters from Previous Data—The fold-change profile 

described by Equation 5 features three unknown parameters KA, KI, and ΔεAI. In this 

section, we explore different conceptual approaches to determining these parameters. We 

first discuss how the induction titration profile of the simple repression constructs used in 

this paper are not sufficient to determine all three MWC parameters simultaneously, since 

multiple degenerate sets of parameters can produce the same fold-change response. We then 

utilize an additional data set from Brewster et al. (2014) to determine the parameter ΔεAI = 

4.5 kBT, after which the remaining parameters KA and KI can be extracted from any 

induction profile with no further degeneracy.
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Degenerate Parameter Values: In this section, we discuss how multiple sets of parameters 

may yield identical fold-change profiles. More precisely, we shall show that if we try to fit 

the data in Figure 4C to the fold-change Equation 5 and extract the three unknown 

parameters (KA, KI, and ΔεAI), then multiple degenerate parameter sets would yield equally 

good fits. In other words, this data set alone is insufficient to uniquely determine the actual 

physical parameter values of the system. This problem persists even when fitting multiple 

data sets simultaneously as in Section “Global Fit of All Parameters”.

In Figure S4A, we fit the R = 260 data by fixing ΔεAI to the value shown on the x-axis and 

determine the parameters KA and KI given this constraint. We use the fold-change function 

Equation 5 but with βΔεRA modified to the form βΔε̃RA in Equation 5 to account for the 

underlying assumptions used when fitting previous data (see Section “Computing ΔεAI” for 

a full explanation of why this modification is needed).

The best-fit curves for several different values of ΔεAI are shown in Figure S4B. Note that 

these fold-change curves are nearly overlapping, demonstrating that different sets of 

parameters can yield nearly equivalent responses. Without more data, the relationships 

between the parameter values shown in Figure S4A represent the maximum information 

about the parameter values that can be extracted from the data. Additional experiments, 

which independently measure any of these unknown parameters, could resolve this 

degeneracy. For example, NMR measurements could be used to directly measure the fraction 

(1 + e−βΔεAI)−1 of active repressors in the absence of IPTG (Gardino et al., 2003; Boulton 

and Melacini, 2016).

Computing ΔεAI: As shown in the previous section, the fold-change response of a single 

strain is not sufficient to determine the three MWC parameters (KA, KI, and ΔεAI), since 

degenerate sets of parameters yield nearly identical fold-change responses. To circumvent 

this degeneracy, we now turn to some previous data from the lac system in order to 

determine the value of ΔεAI. Specifically, we consider two previous sets of work from: (1) 

Garcia and Phillips (2011) and (2) Brewster et al. (2014), both of which measured fold-

change with the same simple repression system in the absence of inducer (c = 0) but at 

various repressor copy numbers R. The original analysis for both data sets assumed that in 

the absence of inducer all of the Lac repressors were in the active state. As a result, the 

effective binding energies they extracted were a convolution of the DNA binding energy 

ΔεRA and the allosteric energy difference ΔεAI between the Lac repressor’s active and 

inactive states. We refer to this convoluted energy value as Δε̃RA. We first disentangle the 

relationship between these parameters in Garcia and Phillips and then use this relationship to 

extract the value of ΔεAI from the Brewster et al. dataset.

Garcia and Phillips determined the total repressor copy numbers R of different strains using 

quantitative western blots. Then they measured the fold-change at these repressor copy 

numbers for simple repression constructs carrying the O1, O2, O3, and Oid lac operators 

integrated into the chromosome. These data were then fit to the following thermodynamic 

model to determine the repressor-DNA binding energies Δε̃RA for each operator,
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fold‐change(c = 0) = 1 + R
NNS

e
−βΔε∼RA

−1
. (Equation 14)

Note that this functional form does not exactly match our fold-change Equation 5 in the limit 

c=0,

fold‐change(c = 0) = 1 + 1
1 + e

−βΔεAI

R
NNS

e
−βΔεRA

−1
, (Equation 15)

since it is missing the factor 1

1 + e
−βΔεAI

 which specifies what fraction of repressors are in 

the active state in the absence of inducer,

1
1 + e

−βΔεAI
= pA(0) . (Equation 16)

In other words, Garcia and Phillips assumed that in the absence of inducer, all repressors 

were active. In terms of our notation, the convoluted energy values Δε̃RA extracted by Garcia 

and Phillips (namely, for O1 and for Oid) represent

βΔε∼RA = βΔεRA − log 1
1 + e

−βΔεAI
. (Equation 17)

Note that if e−βΔεAI ≪ 1, then nearly all of the repressors are active in the absence of inducer 

so that Δε̃RA ≈ ΔεRA. In simple repression systems where we definitively know the value of 

ΔεRA and R, we can use Equation 15 to determine the value of ΔεAI by comparing with 

experimentally determined fold-change values. However, the binding energy values that we 

use from Garcia and Phillips (2011) are effective parameters Δε̃RA. In this case, we are faced 

with an undetermined system in which we have more variables than equations, and we are 

thus unable to determine the value of ΔεAI. In order to obtain this parameter, we must turn to 

a more complex regulatory scenario which provides additional constraints that allow us to fit 

for ΔεAI.

