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Background: We aimed to investigate whether pre-therapeutic radiomic features based on magnetic resonance
imaging (MRI) can predict the clinical response to neoadjuvant chemotherapy (NACT) in patients with locally
advanced cervical cancer (LACC).
Methods: A total of 275 patients with LACC receiving NACT were enrolled in this study from eight hospitals, and
allocated to training and testing sets (2:1 ratio). Three radiomic feature sets were extracted from the
intratumoural region of T1-weighted images, intratumoural region of T2-weighted images, and peritumoural re-
gion of T2-weighted images beforeNACT for eachpatient.With a feature selection strategy, three single sequence
radiomic models were constructed, and three additional combined models were constructed by combining the
features of different regions or sequences. The performance of all models was assessed using receiver operating
characteristic curve.
Findings: The combined model of the intratumoural zone of T1-weighted images, intratumoural zone of
T2-weighted images,and peritumoural zone of T2-weighted images achieved an AUC of 0.998 in training set
and 0.999 in testing set, which was significantly better (p b .05) than the other radiomic models. Moreover, no
significant variation in performance was found if different training sets were used.
Interpretation: This study demonstrated thatMRI-based radiomic features hold potential in thepretreatment pre-
diction of response to NACT in LACC, which could be used to identify rightful patients for receivingNACT avoiding
unnecessary treatment.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords:
Radiomics
Magnetic resonance imaging
Neoadjuvant chemotherapy
Locally advanced cervical cancer
olecular Imaging, Institute of
, China.
logy and Obstetrics, Nanfang
u Avenue North, Guangzhou,

nt Medical Image Analysis and
uter Science and Technology,
ue, Guiyang, 550025, China.
mail.com (L. Wang),

hould be considered as co-first

. This is an open access article under
1. Introduction

Cervical cancer is one of the most frequent malignant tumours in
women [1]. Standard therapeutic strategies for locally advanced cervical
cancer (LACC) include radical hysterectomy (RH) or concurrent chemo-
radiation [2]. Preoperative neoadjuvant chemotherapy (NACT) is being
increasingly investigated as alternative treatment strategy for locally
advanced disease due to its ability to reduce the tumour volume and
render unresectable tumours operable [3–5]. Chemotherapeutic re-
sponders could exhibit clinical survival benefit over patients undergone
primary surgery [6,7]. Conversely, chemotherapeutic non-responders
experience unnecessary chemotherapy-related toxicities and disease
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context
Evidence before this study

We searched publications with the following terms on PubMed
andWebofScience: “(radiomicsOR texture analysis) AND (predict
OR prediction) AND (response OR non-response) AND neoadju-
vant chemotherapyAND locally advanced cervical cancer”. The ar-
ticles were not limited to English language publications and didn't
have date restriction. There was no study research the prediction
of response to neoadjuvant chemotherapy in locally advanced cer-
vical cancer by radiomic analysis.

Added value of this study

Neoadjuvant chemotherapy (NACT) is being considered as an al-
ternative treatment strategy for patientswith locally advanced cer-
vical cancer (LACC) due to its ability to reduce the tumour volume
and render unresectable tumour operable. The chemotherapeutic
responders could exhibit clinical survival benefit but non-
responders undergone unnecessary treatment and worse progno-
sis. Therefore, accurate prediction of response toNACT in LACC is
urgently need in order to implement personalized treatment for in-
dividual patient. Radiomic analysis based on magnetic resonance
imaging has been used to predict the pathological complete re-
sponse (pCR) to NACT in various types of cancers. However, no
previous studies have devoted to predict the response to NACT
in LACC based on radiomic analysis. We aim to investigate
whether pre-therapeutic radiomic features can predict the clinical
response to NACT in patients with LACC, which may be a poten-
tial tool to construct a treatment guide for individual patient.

Implications of all the available evidence

Our findings suggested that the radiomic is sufficient to serve as
an effective tool to stratify LACC patients to allow for more appro-
priate initial treatment, showing promise in improving themanage-
ment of LACC.
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progression due to delays in effective treatment, which worsen the
prognosis [8,9]. Accordingly, to optimize the treatment efficacy, only
chemotherapeutic responders can be selected for implementing
NACT-RH while non-responders should directly undergo concurrent
chemoradiation. This scenario highlights the need for accurate identifi-
cation of chemotherapeutic non-responders and responders prior to the
initiation of therapy. An effective and clinically validated approach that
pre-therapeutically predicts chemotherapeutic responsiveness is
thereby crucial to individualize treatment strategies and facilitate ap-
propriate patient stratification.

