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Synovitis is an inflammatory process associated with pain, disability, and discomfort, 
which is usually treated with anti-inflammatory drugs or biological agents. Mesenchymal 
stem cells (MSCs) have been also successfully used in the treatment of inflammatory-re-
lated diseases such as synovitis or arthritis. In the last years, the exosomes derived from 
MSCs have become a promising tool for the treatment of inflammatory-related diseases 
and their therapeutic effect is thought to be mediated (at least in part) by their immu-
nomodulatory potential. In this work, we aimed to evaluate the anti-inflammatory effect 
of these exosomes in an antigen-induced synovitis animal model. To our knowledge, 
this is the first report where exosomes derived from MSCs have been evaluated in an 
animal model of synovitis. Our results demonstrated a decrease of synovial lymphocytes 
together with a downregulation of TNF-α transcripts in those exosome-treated joints. 
These results support the immunomodulatory effect of these exosomes and point out 
that they may represent a promising therapeutic option for the treatment of synovitis.
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inTrODUcTiOn

Osteoarticular disorders are the major cause of disability in western countries causing pain, dis-
comfort, disability, and affecting the quality of life of millions of people. Osteoarticular disorders 
are usually linked to joint inflammation and accompanied by redness, swelling, and pain. This local 
inflammation is provoked by different causes such as trauma, injuries, microorganism infections, 
or autoimmune disorders such as rheumatoid arthritis. The inflammation of the synovium around 
a joint, also called synovitis, is frequently observed in the early phase of osteoarthritis (1) and in 
clinically active rheumatoid arthritis patients (2). One of the consequences of persistent synovitis is 
the cartilage matrix degradation (3, 4) and alterations in chondrocyte function. Moreover, synovitis 
causes hypoxia and acidity in synovial fluid (SF) and subchondral bone (5) and enhances angiogen-
esis (6).

The treatments to reduce pain and swelling for transient synovitis includes anti-inflammatory 
agents such as non-steroidal anti-inflammatory drugs (NSAIDs) and/or corticosteroids (7). Non-
pharmacological treatments such as hip aspiration (8) as well as rest, ice, compression, and elevation 
are extremely helpful and effective in the treatment of synovitis (9). Additionally, intrasynovial 
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injections of biologically based therapies such as platelet-rich 
plasma (10) and autologous conditioned serum (11) have been 
found to be very effective.

Local or systemic administration of mesenchymal stem cell 
(MSC)-based therapies has recently emerged as a promising 
therapeutic approach for the treatment of inflammatory-related 
diseases (12). These cells have an immunomodulatory potential 
on cells of both the innate and adaptive immune system and 
recent clinical trials have demonstrated very promising results 
for the treatment of osteoarticular diseases (13, 14). In the case 
of synovitis, the therapeutic use of MSCs has also been evaluated 
in veterinary medicine, specifically in horses with intra-articular 
injections of xenogeneic, allogeneic, and autologous MSCs (15). 
Moreover, in a recent randomized and blinded study using a LPS-
induced synovitis model, equine allogeneic umbilical cord blood-
derived mesenchymal stromal cells could reduce the nucleated 
cell counts in SF (16).

Accumulative evidences have established that the effect of 
MSC transplantation is thought to be mediated, in part, by a 
paracrine effect. In this sense, the use of exosomes derived from 
MSCs (hereinafter referred exo-MSCs) has become a promising 
tool for the treatment of inflammatory-related diseases (17–19).

Exosomes are small membranous vesicles secreted by most cell 
types. These vesicles participate in cell–cell communication and 
their content consists on RNA, lipids, and proteins. Some of these 
proteins (i.e., CD9, CD63, or CD81) are ubiquitously expressed, 
but depending on the cell source, cell type-specific proteins can be 
found being responsible of their functionality (20). The proteins, 
lipids, and RNA expression of exosomes from different cells and 
organisms are extensively described in ExoCarta database (21). 
Previous studies from our group have reported that exo-MSCs 
exerted an immunomodulatory potential against in  vitro acti-
vated T cells (22). Additionally, several evidences have shown that 
exo-MSCs could play active roles in promoting angiogenesis (23), 
antiapoptotic effect (24, 25) as well as in cell proliferation (26).