A variation on simple repression in which multiple copies of the promoter are available for 

repressor binding (for instance, when the simple repression construct is on plasmid) can be 

used to circumvent the problems that arise when using Δε̃RA. This is because the behavior of 

the system is distinctly different when the number of active repressors pA(0)R is less than or 
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greater than the number of available promoters N. Repression data for plasmids with known 

copy number N allows us to perform a fit for the value of ΔεAI.

To obtain an expression for a system with multiple promoters N, we follow Weinert et al. 

(2014), writing the fold-change in terms of the the grand canonical ensemble as

fold‐change = 1
1 + λre

−βΔεRA
, (Equation 18)

where λr=eβμ is the fugacity and μ is the chemical potential of the repressor. The fugacity 

will enable us to easily enumerate the possible states available to the repressor.

To determine the value of λr, we first consider that the total number of repressors in the 

system, Rtot, is fixed and given by

Rtot = RS + RNS, (Equation 19)

where RS represents the number of repressors specifically bound to the promoter and RNS 

represents the number of repressors nonspecifically bound throughout the genome. The 

value of RS is given by

RS = N
λre

−βΔεRA

1 + λre
−βΔεRA

, (Equation 20)

where N is the number of available promoters in the cell. Note that in counting N, we do not 

distinguish between promoters that are on plasmid or chromosomally integrated provided 

that they both have the same repressor-operator binding energy (Weinert et al., 2014). The 

value of RNS is similarly give by

RNS = NNS
λr

1 + λr
, (Equation 21)

where NNS is the number of non-specific sites in the cell (recall that we use NNS = 4.6 × 106 

for E. coli).

Substituting in Equations 20 and 21 into the modified Equation 19 yields the form
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pA(0)Rtot = 1
1 + e

−βΔεAI
N

λre
−βΔεRA

1 + λre
−βΔεRA

+ NNS
λr

1 + λr
, (Equation 22)

where we recall from Equation 17 that βΔεRA = βΔε∼RA + log 1

1 + e
−βΔεAI

. Numerically 

solving for λr and plugging the value back into Equation 18 yields a fold-change function in 

which the only unknown parameter is ΔεAI.

With these calculations in hand, we can now determine the value of the ΔεAI parameter. 

Figure S5A shows how different values of ΔεAI lead to significantly different fold-change 

response curves. Thus, analyzing the specific fold-change response of any strain with a 

known plasmid copy number N will fix ΔεAI. Notably, the inflection point of Equation 22 

occurs near pA(0)Rtot = N (as shown by the triangles in Figure S5A), so that merely knowing 

where the fold-change response transitions from concave down to concave up is sufficient to 

obtain a rough value for ΔεAI. We note, however, that for ΔεAI ≳ 5 kBT, increasing ΔεAI 

further does not affect the fold-change because essentially every repressor will be in the 

active state in this regime. Thus, if the ΔεAI is in this regime, we can only bound it from 

below.

We now analyze experimental induction data for different strains with known plasmid copy 

numbers to determine ΔεAI. Figure S5B shows experimental measurements of fold-change 

for two O1 promoters with N = 64 and N = 52 copy numbers and one Oid promoter with N 
= 10 from Brewster et al. (2014). By fitting these data to Equation 18, we extracted the 

parameter value ΔεAI = 4.5 kBT. Substituting this value into Equation 16 shows that 99% of 

the repressors are in the active state in the absence of inducer and ΔεR̃A ≈ ΔεRA, so that all 

of the previous energies and calculations made by Garcia and Phillips (2011; Brewster et al., 

2014) were accurate.

Alternate Characterizations of Induction—In this section we discuss a different way 

to describe the induction data, namely, through using the conventional Hill approach. We 

first demonstrate how using a Hill function to characterize a single induction curve enables 

us to extract features (such as the midpoint and sharpness) of that single response, but 

precludes any predictions of the other seventeen strains. We then discuss how a 

thermodynamic model of simple repression coupled with a Hill approach to the induction 

response can both characterize an induction profile and predict the response of all eighteen 

strains, although we argue that such a description provides no insight into the allosteric 

nature of the protein and how mutations to the repressor would affect induction. We 

conclude the section by discussing the differences between such a model and the statistical 

mechanical model used in the main text.

Fitting Induction Curves Using a Hill Function Approach: The Hill equation is a 

phenomenological function commonly used to describe data with a sigmoidal profile 

Razo-Mejia et al. Page 24

Cell Syst. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Murphy et al., 2007; Murphy et al., 2010; Rogers et al., 2015). Its simplicity and ability to 

estimate the cooperativity of a system (through the Hill coefficient) has led to its widespread 

use in many domains of biology (Frank, 2013). Nevertheless, the Hill function is often 

criticized as a physically unrealistic model and the extracted Hill coefficient is often difficult 

to contextualize in the physics of a system (Weiss, 1997). In the present work, we note that a 

Hill function, even if it is only used because of its simplicity, presents no mechanism to 

understand how a regulatory system’s behavior will change if physical parameters such as 

repressor copy number or operator binding energy are varied. In addition, the Hill equation 

provides no foundation to explore how mutating the repressor (e.g., at its inducer-binding 

interface) would modify its induction profile, although statistical mechanical models have 

proved capable of characterizing such scenarios (Keymer et al., 2006; Swem et al., 2008; 

Einav et al., 2016).