Magnetic resonance imaging (MRI) is recognized as the gold stan-
dard for monitoring the cervical tumour response to chemotherapy
and allows determination of eligibility for subsequent resection
[10–13]. Extensive evidence has indicated the value ofMRI in evaluating
or predicting early cervical cancer therapy response. Yin et al. [14]
comfirmed that combining pre- and post-treatmentMRI with the squa-
mous cell carcinoma (SCC) antigen level was a reliable and sensitive
measure for assessing the response to chemotherapy in patients with
cervical cancer with high accuracy. In terms of cost-effectiveness and
clinical practicality, MRI-based biomarkers are generally superior to
some proposed clinicopathologic, genomic, or proteomic predictors of
the NACT response. In addition, comparing quantitative parameters ex-
tracted from pre- and post-treatment functional MRI has been demon-
strated to improve response assessment by detecting invisible
biological properties of cervical tumour [15–17]. However, most re-
search methods are conducted on a post-treatment basis and yield
variable diagnostic performances, thereby restricting the utility in the
initial decision making regarding NACT. Thus, novel means that allow
for quantitative exploration of pretreatment MRI in order to differenti-
ate non-responders and responders are urgently needed.

Radiomics, as a newly-proposed method, aims to evaluate tumour
heterogeneity by extracting high throughput features frommedical im-
ages that reflect the underlying pathophysiology [18–20]. These
radiomic features capture distinct phenotypic differences and may
have prognostic and predictive value across different diseases [21–24].
Emerging studies have demonstrated the excellent performance of
radiomic models for predicting the pathological complete response
(pCR) to NACT in rectal cancer [25,26]. Prediction of the pCR to NACT
in breast cancer was successfully performed by radiomic analysis
using pretreatment breast MRI in several studies [27,28]. In the field of
cervical cancer, El Naqa et al. [29] reported the good predictive power
of radiomic features in predicting individual chemoradiotherapy out-
comes based on single centre small patient cohorts. However, most of
the established predictive models were trained with a single centre
dataset may have limited generalization capabilities. Until recently,
Lucia et al. [30,31] further verified the prognostic role of pretreatment
MRI-based radiomics in patients with LACC treated with definitive che-
moradiation using external multicentre patient datasets. These studies
provided the likelihood of employing radiomics in patientswith cervical
tumour for prediction of the response to NACT.

Based on the successful application of radiomics in other research
areas, we hypothesized that pretreatment radiomic features would be
effective in the prediction of the response to NACT in patient with
LACC. Thus, in the present study, we aimed to construct a model for
predicting the response to NACT by exploring multi-centric pretreat-
ment MRI-based radiomic analysis, and validate the model with a
multicentre dataset.

2. Materials and methods

2.1. Patients

This study designwas approved by an institutional reviewboard and
waived the informed consent requirement. The patients of this retro-
spectivemulticentre studywere enrolled in from eight centres between
January 2009 and June 2018. In this study, 275 consecutive patients
with histologically confirmed LACC who underwent NACT and had pre-
treatment MRI data were included. The recruitment of patients is de-
scribed in the supplemental material and Fig. S1. In this study,
patients were divided into training and testing sets according to the
hospital they were recruited from. The training set consisted of 183 pa-
tients from five hospitals, including the first affiliated hospital of zheng-
zhou university, second affiliated hospital of zhengzhou university,
nanfang hospital, yuncheng central hospital, affiliated hospital of qing-
dao university. The independent-testing set includes 92 patients from
the remaining three hospitals, including the henan provincial people's
hospital, army military medical university xinqiao hospital, yantai sul-
phur top hospital.