In the last years, the therapeutic potential of exo-MSCs has 
been demonstrated in disease-specific animal models. Very 
promising results have been obtained in small animal models 
for the treatment of cardiovascular diseases where exo-MSCs 
showed a reduction of myocardial ischemia/reperfusion injury 
(27). In renal fibrosis, where the microRNA-let7c secreted by the 
exosomes attenuated renal fibrosis (28). In wound healing, where 
released exosomes promoted angiogenesis (29). In necrotizing 
enterocolitis, where exosomes from bone marrow-derived stem 
cells protected the intestines (30). In acute lung injury, where the 
exosomes maintain the functional phenotype of the parent cell 
(31). In postischemic neurological impairment, where extracel-
lular vesicles induce long-term neuroprotection, neuroregenera-
tion, and neurological recovery (32). Finally, it is important to 
note that, although the therapeutic effect of exo-MSCs has been 
widely studied in small animals, only a few studies have evaluated 
their therapeutic effect in large animal models (33, 34).

In summary, although the therapeutic effect of MSCs in osteo-
articular diseases is widely accepted, the hypothetical beneficial 
effect of exo-MSCs in joint inflammation has not been evaluated. 
This paper aimed to evaluate the immunomodulatory effect of 
exo-MSCs in a clinically relevant animal model of antigen-induced 

synovitis. The analysis of leukocytes, lymphocytes, and inflam-
matory cytokines in SF revealed a potential therapeutic effect 
of exo-MSCs in the setting of inflammatory and osteoarticular 
disorders.

MaTerials anD MeThODs

animals and ethical issues
Eight large white pigs were housed in the animal facility at the 
Minimally Invasive Surgery Center and used for all experimental 
procedures. Animals aged 3  months and weighed 25–35  kg at 
the beginning of the study were used. All experimental proto-
cols were approved by the Committee on the Ethics of Animal 
Experiments of Minimally Invasive Surgery Center and fully 
complied with recommendations outlined by the local govern-
ment (Junta de Extremadura) and by the Directive 2010/63/EU 
of the European Parliament on the protection of animals used for 
scientific purposes.

immunization Protocol and antigen-
induced synovitis
For animal immunizations, a solution with 20  mg/ml of BSA 
(Sigma-Aldrich, St. Louis, MO, USA) was prepared and passed 
through a 0.2-μm sterilized microfilter. An equal volume of 
Freund Complete Adjuvant (Sigma-Aldrich, St. Louis, MO, USA) 
was mixed with the BSA solution and emulsified. The immuniza-
tion was performed by subcutaneous injections of this emulsion. 
A total of 0.4 ml/kg was injected on days 0, 14, and 21. On day 
28, a total of 0.5 ml of SF was aspirated from carpal joints. Intra-
articular injections of BSA (0.5 ml at 20 mg/ml) were bilaterally 
performed to induce an antigen-mediated immune response. The 
left carpal joints were used as control (BSA co-administered with 
PBS) and the right carpal joints were used for exosome-based 
treatments (BSA co-administered with exosomes). The exosomes 
were used at the concentration of 500 μg protein/injection in a 
total volume of 500 μl.

anesthetics Procedures
Every procedure was performed under anesthesia. For blood sam-
pling and subcutaneous BSA injections, anesthesia was induced 
by intramuscular injection of 10 mg/kg ketamine hydrochloride 
and 0.02  mg/kg dexmedetomidine hydrochloride. The animals 
were recovered with 0.02  mg/kg atipamezole hydrochloride. 
For SF sampling, anesthesia was induced by the same procedure 
together with an intravenous bolus injection of 2 mg/kg propofol 
and 3 mg/kg of tramadol. According to ethical and animal welfare 
concerns, all the animals received analgesic treatment with a solu-
tion of buprenorphine hydrochloride at 0.3 mg/ml and 0.03 ml/
kg for 7 days after intra-articular injection.