Consider the general Hill equation for a single induction profile given by

fold‐change = (leakiness) + (dynamic range)
c
K

n

1 + c
K

n , (Equation 23)

where, as in the main text, the leakiness represents the minimum fold-change, the dynamic 

range represents the difference between the maximum and minimum fold-change, K is the 

repressor-inducer dissociation constant, and n denotes the Hill coefficient that characterizes 

the sharpness of the curve (n > 1 signifies positive cooperativity, n = 1 denotes no 

cooperativity, and n < 1 represents negative cooperativity). Figure S6 shows how the 

individual induction profiles can be fit (using the same Bayesian methods as described in 

Section “Global Fit of All Parameters”) to this Hill response, yielding a similar response to 

that shown in Figure 4D. However, characterizing the induction response in this manner is 

unsatisfactory because each curve must be fit independently thus removing our predictive 

power for other repressor copy numbers and binding sites.

The fitted parameters obtained from this approach are shown in Figure S7. These are rather 

unsatisfactory because they do not clearly reflect the properties of the physical system under 

consideration. For example, the dissociation constant K between LacI and inducer should 

not be affected by either the copy number of the repressor or the DNA binding energy, and 

yet we see upward trends as R is increased or the binding energy is decreased. Here, the K 
parameter ultimately describes the midpoint of the induction curve and therefore cannot 

strictly be considered a dissociation constant. Similarly, the Hill coefficient n does not 

directly represent the cooperativity between the repressor and the inducer as the molecular 

details of the copy number and DNA binding strength are subsumed in this parameter as 

well. While the leakiness and dynamic range describe important phenotypic properties of the 

induction response, this Hill approach leaves us with no means to predict them for other 

strains. In summary, the Hill equation Equation 23 cannot predict how an induction profile 

varies with repressor copy number, operator binding energy, or how mutations will alter the 

induction profile. To that end, we turn to a more sophisticated approach where we use the 

Razo-Mejia et al. Page 25

Cell Syst. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hill function to describe the available fraction of repressor as a function of inducer 

concentration.

Fitting Induction Curves Using a Combination Thermodynamic Model and Hill 
Function Approach: Motivated by the inability in the previous section to characterize all 

eighteen strains using the Hill function with a single set of parameters, here we combine the 

Hill approach with a thermodynamic model of simple repression to garner predictive power. 

More specifically, we will use the thermodynamic model in Figure 2A but substitute the 

statistical model in Figure 2B with the phenomenological Hill function Equation 23.

Following Equations 1, 2, and 3, fold-change is given by

fold‐change = 1 + pA(c) R
NNS

e
−βΔεRA

−1
, (Equation 24)

where the Hill function

pA(c) = pA
max − pA

range
c

KD

n

1 + c
KD

n , (Equation 25)

represents the fraction of repressors in the allosterically active state, with pA
max denoting the 

fraction of active repressors in the absence of inducer and pA
max − pA

range the minimum 

fraction of active repressors in the presence of saturating inducer. The Hill function 

characterizes the inducer-repressor binding while the thermodynamic model with the known 

constants R, NNS, and ΔεRA describes how the induction profile changes with repressor 

copy number and repressor-operator binding energy.

As in the main text, we can fit the four Hill parameters – the vertical shift and stretch 

parameters pA
max and pA

range, the Hill coefficient n, and the inducer-repressor dissociation 

constant KD – for a single induction curve and then use the fully characterized Equation 24 

to describe the response of each of the eighteen strains. Figure S8 shows this process carried 

out by fitting the O2 R = 260 strain (white circles in [B]) and predicting the behavior of the 

remaining seventeen strains.

Although the curves in Figure S8 are nearly identical to those in Figure 4 (which were made 

using the MWC model Equation 5), we stress that the Hill function approach is more 

complex than the MWC model (containing four parameters instead of three) and it obscures 

the relationships to the physical parameters of the system. For example, it is not clear 

whether the fit parameter KD = 4−1
+2 × 10−6 M relays the dissociation constant between the 
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inducer and active-state repressor, between the inducer and the inactive-state repressor, or 

some mix of the two quantities.

In addition, the MWC model Equation 5 naturally suggests further quantitative tests for the 

fold-change relationship. For example, mutating the repressor’s inducer binding site would 

likely alter the repressor-inducer dissociation constants KA and KI, and it would be 

interesting to find out if such mutations also modify the allosteric energy difference ΔεAI 

between the repressor’s active and inactive conformations. For our purposes, the Hill 

function Equation 25 falls short of the connection to the physics of the system and provides 

no intuition about how transcription depends upon such mutations. For these reasons, we 

present the thermodynamic model coupled with the statistical mechanical MWC model 

approach in the paper.