All of the included patients received cisplatin-based (70–75mg/m2)
chemotherapy intra-arterially or intravenously. The tumour volume
was evaluated by a gynecological examination and pelvic MRI scan be-
fore each chemotherapy cycle and three weeks after NACT. Besides,
the extent of change in tumour volume needs to be confirmed by path-
ological examination. When the patient's tumour shrinks to meet the
surgical conditions, the patient would underwent Type III RH after one
cycle of chemotherapy. The surgery was performed within 21 days
after the end of the final cycle. In contrast, the patients who did not
meet the surgical requirements received 1–2 cycles of chemotherapy
every 21 days. In addition, radiotherapy was performed for patients
with progressive diseases or thosewho experienced adverse side effects
due to the toxicity of anti-tumour agents during or after NACT. In this
study, patients from different centres underwent distinct courses of
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NACT. Among these patients, 131 patients underwent one cycle of
NACT, 126 patients underwent two cycles, and 18 patients had three
cycles.

The short-term response was assessed by change in tumour volume
according to the Response Evaluation Criteria in Solid Tumours (RECIST
v.1.1) [32]. We defined responsivebess according to the various treat-
ment courses of patients in this study as follows: patients with a com-
plete response or partial response within two cycles of chemotherapy
were considered as “responders” (chemo-sensitive), while those still
with progressive disease or stable disease after two cycles of treatment
were considered as “non-responders” (chemo-insensitive) regardless of
the response after the final chemotherapy cycles. Thus, there were 204
responders and 71 non-responders among the 275 eligible patients.

2.2. Image acquisition and tumour masking

Pretreatment MRI examinations were performed within one week
before the first cycle of NACT. The MRIs of training set combined five
hospitals were performed with 3.0-T (Skyra, SIEMENS, Germany), 1.5-
T (Signa Excite, GE, USA), 1.5-T (OptimaMR 360, GE, USA), 1.5-T (Sym-
phony Tim, SIEMENS, Germany) and 1.5-T (Signa HDxt, GE, USA). The
MRIs of testing set combined three hospitals were performed with
3.0-T (TrioTim, SIEMENS, Germany), 3.0-T (Signa HDxt, GE, USA) and
3.0-T (Signa Excite, GE, USA). The MRI protocols of each hospitals in-
cluded axial TSE T2-weighted fat-suppressed sequence and T1-
weighted sequence but have some different. The comprehensive pa-
rameters of MR image acquisition of each hospital are provided in
Table S1.

The pretreatment MRI sequences were collated for tumour segmen-
tation and feature generation. The regions of interest (ROIs) of images
were manually delineated on each slice (using ITK-SNAP software:
www.itksnap.org) containing the tumour mass on T1-weighted imag-
ing (T1WI) and fat suppression on T2-weighted imaging (T2WI). The
T2WI series delineated the peritumoural area in addition to the
intratumoural region. The inter- and intra-observer reproducibility for
ROI-based feature extractionwere analysed in a blind fashion by two ra-
diologists with 7 (reader 1) and 10 (reader 2) years of experience. More
details regarding reproducibility are presented in the supplementary
material.

2.3. Radiomic feature extraction and selection

Radiomic feature extraction was conducted using the in-house tool-
box developed by MATLAB 2016b (Mathworks, Natick, MA, USA). Be-
fore the feature extraction, each slice of MR images was normalized
with z-score so that get a standard normal distribution of image inten-
sities. Then, Six hundred and forty seven predefined features were ex-
tracted from each ROI of the MR images: 17 first order statistic
features, eight shape features, 54 textural features, and 568wavelet fea-
tures (Table S2). The 647 features were extracted from the
intratumoural region on T1WI, intratumoural region on T2WI, and
peritumoural region on T2WI. Finally, a total of 1941 radiomic features
were extracted from each patient. The extracted features are reproduc-
ible and match the benchmarks of IBSI [33,34]. Each feature of each pa-
tient in training or testing sets was normalized with z-score in order to
remove the effect of different MRI scanners [35].