Quantification of anti-Bsa antibodies by 
elisa
In order to quantify the anti-BSA IgG titers on immunized 
animals, an ELISA test was performed on plasma samples at 
days 0, 7, 14, 21, and 28. Microplate coating was performed 
by an overnight incubation with BSA at 20 μg/ml. The coating 
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solution was washed twice with 200 μl of PBS/Tween-20 (0.05%, 
7.4 pH). In order to prevent the non-specific binding of the 
antibodies, the remaining protein-binding sites were blocked by 
adding 200 μl of BSA and incubated at 4°C for 2 h. The micro-
plate was washed four times with 200 μl PBS/Tween-20. Plasma 
samples were diluted 1:200 with PBS and 100 μl of this dilution 
was added to each well. The plate was incubated at 4°C for 2 h. 
After washing four times with PBS/Tween-20, 100 μl of 1/5,000 
diluted horseradish peroxidase-conjugated secondary antibody 
(Rabbit Anti-Pig IgG, Thermo Fisher Scientific, Waltham, MA, 
USA) was added to each well and the plate was incubated at 4°C 
for 2 h. Finally, the plate was washed four times and 100 μl of 
3,3′,5,5′-Tetramethylbenzidine (Sigma-Aldrich) was added to 
each well. Then, 2 min later, 100 μl of 1M HCl was added to stop 
the reaction. Absorbance was measured at 450 nm on a Synergy 
Mx spectrophotometer (BioTech Industries, Newton, NC, USA) 
and quantified related to the baseline.

isolation and expansion of Porcine Bone 
Marrow-Derived Mscs
Bone marrow-derived MSCs were harvested from the iliac crest 
from anesthetized large white pigs. The mononuclear cells were 
isolated by centrifugation over Histopaque-1077 (Sigma, St. 
Louis, MO, USA). Mononuclear cells were recovered and washed 
twice with PBS. Finally, mononuclear cells were re-suspended 
in DMEM containing 10% FBS (Sigma), 5  μl/ml fungizone, 
and 1% Penicillin/streptomycin (Lonza BioWhittaker™, Basel, 
Switzerland). Cells were seeded onto tissue culture flasks and 
expanded at 37°C and 5% CO2. Following 48  h of culture, the 
non-adherent cells were removed. Adhered cells were passaged 
at 80–90% confluence by trypsinization (0.25% trypsin solution) 
and seeded to a new culture at a density of 5,000 cells/cm2. Culture 
medium was changed every 3–4 days.

The porcine MSCs were phenotypically and functionally char-
acterized by flow cytometry and in  vitro differentiation assays. 
Cells were positive for CD29, CD44, CD90, CD105, and SLA-I 
and negative for CD45 and SLA-II. They also showed their ability 
to differentiate toward adipogenic, osteogenic, and chondrogenic 
lineages (35).

isolation, Purification, and 
characterization of Msc-Derived 
exosomes
The MSCs-derived exosomes (exo-MSCs) were obtained from 
porcine bone marrow-derived MSCs cultured in 175 cm2 flasks. 
When cells reached a confluence of 80%, culture medium (DMEM 
containing 10% FBS) was replaced by exosome isolation medium 
(DMEM containing 1% insulin-transferrin-selenium). The 
supernatants were collected every 3–4  days. To eliminate dead 
cells and debris, the supernatants were centrifuged at 1,000 × g 
for 10 min and 5,000 × g for 20 min at 4°C. About 15 ml of these 
supernatants were ultra-filtered through 3 kDa MWCO Amicon® 
Ultra devices (Merck-Millipore, MA, USA). Samples were spun at 
4,000 × g for 60 min and 200–300 μl of concentrated supernatant 
was collected and stored at −20°C. Prior to in vivo experiments, 
the proteins were quantified by Bradford assays, a very common 

method to indirectly quantify exosomes (36–39). The concentra-
tion and size of the particles were measured by nanoparticle 
tracking analysis (NanoSight Ltd., Amesbury, UK) that relates the 
rate of Brownian motion to particle size. Results were analyzed 
using the software package version 2.2. Triplicate samples were 
diluted 1:10 in sterile-filtered PBS and analyzed. The mean size 
of isolated vesicles ranged from 150 to 200 nm (Figure S1A in 
Supplementary Material).

For flow cytometric analysis by fluorescent activated cells 
sorting, exosomes were conjugated with latex beads as previ-
ously described (40). Briefly, 5 μg of exosomes were incubated 
with 10 μl of latex beads 15 min at room temperature. After, PBS 
was added to a final volume of 1 ml and samples were incubated 
overnight at 4°C. Finally, 110  μl of 1M glycine were added to 
each tube. After 30 min of incubation, samples were centrifuged, 
washed, and re-suspended in a final volume of 0.5 ml PBS/0.5% 
BSA. These exosomes-coated beads were incubated for 1  h at 
room temperature with appropriate concentrations of mono-
clonal antibodies (mAbs) in the presence of PBS containing 
0.5% BSA. The exosomes-coated beads were stained with FITC-
conjugated human mAbs against CD44 and CD90 (porcine 
cross-reactive) from Serotec (Kidlington, UK). After incubation 
with antibodies, the exosomes-coated beads were washed and 
re-suspended in PBS/0.5% BSA. The flow cytometric analysis 
was performed on a FACScalibur cytometer (BD Biosciences, 
San Jose, CA, USA) after acquisition of 105 events. Exosomes-
coated beads were primarily selected using forward and side 
scatter characteristics and fluorescence was analyzed using 
CellQuest software (BD Biosciences). Isotype-matched negative 
control antibodies were used in all the experiments. Exo-MSCs 
showed a positive expression for both markers (Figure S1B in 
Supplementary Material).