Global Fit of all Parameters: In the main text, we used the repressor copy numbers R and 

repressor-DNA binding energies ΔεRA as reported by Garcia and Phillips (2011). However, 

any error in these previous measurements of R and ΔεRA will necessarily propagate into our 

own fold-change predictions. In this section we take an alternative approach to fitting the 

physical parameters of the system to that used in the main text. First, rather than fitting only 

a single strain, we fit the entire data set in Figure 5 along with microscopy data for the 

synthetic operator Oid (see Appendix D accessible through https://doi.org/10.22002/

D1.743). In addition, we also simultaneously fit the parameters R and ΔεRA using the prior 

information given by the previous measurements. By using the entire data set and fitting all 

of the parameters, we obtain the best possible characterization of the statistical mechanical 

parameters of the system given our current state of knowledge. As a point of reference, we 

state all of the parameters of the MWC model derived in the text in Table S3.

To fit all of the parameters simultaneously, we follow a similar approach to the one detailed 

in the Quantification and Statistical Analysis section. Briefly, we perform a Bayesian 

parameter estimation of the dissociation constants KA and KI, the six different repressor 

copy numbers R corresponding to the six lacI ribosomal binding sites used in our work, and 

the four different binding energies ΔεRA characterizing the four distinct operators used to 

make the experimental strains. As in the main text, we fit the logarithms k
∼

A = − log
KA
1 M  and 

k
∼

I = − log
KI
1 M  of the dissociation constants which grants better numerical stability.

As in Equations 24 and 25, we assume that deviations of the experimental fold-change from 

the theoretical predictions are normally distributed with mean zero and standard deviation σ. 

We begin by writing Bayes’ theorem,

P k
∼

A, k
∼

I, R, ΔεRA, σ ∣ D =
P D ∣ k

∼
A, k

∼
I, R, ΔεRA, σ P k

∼
A, k

∼
I, R, ΔεRA, σ

P(D) , (Equation 26)

where R is an array containing the six different repressor copy numbers to be fit, ΔεRA is an 

array containing the four binding energies to be fit, and D is the experimental fold-change 
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data. The term P (k̃A, k̃I, R, ΔεRA, σ|D) gives the probability distributions of all of the 

parameters given the data. The term P (D|k̃A, k̃I, R, ΔεRA, σ) represents the likelihood of 

having observed our experimental data given some value for each parameter. P (k̃A, k̃I, R, 

ΔεRA, σ) contains all the prior information on the values of these parameters. Lastly, P(D) 

serves as a normalization constant and hence can be ignored.

Given n independent measurements of the fold-change, the first term in can be written as

P D ∣ k
∼

A, k
∼

I, R, ΔεRA, σ = 1

2πσ2
n
2

∏
i = 1

n
exp −

f cexp
(i) − f c k

∼
A, k

∼
I, R(i), ΔεRA

(i) , c(i) 2

2σ2 ,

(Equation 27)

where fcexp
(i)  is the ith experimental fold-change and fc(•••) is the theoretical prediction. Note 

that the standard deviation σ of this distribution is not known and hence needs to be included 

as a parameter to be fit.

The second term in represents the prior information of the parameter values. We assume that 

all parameters are independent of each other, so that

P k
∼

A, k
∼

I, R, ΔεRA, σ = P k
∼

A • P k
∼

I • ∏
i

P(R(i)) • ∏
j

P ΔεRA
( j) • P(σ), (Equation 28)

where the superscript (i) indicates the repressor copy number of index i and the superscript 

(j) denotes the binding energy of index j. As above, we note that a prior must also be 

included for the unknown parameter σ.

Because we knew nothing about the values of k̃A, k̃I, and σ before performing the 

experiment, we assign maximally uninformative priors to each of these parameters. More 

specifically, we assign uniform priors to k̃A and k̃I and a Jeffreys prior to σ, indicating that 

KA, KI, and σ are scale parameters (Sivia and Skilling, 2006). We do, however, have prior 

information for the repressor copy numbers and the repressor-DNA binding energies from 

Garcia and Phillips (2011). This prior knowledge is included within our model using an 

informative prior for these two parameters, which we assume to be Gaussian. Hence each of 

the R(i) repressor copy numbers to be fit satisfies

P(R(i)) = 1
2πσRi

2 exp −
R(i) − R(i) 2

2σRi
2 , (Equation 29)
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where R̄(i) is the mean repressor copy number and σRi is the variability associated with this 

parameter as reported in Garcia and Phillips (2011). Note that we use the given value of σRi 
from previous measurements rather than leaving this as a free parameter.

Similarly, the binding energies ΔεRA
( j)  are also assumed to have a Gaussian informative prior 

of the same form. We write it as

P ΔεRA
( j) = 1

2πσε j
2 exp −

ΔεRA
( j) − ΔεRA

( j) 2

2σε j
2 , (Equation 30)

where ΔεRA
( j)  is the binding energy and σεj is the variability associated with that parameter 

around the mean value as reported in Garcia and Phillips (2011).