Introducing a large number of features to the prediction model may
cause over-fitting, thereby reducing the performance of the model on
another dataset. To reduce the dimensionality of features, we adopted
recursive feature elimination based on a support vector machine
(SVM-RFE) to select top features in three feature sets [36]. Previous
studies [37,38] have demonstrated that SVM-RFE was excellent on
radiomic analysis for feature selection, which aims to select the features
that bestfit the current classification task. The SVM-RFE is used to deter-
mine the optimal subset of features through calculating the classified
accuracy with different combinations of features by SVM.
2.4. Single sequence model construction and validation

To constructed the radiomicmodels, the previously selected features
were used as inputs to random forest (RF) models. These models were
constructed based on the training set, and a grid search with three-
fold cross-validation was applied to set the hyperparameters of the RF
models. After the models were constructed, their ROC curves [39]
were plotted to assess and compare the quantitative performance of dif-
ferent models.

Three singleMRI sequencemodelswere constructed (T1WIwith the
intratumoural zone, T2WI with the intratumoural zone, T2WI with the
peritumoural zone) within the training set, and the performance of
the models was validated with testing set.

2.5. Combined model construction and validation

Three different combined radiomic models were generated by com-
bining the features of different sequences or tumour regions, including
combination of intratumoural T1WI and intratumoural T2WI, T2WI se-
quence with both intratumoural and peritumoural regions, and T1WI
and T2WI sequenceswith all regions (multi-sequence). It should be em-
phasized that the construction process of the combined models was
same as that for single sequence models. The pipeline of the entire ex-
periment is presented in Fig. 1.

In addition, to assess the robustness of the models, three additional
different training sets were composed of patients from three random
combinations of hospitals, and the patients from remaining hospitals
were assigned to testing sets. The hospital combination between each
group of training and testing sets were different, the combinations
also differ from original training and testing sets, which to verify
whether the predictive power of the model depends on the patient
composition of the training set. As indicated in Table S3, all training
and testing sets comprised a similar number of patients. The training
and testing process of the three patient groups were used the same
features selection and model construction strategy as in the previous
experiment. Then the robustness of models for NACT response predic-
tion was evaluated by the ROC curve.

2.6. Clinical factor and radiomic model

A clinical model was constructed based on the subset of patients
whose clinical information (age, FIGO stage, and gross type) is available.
The process of clinical model constructionwas consistentwith radiomic
model. Then, as a comparison, evaluating the predictive result of the pa-
tients in radiomic model.

2.7. Statistical analysis

Descriptive statistics of continuous variables are presented as the
mean ± standard deviation, and the Student's t-test was applied to
compare the difference between groups. The p value of the χ2 test
was used to illustrate differences between qualitative variables. Gener-
ally, p values were two sided, and p b .05 was considered statistically
significant. Comparison of qualitative variables between groups was
conducted with a one-way analysis of variance. The cut-off values of
modelswere determined according to the Youden index [40] of training
sets to quantize the discrimination ability of models. Quantitative com-
parison of AUCs was made with the Delong test [41]. The predictive ac-
curacy of models was evaluated by balanced accuracy [42] due to the
imbalanced ratio between responders and non-responders. All experi-
ments and statistical analyses were implemented with python 2.7.

2.8. Data statement

The experimental data are not available for public access due to pa-
tient privacy concerns but can be obtained from the corresponding

http://www.itksnap.org


Fig. 1. Study design. Left block diagram is procedure of single sequence radiomic model construction. Right block diagram is procedure of combinedmodel construction. T1WI, T1-weight
imaging; T2WI, T2-weighted imaging.
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author on reasonable request approved by the institutional review
board of Nanfang Hospital.

3. Results

3.1. Clinical characteristics

The clinical characteristics of patients are provided in Table 1. In
these two sets, no significant difference (p N .05) was observed in age
between responders and non-responders. Meanwhile, the NACT re-
sponse was found to be significantly correlated with FIGO stage in the
training set but not in the testing set. In addition, the clinical character-
istic of patients for assessing the model's stability are illustrated in
Table 1
Clinical characteristics of patients in the training and testing sets.

Characteristics Training set

Responders Non-responders

Age (years, mean ± SD) 47.9 ± 8.1 46.1 ± 9.2
FIGO stage

IB2 57 (38.3%) 11 (32.4%)
IIA-IIA2 62 (41.6%) 6 (17.6%)
IIB-IIIB 30 (20.1%) 17 (50.0%)

Note: The chi-square test was used to compare the difference in categorical variables (FIGO sta
⁎ P b .05. SD, standard deviation.
Table S4 and Table S5. The clinical characteristic of patients for
coustructing clinical model are listed in Table S6.