Exo-MSCs were slowly thawed prior to allogeneic intra-artic-
ular injections and used at the concentration of 500 μg protein/
injection in a total volume of 500 μl. The exo-MSCs doses were 
chosen by extrapolating from our previous in vitro results (22).

hematological analysis and Phenotypic 
characterization of sF lymphocytes
Synovial leukocytes were isolated from carpal joints just before 
intra-articular injections (at day 28) and 7 days after intra-articu-
lar injections (at day 35). A total of 0.5 ml of SF was aspirated and 
leukocytes were counted in an automatic hematology analyzer 
(Mindray BC-5300 Vet, Hamburg, Germany). The leukocytes 
were then isolated by centrifugation at 900 × g for 5 min and used 
for flow cytometry analysis or quantitative RT-PCR.

For flow cytometry, synovial leukocytes were stained with 
fluorescent-labeled mAbs against porcine CD3, CD4, CD8α, and 
CD16 (AbD Serotec, Kidlington, UK). The cytometric analysis 
was performed as follows: 2 × 105 cells were incubated for 30 min 
at 4°C with appropriate concentrations of mAbs. The cells were 
washed and re-suspended in PBS. The flow cytometric analysis 
was performed in a FACScalibur cytometer (BD Biosciences) 
after acquisition of 105 events. Cells were primarily selected using 
forward and side scatter characteristics and fluorescence was 
analyzed using CellQuest software (BD Biosciences, San Jose, CA, 
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TaBle 1 | sequences for the primers used in the quantitative qrT-Pcr.

gene Primers sequences

IL-1β 5′-GCACCTCTCAAGCAGAACAAAA-3′
5′-CCTCTGGGTATGGCTTTCCTT-3′

IL-4 5′-GTCTGCTTACTGGCATGTACCA-3′
5′-GCTCCATGCACGAGTTCTTTCT-3′

IL-6 5′-CCCCTAACCCCACCACAAAT-3′
5′-AAGGCTGCGCAGGATGAG-3′

IL-8 5′-GCCAACACAACTTCAATCAAATCTA-3′
5′-TGGGCATCCTGTGATTTCTCT-3′

IL-10 5′-CGGCGCTGTCATCAATTTCTG-3′
5′-CCCCTCTCTTGGAGCTTGCTA-3′

TNF-α 5′-TCCCCTGTCCATCCCTTTATT-3′
5′-CCAGCCCCTCATTCTCTTTCT-3′

TGF-β 5′-CCCAGAGTGGTTGTCCTTTGA-3′
5′-GCGGAGCGTGTTATCTTTGCT-3′

β-2 microglobulin 5′-ACTTTTCACACCGCTCCAGT-3′
5′-CGGATGGAACCCAGATACAT-3′

FigUre 1 | Temporal scheme of the immunization protocol and 
monitoring. Subcutaneous BSA injections (black arrows), intra-articular 
injections of BSA or BSA co-administered with exo-mesenchymal stem cells 
(gray arrow), blood sampling (triangles), synovial fluid sampling (squares), and 
kinetic gait analysis (rhombus) are shown.
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USA). Isotype-matched negative control antibodies were used in 
all the experiments.

Quantitative rT-Pcr
Total RNA was isolated from SF samples. The cDNA was synthe-
sized from 1 μg of total RNA in a reverse transcription reaction 
for 1 h at 37°C using Superscript III reverse transcriptase (Thermo 
Fisher Scientific, Waltham, MA, USA). The sequences of the PCR 
primers were designed with the NCBI Primer-BLAST tool (www.
ncbi.nlm.nih.gov/tools/primer-blast/). The primers used for gene 
expression studies in the porcine model are detailed in Table 1.