The σRi and σεj parameters will constrain the range of values for R(i) and ΔεRA
( j)  found from 

the fitting. For example, if for some i the standard deviation σRi is very small, it implies a 

strong confidence in the previously reported value. Mathematically, the exponential in 

Equation 29 will ensure that the best-fit R(i) lies within a few standard deviations of R̄(i). 
Since we are interested in exploring which values could give the best fit, the errors are taken 

to be wide enough to allow the parameter estimation to freely explore parameter space in the 

vicinity of the best estimates. Putting all these terms together, we use Markov chain Monte 

Carlo to sample the posterior distribution P (k̃A, k̃I, R, ΔεRA, σ|D), enabling us to determine 

both the most likely value for each physical parameter as well as its associated credible 

region (see the GitHub repository (http://doi.org/10.5281/zenodo.1163620) for the 

implementation).

Figure S9 shows the result of this global fit. When compared with Figure 5 we can see that 

fitting for the binding energies and the repressor copy numbers improves the agreement 

between the theory and the data. Table S4 summarizes the values of the parameters as 

obtained with this MCMC parameter inference. We note that even though we allowed the 

repressor copy numbers and repressor-DNA binding energies to vary, the resulting fit values 

were very close to the previously reported values. The fit values of the repressor copy 

numbers were all within one standard deviation of the previous reported values provided in 

Garcia and Phillips (2011). And although some of the repressor-DNA binding energies 

differed by a few standard deviations from the reported values, the differences were always 

less than 1 kBT, which represents a small change in the biological scales we are considering. 

The biggest discrepancy between our fit values and the previous measurements arose for the 

synthetic Oid operator, which we discuss in more detail in Appendix D accessible through 

https://doi.org/10.22002/D1.743.

Figure S10 shows the same key properties as in Figure 6, but uses the parameters obtained 

from this global fitting approach. We note that even by increasing the number of degrees of 

freedom in our fit, the result does not change substantially, due to in general, only minor 
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improvements between the theoretical curves and data. For the O3 operator data, again, 

agreement between the predicted [EC50] and the effective Hill coefficient remain poor due 

the theory being unable to capture the steepness of the response curves.

Comparison of Parameter Estimation and Fold-Change Predictions across 
Strains—The inferred parameter values for KA and KI in the main text were determined by 

fitting to induction fold-change measurements from a single strain (R = 260, ΔεRA = −13.9 

kBT, n=2, and ΔεAI = 4.5 kBT). After determining these parameters, we were able to predict 

the fold-change of the remaining strains without any additional fitting. However, the theory 

should be independent of the specific strain used to estimate KA and KI; using any 

alternative strain to fit KA and KI should yield similar predictions. For the sake of 

completeness, here we discuss the values for KA and KI that are obtained by fitting to each 

of the induction data sets individually. These fit parameters are shown in Figure 5D of the 

main text, where we find close agreement between strains, but with some deviation and 

poorer inferences observed with the O3 operator strains. Overall, we find that regardless of 

which strain is chosen to determine the unknown parameters, the predictions laid out by the 

theory closely match the experimental measurements. Here we present a comparison of the 

strain specific predictions and measured fold-change data for each of the three operators 

considered.

We follow the approach taken in the main text and use Equation 5 to infer values for KA and 

KI by fitting to each combination of binding energy ΔεRA and repressor copy number R. We 

then use these fitted parameters to predict the induction curves of all other strains. In Figure 

S11 we plot these fold-change predictions along with experimental data for each of our 

strains that contains an O1 operator. To make sense of this plot consider the first row as an 

example. In the first row, KA and KI were estimated using data from the strain containing 

R=22 and an O1 operator (top leftmost plot, shaded in gray). The remaining plots in this row 

show the predicted fold-change using these values for KA and KI. In each row, we then infer 

KA and KI using data from a strain containing a different repressor copy number (R = 60 in 

the second row, R = 124 in the third row, and so on). In Figures S12 and S13, we similarly 

apply this inference to our strains with O2 and O3 operators, respectively. We note that the 

overwhelming majority of predictions closely match the experimental data. The notable 

exception is that using the R = 22 strain provides poor predictions for the strains with large 

copy numbers (especially R = 1220 and R = 1740), though it should be noted that 

predictions made from the R = 22 strain have considerably broader credible regions. This 

loss in predictive power is due to the poorer estimates of KA and KI for the R = 22 strain as 

shown in Figure 5D.

Properties of Induction Titration Curves—In this section, we expand on the 

phenotypic properties of the induction response that were explored in the main text (see 

Figure 1). We begin by expanding on our discussion of dynamic range and then show the 

analytic form of the [EC50] for simple repression.

As stated in the main text, the dynamic range is defined as the difference between the 

maximum and minimum system response, or equivalently, as the difference between the 
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saturation and leakiness of the system. Using Equations 6, 7, and 8, the dynamic range is 

given by

dynamic range = 1 + 1

1 + e
−βΔεAI KA

KI

n
R

NNS
e

−βΔεRA

−1

− 1 + 1
1 + e

−βΔεAI

R
NNS

e
−βΔεRA

−1
.