3.2. Feature selection

After feature selection in the training set, ten, two and four image
features were finally selected from the T1WI, and the intratumoural
and peritumoural zones of T2WI images, respectively. The information
of selected features is listed in Table S7. From these features, three rep-
resentative feature maps for responders and non-responders to NACT
are illustrated in Fig. 2, namely the feature of low grey-level zone em-
phasis of the grey-level size zone matrix on T1WI, neighborhood grey-
tone differencematrix (NGTDM)_busyness feature in the intratumoural
Testing set

p Responders Non-responders p

0.227 50.9 ± 7.7 50.7 ± 9.2 0.918
b0.001⁎ 0.349

7 (12.7%) 3 (8.1%)
16 (29.1%) 7 (18.9%)
32 (58.2%) 27 (73.0%)

ge), while a Student's t-test was used to compare the difference in age.



Fig. 2. Feature expression maps for top radiomic features. (a) and (d) are Coif3_glszm_ low grey-level zone emphasis features of intratumoural T1WI of patients. (b) and (e) are
Coif1_ngtdm_busyness features of features of intratumoural T2WI of patients. (c) and (f) are Coif3_ngtdm_complexity features of peritumoural T2WI of patients. T1WI, T1-weight
imaging; T2WI, T2-weighted imaging.
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zone of T2WI, andNGTDM_complexity feature in theperitumoural zone
of T2WI. It can be observed that all features of the responders have
higher expression than those of non-responders.

3.3. Single sequence model construction and validation

Based on the selected features, the radiomic models for each se-
quence with different tumour regions were constructed using the RF
method, including the T1WI sequence with the intratumoural region,
a T2WI sequence with the intratumoural region, and a T2WI sequence
with the peritumoural region.

The ROC curves of the above-mentioned models in the training and
testing sets are presented in Fig. 3a–b. Using the radiomic features ex-
tracted from the intratumoural region, the AUCs for single-sequence
(T1WI or T2WI) models were N 0.96 in the training set and N 0.94 in
the testing set. However, using the radiomic features extracted from
the peritumoural region, the AUC for the single sequence (T2WI)
model could reach 0.975 in the training set and 0.98 in the testing set.
The specificity of three models was show good performance in training
and testing sets. Different from specificity, the sensitivity of these
models was N84% in the training set but b77% in the testing set. To fur-
ther evaluate the performance of different models, the quantitative
metrics are provided in Table 2.
3.4. Combined model construction and validation

The three combined models were then constructed by combining
features of different sequences or regions, including intumoural combi-
nation of T1WI and T2WI, T2WI with both peritumoural and
intratumoural regions, and T1WI and T2WI with all tumour regions
(multi-sequence). The performance of the three combined models are
illustrated in Fig. 3c–d. From Table 3, we observed that, using the com-
bination of radiomic features extracted from intratumoural T1WI and
intratumoural T2WI, the AUC for the combined model was 0.967 and
0.980 in the training and testing sets, respectively. Meanwhile, another
model, combining both tumour regions of T2WI, yielded an AUC of
0.991 in the training set and 0.994 in the testing set. Considering the sig-
nificance of multi-sequence images in feature expression and compen-
sation, the response prediction using all radiomic features extracted
frommulti-sequences images was evaluated, the AUC of whichwas fur-
ther increased to 0.998 in the training set and 0.999 in the testing set.
Specifically, the combined model of intratumoural regions (T1WI and
T2WI) and combinedmodel of both regions (T2WI) yielded good sensi-
tivity in the training set but exhibited an unsatisfactory performance in
the testing set. However, the multi-sequence model not only exhibited
excellent sensitivity and specificity in the training set, but also per-
formed satisfactorily in the testing set.



Fig. 3. Comparison of ROC curves of different models. (a) and (b) are ROC curves of single sequencemodels in training and testing sets. (c) and (d) are ROC curves of combinedmodels in
training and testing sets. ROC receiver operating characteristic; AUC area under receiver operating characteristic curve; T1WI, T1-weight imaging; T2WI, T2-weighted imaging.
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3.5. Model comparison

The performance of the multi-sequence model was significantly in-
creased (p b .05) compared to most single sequence models in both
sets (Fig. 4). In the comparison of combined models in the training set,
the AUC of the multi-sequence model was higher (p b .05) than that
of the other combined models. Further, in the testing set, there were
no significant differences in the AUCs among the three combined
models.