For transcriptional analysis, the RT-PCR products were 
quantified by the fluorescent method using the 2−ΔCt expression. 
To normalize gene expression, two constitutively expressed genes 
were included (β-actin and β-2 microglobulin) and the most sta-
ble one, which was β-2 microglobulin, was used as housekeeping.

Pressure Platform (PP) gait analysis
A 174.5 cm × 36.9 cm PP (Walkway™; Tekscan, South Boston, 
MA, USA), composed of individual sensors with a density 
of 1.4 sensor/cm2 and 9,152 sensors in total, was used for the 
biomechanical evaluation. The sensors of the PP walkway were 
calibrated according to the manufacturer’s specifications. Also, 
7  days after intra-articular injections of BSA co-administered 
with PBS or exosomes, different kinetic parameters such as 
stance time, swing time, stride time, vertical maximum force, 
and impulse were monitored in the animal model. Kinetic gait 
analysis was performed prior to experimental procedures, and 
all the measurements were normalized and considering the gain 
weight of individual pigs.

statistical analysis
Data were statistically analyzed using the Student’s t-test. The 
p-values ≤0.05 were considered statistically significant. All the 
statistical determinations were made using SPSS-21 software 
(SPSS, Chicago, IL, USA).

resUlTs

animal Model of antigen-induced 
synovitis and exosome-Based Therapy
An antigen-induced synovitis model was used to evaluate the 
therapeutic effect of exosome-based therapy. In our large animal 
model of synovitis, the BSA was intra-articularly injected to trig-
ger an antigen-induced inflammation. The BSA was simultane-
ously co-administered with PBS or exo-MSCs. White blood cell 
(WBC) counts, differential cell counting, flow cytometry, gene 
expression of inflammatory cytokines, and kinetic parameters 
were evaluated at day 35. The immunization protocol and the 
monitoring of antigen-induced synovitis model are summarized 
in the Figure 1.

Our results demonstrated that the BSA immunization protocol 
triggered a humoral response against BSA in this animal model, 
which is prerequisite to generate an antigen-induced synovitis. 
The anti-BSA IgG antibody titers were detected in all of the four 
animals and antibody concentrations significantly increased 
showing a maximum level at day 28 (Figure 2).

sF leukocytes and Differential counts
On day 28, the BSA-immunized animals were anesthetized 
and a SF sample was aspirated to be used as basal reference 
for leukocyte counts. Once aspirated, the animals received an 
intra-articular injection of BSA to trigger a local inflammatory 
response. The BSA was co-administered with PBS (control joint) 
or with exo-MSCs. At day 7, after intra-articular injections, the SF 
from three animals was aspirated and analyzed by an automated 
hematological analyzer. As shown in Table  2, those animals 
which received an intra-articular injection of BSA showed a 
significant increase in terms of WBC counts when compared 
to basal samples. However, no differences were found between 
those joints where BSA was co-administered with PBS and those 
where BSA was co-administered with exo-MSCs. Interestingly, 
the differential cell counting revealed a statistically significant 
decrease of lymphocytes when BSA stimulation was counteracted 
by exo-MSCs.
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FigUre 2 | humoral response in the antigen-induced animal model of 
synovitis. Plasma samples were weekly collected and anti-BSA IgG levels 
were quantified by ELISA immunoassay. The lower boundary of the box 
indicates the 25th percentile and the upper boundary the 75th percentile. 
Bars above and below the box indicate the 90th and 10th percentiles. The 
line within the box marks the median (n = 4).
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Additionally, the SFs were centrifuged and synovial leukocytes 
were processed for flow cytometry analysis. The analysis of 
synovial lymphocytes was performed on CD4+/CD8α− T cells, 
CD4−/CD8α+ T  cells, CD16+/CD8α− cells, and CD16+/
CD8α+ cells. Our results did not show any significant difference 
when compared BSA co-administered with PBS and BSA co-
administered with exo-MSCs (Table 2).

inflammatory cytokines in sF
Once evaluated, the changes in the leukocyte counts as well as 
in the synovial lymphocytes, we aimed to evaluate the inflam-
matory environment by quantifying inflammatory cytokines by 
quantitative RT-PCR. Porcine-specific primers were designed 
to amplify IL-1β, IL-4, IL-6, IL-8, IL-10, TNFα, and TGF-β. As 
shown in Figure 3, the 2−ΔCt values were compared between SFs 
where BSA was co-administered with PBS and SFs where BSA 
was co-administered with exo-MSCs. No differences were found 
in 7 out of 8 cytokines; however, a significant decrease (p = 0.05) 
was found for TNF-α when BSA was co-administered with 
exo-MSCs.