(Equation 31)

The dynamic range, along with saturation and leakiness were plotted with our experimental 

data in Figures 6A–6C as a function of repressor copy number. Figure S14 shows how these 

properties are expected to vary as a function of the repressor-operator binding energy. Note 

that the resulting curves for all three properties have the same shape as in Figures 6A–6C, 

since the dependence of the fold-change upon the repressor copy number and repressor-

operator binding energy are both contained in a single multiplicative term, Re−βΔεRA. 

Hence, increasing R on a logarithmic scale (as in Figures 6A–6C) is equivalent to decreasing 

ΔεRA on a linear scale (as in Figure S14).

An interesting aspect of the dynamic range is that it exhibits a peak as a function of either 

the repressor copy number (or equivalently of the repressor-operator binding energy). 

Differentiating the dynamic range Equation 31 and setting it equal to zero, we find that this 

peak occurs at

R∗

NNS
= e

−β(ΔεAI − ΔεRA)
e

ΔεAI + 1 e
ΔεAI +

KA
KI

n
. (Equation 32)

The magnitude of the peak is given by

max dynamic range =
e

ΔεAI + 1 − e
ΔεAI +

KA
KI

n 2

KA
KI

n
− 1

, (Equation 33)

which is independent of the repressor-operator binding energy ΔεRA or R, and will only 

cause a shift in the location of the peak but not its magnitude.
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We now consider the two remaining properties, the [EC50] and effective Hill coefficient, 

which determine the horizontal properties of a system - that is, they determine the range of 

inducer concentration in which the system’s response goes from its minimum to maximum 

values. The [EC50] denotes the inducer concentration required to generate fold-change 

halfway between its minimum and maximum value and was defined implicitly in Equation 

9. For the simple repression system, the [EC50] is given by

[EC50]
KA

=

KA
KI

− 1

KA
KI

−
1 + R

NNS
e
−βΔεRA +

KA
KI

n
2e

−βΔεAI + 1 + R
NNS

e
−βΔεRA

2 1 + R
NNS

e
−βΔεRA + e

−βΔεAI +
KA
KI

n
e
−βΔεAI

1
n

− 1. (Equation 

34)

Using this expression, we can then find the effective Hill coefficient h, which equals twice 

the log-log slope of the normalized fold-change evaluated at c = [EC50] (see Equation 10). In 

Figures 6D and 6E we show how these two properties vary with repressor copy number, and 

in Figure S15 we demonstrate how they depend on the repressor-operator binding energy. 

Both the [EC50] and h vary significantly with repressor copy number for sufficiently strong 

operator binding energies. Notably, for weak operator binding energies on the order of the 

O3 operator, it is predicted that the effective Hill coefficient should not vary with repressor 

copy number. In addition, the maximum possible Hill coefficient is roughly 1.75, which 

stresses the point that the effective Hill coefficient should not be interpreted as the number of 

inducer binding sites, which is exactly 2.

QUANTIFICATION AND STATISTICAL ANALYSIS

In this work, we determine the most likely parameter values for the inducer dissociation 

constants KA and KI of the active and inactive state, respectively, using Bayesian methods. 

We compute the probability distribution of the value of each parameter given the data D, 

which by Bayes’ theorem is given by

P(KA, KI ∣ D) =
P(D ∣ KA, KI)P(KA, KI)

P(D) , (Equation 35)

where D is all the data composed of independent variables (repressor copy number R, 

repressor-DNA binding energy ΔεRA, and inducer concentration c) and one dependent 

variable (experimental fold-change). P(D|KA, KI) is the likelihood of having observed the 

data given the parameter values for the dissociation constants, P (KA, KI) contains all the 

prior information on these parameters, and P (D) serves as a normalization constant, which 
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we can ignore in our parameter estimation. Equation 5 assumes a deterministic relationship 

between the parameters and the data, so in order to construct a probabilistic relationship as 

required by Equation 35, we assume that the experimental fold-change for the ith datum 

given the parameters is of the form

fold−changeexp
(i) = 1 +

1 + c(i)
KA

2

1 + c(i)
KA

2
+ e

−βΔεAI 1 + c(i)
KI

2
R(i)

NNS
e

−βΔεRA
(i)

−1

+ ε(i), (Equation 

36)

where ε(i) represents the departure from the deterministic theoretical prediction for the ith 

data point. If we assume that these ε(i) errors are normally distributed with mean zero and 

standard deviation σ, the likelihood of the data given the parameters is of the form

P(D ∣ KA, KI, σ) = 1

(2πσ2)
n
2
∏i = 1

n exp

−
fold−changeexp

(i) − fold‐change KA, KI, R(i), ΔεRA
(i) , c(i) 2

2σ2 ,

(Equation 37)

where fold−changeexp
(i)  is the experimental fold-change and fold – change(···) is the theoretical 

prediction. The product Πi = 1
n  captures the assumption that the n data points are 

independent. Note that the likelihood and prior terms now include the extra unknown 

parameter σ. In applying Equation 37, a choice of KA and KI that provides better agreement 

between theoretical fold-change predictions and experimental measurements will result in a 

more probable likelihood.