Furthermore, for each group of training and testing sets consisting of
parients from different combination of hospitals, the three ROC curves
(Fig. 5) of the combined models were robust. The performances of the
models in the three combination groups have no significantly difference
Table 2
Performance of single sequence models.

Cohort Model ACC (%) AUC

Training set Intratumoural T1WI 91.7 (85.6–96.9) 0.964 (0
Intratumoural T2WI 89.5 (84.9–93.2) 0.966 (0
Peritumoural T2WI 93.7 (88.9–97.7) 0.975 (0

Training set Intratumoural T1WI 77.3 (70.9–83.7) 0.969 (0
Intratumoural T2WI 69.1 (62.5–75.8) 0.945 (0
Peritumoural T2WI 87.3 (80.9–93.1) 0.979 (0

Statistical quantifications are reported with 95% confidence intervals. T1WI, T1-weighted imag
ating characteristic curve; SEN, sensitivity; SPE, specificity.
(Table S8). Similar to the previous experimental results, the sensitivity
and specificity of the multi-sequence model were more stable than
those of the other combined models in both sets. This indicated that re-
gardless of the source of the training data, the multi-sequence model
exhibited robust and persistent performance.
3.6. Clinical factor and radiomic model

The clinical factors were identified as independent predictors for the
response to NACT, including age, FIGO stage, gross type. Finally, only
169 and 63 patients have complete clinical information in training and
testing sets. As shown in Fig. 6, the clinical model yielded AUCs of
SEN (%) SPE (%) Cut-off

.931–0.996) 95.9 (91.8–98.1) 91.2 (86.3–97.6) 0.643

.943–0.989) 84.6 (75.2–88.0) 97.1 (90.1–100) 0.669

.956–0.993) 93.3 (89.2–97.3) 94.1 (85.2–98.6) 0.556

.942–0.997) 49.1 (41.9–67.3) 100 (98.9–100) 0.643

.904–0.986) 41.8 (39.8–61.4) 100 (99.1–100) 0.669

.959–0.999) 76.4 (61.8–86.2) 100 (97.5–100) 0.556

ing; T2WI, T2-weighted imaging; ACC, balanced accuracy; AUC, area under receiver oper-



Table 3
Performance of combined models.

Cohort Model ACC (%) AUC SEN (%) SPE (%) Cut-off

Training set Intratumoural T1WI + Intratumoural T2WI 93.4 (88.9–96.6) 0.967 (0.929–1) 93.3 (89.2–97.2) 94.1 (84.6–100) 0.658
Intratumoural T2WI + peritumoural T2WI 93.4 (88.9–96.6) 0.991 (0.981–1) 91.9 (85.7–95.5) 100 (94.3–100) 0.670
Multi-sequence 97.8 (94.5–99.4) 0.998 (0.994–1) 97.3 (94.2–99.4) 100 (90.6–100) 0.594

Testing set Intratumoural T1WI + Intratumoural T2WI 67.4 (56.8–76.8) 0.980 (0.959–1) 45.5 (32.2–58.5) 100 (93.6–100) 0.658
Intratumoural T2WI + peritumoural T2WI 80.4 (70.9–87.9) 0.994 (0.986–1) 67.3 (56.6–81.3) 100 (98.1–100) 0.670
Multi-sequence 90.2 (82.2–95.4) 0.999 (0.997–1) 83.6 (78.2–95.3) 100 (97.5–100) 0.594

Statistical quantifications are reported with 95% confidence intervals. T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; ACC, balanced accuracy; AUC, area under receiver oper-
ating characteristic curve; SEN, sensitivity; SPE, specificity.
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0.666 and 0.608 in training and testing sets. The predictive result of clin-
ical model was significantly lower 30% than radiomic models.

4. Discussion

In this multicentre study, we investigated radiomic analysis based
on pretreatment MRI scans to predict the clinical response to NACT
in patients with LACC. A multi-sequence model combining the
intratumoural and peritumoural regions of two radiomic sequences
demonstrated the best predictive power in both training (AUC: 0.998)
and testing (AUC: 0.999) sets.

