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Abstract: Human stress is intricately linked with mental processes such as decision making. Public
protection practitioners, including Law Enforcement Agents (LEAs), are forced to make difficult
decisions during high-pressure operations, under strenuous circumstances. In this respect, systems
and applications that assist such practitioners to take decisions, are increasingly incorporating user
stress level information for their development, adaptation, and evaluation. To that end, our goal is to
accurately detect and classify the level of acute, short-term stress, in real time, for the development of
personalized, context-aware solutions for LEAs. Deep Neural Networks (DNNs), and in particular
Convolutional Neural Networks (CNNs), have been gaining traction in the field of stress analysis,
exhibiting promising results. Furthermore, the electrocardiogram (ECG) signals, have also been
widely adopted for estimating levels of stress. In this work, we propose two CNN architectures for the
stress detection and 3-level (low, moderate, high) stress classification tasks, using ultra short-term raw
ECG signals (3 s). One architecture is simple and with a low memory footprint, suitable for running
in wearable edge-computing nodes, and the other is able to learn more complex features, having
more trainable parameters. The models were trained on the two publicly available stress classification
datasets, after applying pre-processing techniques, such as data pruning, down-sampling, and data
augmentation, using a sliding window approach. After hyperparameter tuning, using 4-fold cross-
validation, the evaluation on the test set demonstrated state-of-the-art accuracy both on the 3- and
2-level stress classification task using the DriveDB dataset, reporting an accuracy of 83.55% and
98.77% respectively.

Keywords: stress assessment; convolutional neural network; ECG signal; real time; sliding window

1. Introduction

Chronic stress poses a risk factor for serious health conditions and episodes, such
as hypertension, heart attack, and stroke. Apart from the grave long-term consequences,
short-term stress can also affect behavior and mental processes such as decision making,
which is of paramount importance in a diversity of application domains (e.g., automotive,
aviation, public protection and disaster relief, etc.). Researchers and developers of per-
sonalised, context-aware applications for public protection practitioners are increasingly
acknowledging the need for leveraging user stress level information, to cater for the varying
requirements depending on its level. In this respect, DARLENE, a European Union funded
project [1] aims at providing technologies that enable law enforcement agents (LEAs) and
in general first responders to make more informed and rapid decisions, especially in situ-
ations where time is of the essence. Provided that LEAs’ performance and awareness of
the situation are directly influenced by their stress level, a system is being developed that
takes this into account by providing them with contextual, real-time information, specific
to their mission, through worn Augmented Reality glasses. In particular, a supporting
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sub-system, deployable to edge devices, is being implemented, which classifies the level of
acute, short-term stress in real time.

With respect to assessing and inferring the stress state and the cognitive load of an
individual, many research efforts have been conducted. Stress assessment is traditionally
based on questionnaires where the subjects fill in their stress level rating on some scale.
Such methods are the Relative Stress Scale (RSS) [2], Fear Survey Schedule (FSS) [3] and
Cook-Medley Hostility Scale [4]. These methods, by definition, constitute a subjective way
of measuring stress and can also be conducted as self-assessments without the need of
experts [2,5]. Another approach to stress assessment is to collect and measure stress-related
hormones, such as cortisol and catecholamine [6]. However, these approaches are not
suitable for some applications where the subject’s concentration must remain intact and
any distraction should be avoided.

Thus, automated and non-invasive procedures that are mostly based on physiological
signals (e.g., electrocardiogram (ECG) electrodermal activity (EDA), the electrical activity
of the scalp (EEG)) deem to be more suitable for this kind of applications [7]. To that end,
a variety of machine learning models have been developed to automatically assess stress,
based on data that can be collected in an unobtrusive manner [8,9].

The analysis of the electrical activity of the heart (ECG) [10], the electrodermal activity
(EDA) [11], the electrical activity of the scalp (EEG) [12] and others [13] can be used to
assess the mental stress of an individual both robustly and unobtrusively during stressful
and demanding tasks [7,14].