Both mathematically and numerically, it is convenient to define k
∼

A = − log
KA
1 M  and 

k
∼

I = − log
KI
1 M  and fit for these parameters on a log scale. Dissociation constants are scale 

invariant, so that a change from 10 μM to 1 μM leads to an equivalent increase in affinity as 

a change from 1 μM to 0.1 μM. With these definitions we assume for the prior P (k̃A, k̃I, σ) 

that all three parameters are independent. In addition, we assume a uniform distribution for 

k̃A and k̃I and a Jeffreys prior (Sivia and Skilling, 2006) for the scale parameter σ. This 

yields the complete prior
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P k
∼

A, k
∼

I, σ ≡ 1
k
∼

A
max − k

∼
A
min

1
k
∼

I
max − k

∼
I
min

1
σ . (Equation 38)

These priors are maximally uninformative meaning that they imply no prior knowledge of 

the parameter values. We defined the k̃A and k̃A ranges uniform on the range of −7 to 7, 

although we note that this particular choice does not affect the outcome provided the chosen 

range is sufficiently wide.

Putting all these terms together we can now sample from P(k̃A, k̃I, σ|D) using Markov chain 

Monte Carlo (see GitHub repository, http://doi.org/10.5281/zenodo.1163620) to compute the 

most likely parameter as well as the error bars (given by the 95% credible region) for KA 

and KI.

DATA AND SOFTWARE AVAILABILITY

All of the data used in this work as well as all relevant code can be found at this dedicated 

website. Data were collected, stored, and preserved using the Git version control software in 

combination with off-site storage and hosting website GitHub. Code used to generate all 

figures and complete all processing step as and analyses are available on the GitHub 

repository. Many analysis files are stored as instructive Jupyter Notebooks. The scientific 

community is invited to fork our repositories and open constructive issues on the GitHub 

repository (http://doi.org/10.5281/zenodo.1163620).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The MWC model is used to understand allosteric transcription factor 

regulation

• Properties of predicted gene expression profiles are validated using LacI

• The data points collapse as a function of a key combinations of parameters
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Figure 1. Transcription Regulation Architectures Involving an Allosteric Repressor
(A) We consider a promoter regulated solely by an allosteric repressor. When bound, the 

repressor prevents RNAP from binding and initiating transcription. Induction is 

characterized by the addition of an effector that binds to the repressor and stabilizes the 

inactive state (defined as the state with a low affinity for DNA), thereby increasing gene 

expression. In corepression, the effector stabilizes the repressor’s active state and thus 

further reduces gene expression. We list several characterized examples of induction and 

corepression that support different physiological roles in E. coli (Huang et al., 2011; Li et 

al., 2014).

(B) A schematic regulatory response of the two architectures shown in (A) plotting the fold-

change in gene expression as a function of effector concentration, where fold-change is 

defined as the ratio of gene expression in the presence versus the absence of repressor. We 

consider the following key phenotypic properties that describe each response curve: the 

minimum response (leakiness), the maximum response (saturation), the difference between 

the maximum and minimum response (dynamic range), the concentration of ligand that 

generates a fold-change halfway between the minimal and maximal response ([EC50]), and 

the log-log slope at the midpoint of the response (effective Hill coefficient).

(C) Over time, we have refined our understanding of simple repression architectures. A first 

round of experiments used colorimetric assays and quantitative western blots to investigate 

how single-site repression is modified by the repressor copy number and repressor-DNA 

binding energy (Garcia and Phillips, 2011). A second round of experiments used video 

microscopy to probe how the copy number of the promoter and presence of competing 

repressor binding sites affect gene expression, and we use this dataset to determine the free 

energy difference between the repressor’s inactive and active conformations (Weinert et al., 
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2014). Here we used flow cytometry to determine the inducer-repressor dissociation 

constants and demonstrate that with these parameters we can predict a priori the behavior of 

the system for any repressor copy number, DNA binding energy, gene copy number, and 

inducer concentration.
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Figure 2. States and Weights for the Simple Repression Motif
(A) RNAP (light blue) and a repressor compete for binding to a promoter of interest. There 

are RA repressors in the active state (red) and RI repressors in the inactive state (purple). The 

difference in energy between a repressor bound to the promoter of interest versus another 

non-specific site elsewhere on the DNA equals ΔεRA in the active state and ΔεRI in the 

inactive state; the P RNAP have a corresponding energy difference ΔεP relative to 

nonspecific binding on the DNA. NNS represents the number of non-specific binding sites 

for both RNAP and repressor.

(B) A repressor has an active conformation (red, left column) and an inactive conformation 

(purple, right column), with the energy difference between these two states given by ΔεAI. 