In the present study, ten features were selected from the
intratumoural region on T1WI, two features were selected from the
intratumoural region on T2WI, and four features were selected from
theperitumoural regionon T2WI. Among these features,mostwere tex-
tural features of images, which allow multi-view description of the tu-
mour phenotype and cannot be easily identified by humans. From the
perspective of view of features, the result was similar to those of previ-
ous studies of other cancers [43,44], the features of responders pre-
sented higher textual pattern complexity or heterogeneity than those
of non-responders. After the single sequence models were constructed,
all models demonstrated relatively satisfactory predictive performance.
Strikingly, although the peritumoural T2WI model did not carry the
highest number of features, it still exhibited higher predictive power
than other single sequence models. In previous studies, Braman et al.
[43] comfirmed the valuable of peritumoural textural radiomic features
in enhancing pCR prediction by quantitatively characterizing the
presence of tumour infiltrating lymphocytes (TILs) and surrounding
stromal abnormalities or responses. The study demonstrated that the
peritumoural radiomics profile correspondingly captured the histologi-
cal heterogeneity of TILs andmicro-vascular invasion between non-pCR
Fig. 4. Delong test between different models. P-value of Delong test between a
and pCR. Similarly, many studies [45] have proposed that the pretreat-
ment host immune states of advanced cervical cancer could affect the
treatment response to NACT. Moreover, Yun et al. [46] recently discov-
ered a significant correlation between low peritumoural Foxp3+ infil-
trating T cells and the clinical efficacy of NACT in patients with LACC.
Therefore, peritumoural immunological heterogeneity between chemo-
therapeutic non-responders and responders was characterized by the
best-performing radiomic features.

In addition, we also constructed combined models to study the im-
pact of the combination of different regions or sequences on predictive
power. The performance of the combined model of intratumoural
regionswas highly similar to that of the T1WImodel, with no significant
improvement. Surprisingly, the T2WI with intratumoural and
peritumoural regionsmodel exhibited significantly enhanced predictive
performance compared to the single sequencemodel, with high AUCs in
the training and testing sets. However, the performance of thesemodels
in terms of sensitivity was not satisfactory. They had excellent sensitiv-
ity in training set but not in testing set. Therefore, the multi-sequence
model was generated, which combined all sequences and their tumour
regions. Themulti-sequencemodel exhibited the best predictive ability,
which was significant higher (p b .05) than all other models. The accu-
racy, AUC, sensitivity and specificity of the multi-sequence model of-
fered outstanding predictive power and generalization in both the
training and testing sets. This indicates that the multi-sequence model
can not only accurately predict the response to NACT, but also perfectly
identify non-responders. This will help to protect these non-responders
from NACT before treatment and avoid a delayed treatment process. By
incorporating radiomic features reflecting peritumoural and tumoural
heterogeneity, themulti-sequencemodel offered themost comprehen-
sive and thorough radiomic assessment for predicting the clinical re-
sponse to NACT and yielded excellent performance. Our results
ny two models. T1WI, T1-weighted imaging; T2WI, T2-weighted imaging.



Fig. 5. Comparison of ROC curves between different group of training and testing sets for combinedmodels. (a) and (b) are ROC curves of combinedmodel of intratumoural region onT1WI
and intratumoural region on T2WI in training and testing sets. (c) and (d) are ROC curves of combinedmodel of peritumoural and intratumoural zones on T2WI in training and testing sets.
(e) and (f) are ROC curves of multi-sequence model in training and testing sets. ROC receiver operating characteristic; AUC area under receiver operating characteristic curve; T1WI, T1-
weighted imaging; T2WI, T2-weighted imaging.
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provided additional evidence supporting the use of MRI in predicting
the clinical response to NACT. We investigated the diagnostic robust-
ness for response prediction of the combinedmodels, and three various
training sets constructed by different combinations of centres were ap-
plied. As indicated in Table S8, the multi-sequence model performed
Fig. 6. Comparison of ROC curves between clinical and radiomicmodels. ROC receiver operating
imaging; T2WI, T2-weighted imaging.
strong robustness in different experimental groups. The predictive ac-
curacy of the multi-sequence model for non-responders was higher
and more stable than that of other models. By comparing the informa-
tion of features, some features (Table S9) were repeatedly selected in
different experimental groups, such as glszm_GLV extracted from
characteristic; AUC area under receiver operating characteristic curve; T1WI, T1-weighted
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T1WI, ngtdm_busyness extracted from intratumoural zone of T2WI,
glcm_correlation extracted from intratumoural zone of T2WI, and
ngtdm_complexity extracted from peritumoural of T2WI. This shows
that the strong predictive power and robustness of these radiomic fea-
tures in prediction of response to neoadjuvant chemotherapy in locally
advanced cervical cancer. Furthermore, a clinical model was con-
structed based on the subset of patients whose clinical information is
available. From the experimental result, the clinical factor cannot accu-
rately predict the response to NACT.