Kinetic gait Parameters on animal Model
The kinetic parameters were evaluated in a gait analysis system. 
This analysis allowed us the capture of kinetic, timing, and physi-
cal measurements. Different kinetic parameters such as stance 
time, swing time, stride time, vertical maximum force, and 
impulse were compared. As shown in Figure 4, a non-statistically 
significant trend to increase was found for the impulse in those 
joints where BSA was co-administered with exo-MSCs.

DiscUssiOn

Synovitis is an inflammation of the synovial membrane, 
usually linked to osteoarthritis, rheumatoid arthritis or infec-
tions (41–43). It can be successfully treated with biologically 
based therapies such as platelet-rich plasma, or autologous 
conditioned serum (44, 45), or NSAIDs such as Ibuprofen 
or Naproxen (46). The MSCs-based therapies diminish the 
inflammatory response itself (12) and the intra-articular 

administration of MSCs has been found to reduce the nucle-
ated cell counts in SF (47). Many authors have hypothesized 
that cell-free therapies may be safer and affordable than 
cell-based therapies (17, 18). In this sense, exo-MSCs have 
been considered as anti-inflammatory agents (48, 49)  
and a therapeutic alternative to cell-based therapies (50, 51).

The aim of this work was to evaluate the anti-inflammatory 
effect of exo-MSCs in a large animal model of synovitis. In this 
sense, our first sets of experiments were conducted to create an 
antigen-induced synovitis in a porcine model. This animal model 
has been immunologically characterized and our experience 
has demonstrated that it is particularly attractive in preclinical 
settings (34, 35), especially to evaluate the safety, feasibility, and 
dosage pattern of new therapies for synovitis.

The exo-MSCs used in this study were characterized by nano-
particle tracking analysis and flow cytometry. The mean size of 
these exosomes was 167.3 ± 2.6 nm. Although this size is larger 
to classically defined exosomes, it has been found that, in aqueous 
solution, exosomes are surrounded by a surface charge that may 
be the responsible for this larger size (52). This phenomenon has 
been previously described for nanoparticle tracking analyzed 
exosomes (53). Moreover, and due to the lack of porcine anti-
bodies for CD9, CD63, and CD81 (classically used for exosomes 
characterization), CD44 and CD90 surface markers have been 
used to identify MSCs-derived extracellular vesicles (54).

In our antigen-induced synovitis model, a subcutaneous 
pre-sensitization with BSA was required before the intra-
articular injection of BSA. This pre-sensitization induced a potent 
humoral response, which was found to be as effective as previ-
ously described antigen-induced synovitis in rabbits and dogs  
(55, 56). These BSA-presensitized animals received an intra-
articular injection of BSA, which triggered a local inflammatory 
response with a significant increase of WBCs in SF. It is important 
to note that the WBC count is one of the most frequent tests in the 
analysis of SF. In this sense, human SFs with less than 200 cells/μl 
are classified as “normal” and those with less than 2,000 cells/μl 
are classified as “non-inflammatory.” In our antigen-induced 
synovitis model, those animals that received an intra-articular 
injection of BSA showed a WBC infiltration that can be classified 
as “inflammatory SF” (41).

Once demonstrated that intra-articular BSA triggered a local 
inflammatory reaction, we aimed to counteract this reaction 
by an intra-articular administration of exo-MSCs. As shown in 
the results section, no differences were found in terms of WBCs 
when exo-MSCs were co-administered with BSA. However, the 
differential cell count of leukocytes showed statistically signifi-
cant differences in the lymphocyte counts being lower in those 
joints where BSA was co-administered with exo-MSCs. Based on 
that, here, we assume that exo-MSCs efficiently counteracted the 
antigen-driven T cell response and point out that these exosomes 
may represent a therapeutic strategy for the treatment of T cell-
mediated diseases such as rheumatoid arthritis. These in  vivo 
results are in agreement with in  vitro results using stimulated 
T cells co-cultured with human exosomes from adipose-derived 
stem cells (22). In these studies, the effect of exo-MSCs on pro-
liferative, differentiation, and functional behavior of T cells was 
significantly modified by exosomes.
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TaBle 2 | White blood cell (WBc) counts, leukocyte distribution, and lymphocyte subsets on synovial fluids (sFs) from antigen-induced synovitis animal 
model.