The inducer (blue circle) at concentration c is capable of binding to the repressor with 

dissociation constants KA in the active state and KI in the inactive state. The eight states for 

a dimer with n = 2 inducer binding sites are shown along with the sums of the statistical 

weights of the active and inactive states.
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Figure 3. An Experimental Pipeline for High-Throughput Fold-Change Measurements
Cells are grown to exponential steady state and their fluorescence is measured using flow 

cytometry. Automatic gating methods using forward- and side-scattering are used to ensure 

that all measurements come from single cells (see STAR Methods). Mean expression is then 

quantified at different IPTG concentrations (top, blue histograms) and for a strain without 

repressor (bottom, green histograms), which shows no response to IPTG as expected. Fold-

change is computed by dividing the mean fluorescence in the presence of repressor by the 

mean fluorescence in the absence of repressor.
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Figure 4. Predicting Induction Profiles for Different Biological Control Parameters
(A) We can quantitatively tune R via ribosomal binding site (RBS) modifications, ΔεRA by 

mutating the operator sequence, and c by adding different amounts of IPTG to the growth 

medium.

(B) Previous experiments have characterized the R, NNS, ΔεRA, and ΔεAI parameters (see 

Figure 1C), leaving only the dissociation constants KA and KI between the inducer and the 

repressor in the active and inactive states, respectively, as unknown constants. These two 

parameters can be inferred using Bayesian parameter estimation from a single induction 

curve.

(C–E) Predicted IPTG titration curves for different repressor copy numbers and operator 

strengths. Titration data for the O2 strain (white circles in D) with R = 260, ΔεRA = −13.9 

kBT, n = 2, and ΔεAI = 4.5 kBT can be used to determine the thermodynamic parameters 

KA = 139−22
+29 × 10−6 M and KI = 0.53−0.04

+0.04 × 10−6 M (orange line). The remaining solid lines 

predict the fold-change Equation 5 for all other combinations of repressor copy numbers 

(shown in the legend) and repressor-DNA binding energies corresponding to the O1 operator 

(−15.3 kBT), O2 operator (−13.9 kBT), and O3 operator (−9.7 kBT). Error bars of 

experimental data show the SEM (eight or more replicates) when this error is not smaller 

than the diameter of the data point. The shaded regions denote the 95% credible region, 
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although the credible region is obscured when it is thinner than the curve itself. To display 

the measured fold-change in the absence of inducer, we alter the scaling of the x axis 

between 0 and 10−7 M to linear rather than logarithmic, as indicated by a dashed line. 

Additionally, our model allows us to investigate key phenotypic properties of the induction 

profiles (see Figure 1B).

(F–J) Specifically, we show predictions for the (F) leakiness, (G) saturation, (H) dynamic 

range, (I) [EC50], and (J) effective Hill coefficient of the induction profiles.
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Figure 5. Comparison of Predictions against Measured and Inferred Data
(A–C) Flow-cytometry measurements of fold-change over a range of IPTG concentrations 

for (A) O1, (B) O2, and (C) O3 strains at varying repressor copy numbers, overlaid on the 

predicted responses. Error bars for the experimental data show the SEM (eight or more 

replicates). As discussed in Figure 4, all of the predicted induction curves were generated 

prior to measurement by inferring the MWC parameters using a single dataset (the O2 strain 

with R = 260, shown by white circles in B). The predictions may therefore depend upon 

which strain is used to infer the parameters.

(D) The inferred parameter values of the dissociation constants KA and KI using any of the 

18 strains instead of the O2 strain with R = 260. Nearly identical parameter values are 

inferred from each strain, demonstrating that the same set of induction profiles would have 

been predicted regardless of which strain was chosen. The points show the mode, and the 

error bars denote the 95% credible region of the parameter value distribution. Error bars not 

visible are smaller than the size of the marker.
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Figure 6. Predictions and Experimental Measurements of Key Properties of Induction Profiles
(A–E) Data for the (A) leakiness, (B) saturation, and (C) dynamic range are obtained from 

fold-change measurements in Figure 5 in the absence of IPTG and at saturating 

concentrations of IPTG. The three repressor-operator binding energies in the legend 

correspond to the O1 operator (−15.3 kBT), O2 operator (−13.9 kBT), and O3 operator (−9.7 

kBT). Both the (D) [EC50] and (E) effective Hill coefficient are inferred by individually 

fitting each operator-repressor pairing in Figures 5A–5C separately to Equation 5 in order to 

smoothly interpolate between the data points.

Error bars in (A) to (C) represent the SEM for eight or more replicates; error bars in (D) and 

(E) represent the 95% credible region for the parameter found by propagating the credible 

region of our estimates of KA and KI into Equations 9 and 10.
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Figure 7. Fold-Change Data from a Broad Collection of Different Strains Collapse onto a Single 
Master Curve
(A) Any combination of parameters can be mapped to a single physiological response (i.e., 

fold-change) via the free energy, which encompasses the parametric details of the model.

(B) Experimental data from Figure 5 collapse onto a single master curve as a function of the 

free energy Equation 12. The free energy for each strain was calculated from Equation 12 

using n = 2, ΔεAI = 4.5 kBT, KA = 139 × 10−6 M, KI = 0.53 × 10−6 M, and the strain-

specific R and ΔεRA. All data points represent the mean, and error bars are the SEM for 

eight or more replicates.
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