Currently, the treatment response in cervical cancer is determined
by the shrinkage of tumour size while MRI is themost effective imaging
modality to assess tumour response to chemotherapy. Asmorphological
change is not evident until completion of certain cycles of chemother-
apy, chemotherapeutic non-responders cannot be earlier ruled out,
resulting in increased toxicity, morbidity and worse prognosis. Some
proposed imaging biomarkers from functionalMRI and cellularmarkers
such as P-Glycoprotein and proliferating cell nuclear antigen [47], squa-
mous cell carcinoma antigen [14], and cyclooxygenase (COX)-2 ratio
[48] are either limited by post- therapeutically basis or lack of valida-
tion. So far, clinical use of NACT is hampered by the lack of effective
and validated pre-therapy predictors to identify suitable chemothera-
peutic responders. Recently, results of phase III randomized trial [49] re-
vealed comparable efficacy between NACT-RH and chemoradiation
emphasizing the importance of remaining quality of life in treatment
planning. In selected chemo-sensitive LACC patients, NACT-RH are
likely to be an optimal treatment plan avoiding function loss of vaginal,
ovary caused by radical radiotherapy. Therefore, a non-invasive MRI-
based pre-treatment radiomics model that allows for accurate and
rapid prediction of individual therapy response presented in the study
would have immense value in clinical practice. Besides, several prior
researchs [50,51] have investigated the predictive potential of radiomic
features by combining FDG PET and MRI in lung cancer and head-and-
neck cancer. Meanwhile, some metabolic radiomics features that char-
acterizing intratumouralmetabolic heterogeneity has shown to be valu-
able for assessing locoregional recurrences and distant metastasis after
definitive chemoradiotherapy in LACC [31,52]. The further utility of
radiomics based on FDG PET andMRI in the pre-therapeutically predic-
tion of response to NACT in LACCmay help to discover radiomic predic-
tors of chemotherapeutic response that potential possesses unique
prognostic information.

Our study still has some limitations despite the encouraging results.
Firstly, due to the MR images being retrospectively collected from
various centres with different scanners and acquisition parameters,
we finally adopted a limited population sizewith all required sequences
for model construction. Sencondly, we simplified patients' histocytes
into squamous cell carcinomas only for the purposes the investigation.
Therefore, the radiomic model might not be generalizable to adenocar-
cinoma or neuroendocrine carcinoma. Further studies with larger inde-
pendent external datasets from other centres are warranted to confirm
our proposed radiomic models. If possible, prospective studies are
needed for further validation.

5. Conclusion

The clinical utility of neoadjuvant therapy in the treatment of ad-
vanced cervical cancer is hampered due to lack of effective predictors
of response prior to the initiation of therapy. Such a predictive tool
could allow for prudent selection of suitable patients for NACT while
identifyingnon-responders formore personalized care avoiding ineffec-
tive therapies. For this purpose, we successfully combined peritumoural
and intratumoural radiomics from highly heterogeneous pretreatment
MRI scans to predict the clinical response to NACT with superior accu-
racy. The good predictive robustness of the proposedmodel among var-
ious centres with consistent accuracy indicated its potential for
widespread adoption in clinical decision-making for NACT in patients
with LACC. Our findings suggested that the radiomic model is sufficient
to serve as an effective tool to stratify LACC patients to allow for more
appropriate initial treatment, showing promise in improving the man-
agement of LACC.
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