Basal Bsa Bsa + exo-mesenchymal stem cells (Mscs)

SF Leukocyte distribution WBCs (×103/μl) 0.753 ± 1.123 2.348 ± 1.460a 3.030 ± 2.360a

Neutrophils (×103/μl) ND 0.608 ± 0.076 1.776 ± 1.783
Lymphocytes (×103/μl) ND 2.371 ± 0.370 0.992 ± 0.600b

Monocytes (×103/μl) ND 0.039 ± 0.067 0.209 ± 0.182
Eosinophils (×103/μl) ND 0.202 ± 0.041 0.287 ± 0.423
Basophils (×103/μl) ND 0.150 ± 0.064 0.049 ± 0.050

Fluorescent activated cells sorting analysis CD4+ CD8α− T cells (×103/μl) ND 0.171 ± 0.144 0.114 ± 0.112
CD4− CD8α+ T cells (×103/μl) ND 0.476 ± 0.390 0.339 ± 0.291
CD16+/CD8α− cells (×103/μl) ND 0.072 ± 0.045 0.379 ± 0.565
CD16+/CD8α+ cells (×103/μl) ND 0.151 ± 0.102 0.140 ± 0.091

SF samples were collected at day 28 just before intra-articular injections (basal). The BSA (co-administered with PBS or exo-MSCs) was injected at day 28 and SFs were collected 
at day 35. Synovial leukocytes were analyzed by automated hematological analyzer (n = 3). To identify the lymphocyte subsets, SF lymphocytes were isolated and analyzed by flow 
cytometry. Values represent the mean ± SD.
ND, non-detectable.
Bold values indicate significant differences.
aStatistically significant differences in a paired t-test when compared to basal level (p ≤ 0.05).
bStatistically significant differences in a paired t-test when compared BSA and BSA + exo-MSCs (p ≤ 0.05).

6

Casado et al. MSC-Derived Exosomes for the Treatment of Antigen-Induced Synovitis

Frontiers in Veterinary Science | www.frontiersin.org March 2017 | Volume 4 | Article 39

Additionally, here, we hypothesized that exosomes may 
also inhibit or decrease the production of pro-inflammatory 
cytokines. In order to evaluate the inflammatory reaction after 
intra-articular BSA injections, a qRT-PCR analysis was performed 
for several cytokines (IL-1β, IL-4, TGF-β, IL-8, IL-10, TNF-α, and 
IL-6). This analysis revealed some differences in IL-1β, IL-8, and 
TNF-α after intra-articular injections of BSA (co-administered 
with PBS or with exo-MSCs).

The IL-1β is a critical mediator of osteoarthritis and the intra-
articular injection of this recombinant cytokine has been used to 
induce a transient inflammatory response in an experimentally 
induced synovitis (57). In the case of IL-8, this chemokine 
participates to the inflammatory process in the early synovitis of 
rheumatoid arthritis (58), and similar to IL-1β, the intra-articular 
administration has been also used to induce acute synovitis in 
rabbits (59). Finally, the level of TNF-α in synovia has been 
correlated with pain and disease progression (60, 61) and anti-
TNF-α agents have been widely used for the treatment of active 
rheumatoid arthritis (62, 63).

Based on the above-described relations between IL-1β, IL-8, 
TNF-α, and synovitis progression, we aimed to quantify their 
gene expression in SFs when exo-MSCs were co-administered in 
the joints. Uniquely, the TNF-α level was found to be statistically 
decreased by the co-administration of exo-MSCs. We suggest that 
this result is very relevant considering that TNF-α is a therapeutic 
target for the treatment of inflammatory diseases (64). Indeed, 
targeted treatments against synovitis and rheumatoid arthritis 
have been efficiently developed against this cytokine (65).

Regarding to the not statistically significant increase of 
IL-8 observed with exo-MSCs, it is important to note that this 
chemokine is abundantly secreted by MSCs from adipose tissue 
and bone marrow (66). More importantly, this chemokine has 
been found to be contained in exosomes derived from umbilical 
cord-MSCs (67) as well as in menstrual blood-MSCs (68). Based 
on these observations, we assume that the increase of IL-8 is the 
consequence of an exogenous administration of IL-8 linked to 
exo-MSCs. Additionally, taking into account that IL-8 is one of 

the most potent chemoattractant molecule for neutrophils (69), 
this may also explain the increase (although not significant) of 
infiltrated neutrophils in SFs treated with exo-MSCs.

It is important to note that the determination of the different 
cytokines in SF was firstly addressed with a multiplexed immu-
noassay by Luminex xMAP technology using the ProcartaPlex 
Porcine Cytokine and Chemokine Panel 1 (eBioscience, San 
Diego, CA, USA). The following cytokines were measured: IFNα, 
IFNγ, IL-1β, IL-4, IL-6, IL-8, IL-10, IL-12p40, and TNFα. The 
cytokine analysis demonstrated that, probably because of the 
detection limit of commercially available swine immune reagents 
or because the evaluation time point was too short for protein 
translation, eight out of nine cytokines were undetectable in SFs 
with this technique. Uniquely, the IL-12p40 could be detected in 
all the samples but no differences were found between groups.

Although this paper has not been focused on the biological 
mechanisms, which promote the decrease of TNF-α in the syno-
vitis model, the bibliography has several references that support 
the association between exo-MSCs and TNF-α. As an example, 
recent studies have demonstrated that exosomes derived from 
human umbilical cord MSCs reduced the TNF-α release  
from CD3/CD28-stimulated PBLs (70). Moreover, exosomes 
from bone marrow-derived MSCs also suppressed the secretion 
of TNF-α from T cells (71). More recently, the immunomodula-
tory effect of these exosomes against TNF-α transcription was 
demonstrated in  vivo in an experimental colitis model. In this 
animal model, the intravenous injection of exosomes from bone 
marrow-derived MSCs reduced the TNF-α in injured colon (72). 
Altogether, these in vitro and in vivo studies are in agreement with 
our results and support the immunomodulatory effect of these 
exosomes in the animal model.

Finally, this paper aimed to evaluate the therapeutic effect of 
exo-MSCs in a functional kinetic assessment. Apart from the 
analysis of synovial leukocyte subsets and inflammatory cytokines 
in the animal model, different kinetic parameters such as stance 
time, swing time, stride time, vertical maximum force, and 
impulse were monitored in the animal model by PP gait analysis 
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FigUre 4 | Pressure platform (PP) gait analysis. Then, 7 days after 
intra-articular injections of BSA or BSA co-administered with exo-
mesenchymal stem cells (MSCs), a PP gait analysis was performed to 
evaluate plantar pressure distributions. (a) A representative image of the gait 
analysis (LF, left forelimb; LH, left hind limb; RF, right forelimb; RH, right hind 
limb) is represented. (B) Impulses in forelimbs with intra-articular BSA 
co-administered with PBS or exo-MSCs (n = 4). The lower boundary of the 
box indicates the 25th percentile and the upper boundary the 75th percentile. 
Bars above and below the box indicate the 90th and 10th percentiles. The 
line within the box marks the median. Measurements compared in a paired 
t-test.

FigUre 3 | gene expression of cytokines in synovial fluid (sF). SF 
samples were collected 7 days after intra-articular injections and total RNA 
was isolated. The qRT-PCR products were quantified by the 2ΔCt method 
using β-2 microglobulin as a housekeeping gene. Graph represents the 
mean ± SD of three independently performed experiments (n = 4). 
*Statistically significant difference in a paired t-test (p ≤ 0.05).
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(73). The quadruped gait analysis demonstrated that exo-MSCs 
co-administered with the BSA had a non-significant trend for 
the improvement of the impulse. This trend may indicate a pain 
reduction linked to the anti-inflammatory effect of exo-MSCs. 
Finally, it is important to note that the absence of statistical differ-
ences would not necessarily imply that the kinetic was unaffected; 
since the pressure gait was performed under analgesia due to 
ethical consideration and animal welfare guidelines. In the same 
way, due to ethical limitations, animals could only be evaluated at 
day 7 after treatment. In this sense, this study can be considered 
a preliminary approach and further studies will be performed to 
evaluate the changes in a long-term study, including the histologi-
cal follow-up of the lesions as well as the cytokine quantification 
using immunoassays.

In conclusion, to our knowledge, this is the first report 
describing the use of exo-MSCs for the treatment of synovitis 

in a large animal model. The decrease of synovial lymphocytes, 
the downregulation of TNF-α transcripts, as well as the trend to 
improve the impulse in exosome-treated joints, point out that 
exosomes may represent a promising therapeutic option for the 
treatment of synovitis.
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