One of the most prevalent physiological signals that is used today for this kind of
task is the ECG signal. The ECG signal reflects the electrical heart activity by detecting
changes in the voltage on the surface of the skin due to the electrical activity of the heart.
ECG sensors are made to be highly sensitive to electrical activity and capture the main elec-
trical signals that are produced by cardiac cells depolarizing and re-polarizing. The most
dominant waveform, in terms of amplitude, which is formed by this activity is the QRS
waveform, also known as QRS complex (see Figure 1). To capture this wave, using three
electrodes, the bipolar limb lead system can be used. Each lead configuration, specified
by the Einthoven’s Triangle, results in a different ECG signal morphology. For instance,
an ECG signal with sharp R-waves can be acquired by placing the sensors in either lead II
or lead III configuration [15].

Figure 1. ECG signal period.

Stress classification tasks that use primary input ECG signals have been well researched.
The ECG signal, as a physiological measure, has been found by a lot of researchers to be a
reliable measure that one can use to tackle the problem of stress classification [13,16,17]. One
of the main reasons is that a direct influence of both the sympathetic and parasympathetic
nervous system exists in the ECG signal [18], where the integrated response is a consequence
of their energy balance [19]. Specifically, heart rate variability (HRV), which is a feature
extracted from the ECG signal, is able to index the cardiac vagal tone, which represents the
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contribution of the parasympathetic nervous system to cardiac regulation and it is known to
be relevant with many phenomena relevant for psychophysiological research [17].

In this work, we aim to tackle the stress classification task, both for 2 and 3 levels of
stress, using raw ECG signals. Our work includes the data pre-processing and data aug-
mentation of open-access stress related datasets as well as the design and implementation
of Deep Neural Network (DNN) architectures. In particular, we have assessed the data
quality of these datasets and have also elaborated on potential problems and limitations.
Furthermore, we have implemented two DNN architectures, based on well established
approaches, one that is simple and memory efficient, enabling edge device deployment,
and one that is deeper and has the capacity of learning complex features. The resulting
models were trained and validated both on the Electrocardiogram, skin conductance, and respi-
ration from spider-fearful individuals watching spider video clips (Arachnophobia) [20] and on
the Stress Recognition in Automobile Drivers dataset (DriveDB) [14], achieving state-of-the-art
performance in comparison to similar DNN approaches.

2. Related Work
2.1. Conventional Machine Learning Approaches

A conventional approach for ECG signal classification tasks based on machine learning
(ML) approaches is to use shallow models that take as input manually constructed features.
The most common algorithms that are used in the stress classification task are Logistic Regres-
sion (LR) [21,22], Support Vector Machines (SVM) [23,24], Random Forests (RF) [25], Bayesian
Networks (BN) [26], and K-Nearest Neighbors (KNN) [27]. In addition, in order to boost the
overall performance, researchers frequently use hybrid techniques or model ensembles.

The most frequent type of features that these models take as input is HRV related fea-
tures. These features relate to the standard deviation of heart periods within the recording
epoch [18] and they are considered as appropriate measures of both heart’s short-term and
long-term variation regarding ECG signals [28]. Other features that these models take as
input can be found in [17,22].

2.2. Deep Learning Approaches

In traditional ML approaches, the features are manually engineered by field experts.
On the other hand, provided that the classification task is compositional and the dataset
size is sufficient, DNNs have the ability to automatically learn useful features from the
data. Furthermore, in many cases, these features outperform handcrafted ones, leading to
improved classification accuracy. A concrete example can be derived from the computer
vision discipline where the dominance of the deep convolutional neural networks is
apparent. CNNs leverage three important principles, namely sparse interactions, parameter
sharing, and equivariant representations. These principles result in a reduced number of
parameters and the computation of local features that can be incorporated to effectively
classify a sample. When they are combined with pooling layers, they can also compute
representation invariant features [29]. In addition, one-dimensional CNNs offer these
properties in a lower complexity [30], and thus they are suitable for several 1D signal
processing tasks. Finally, Recurrent Neural Networks (RNNs) are also being used with
great success, due to the sequential nature of the signals. In particular, they are used in
combination with convolutional layers that downsample the signal in order to reduce the
size of the RNN input sequence.

Towards this direction, He et al. [31] demonstrated the power of DNNs and specifically
CNNs for the stress classification task, based on ECG signals. This was done by comparing
the performance of a CNN against conventional HRV-based methods for stress classifica-
tion, acquiring a significantly better accuracy in the former case. Moreover, Hwang et al.
introduced Deep ECGNet [32], exemplifying that there is no need for a very deep network
to accomplish high accuracy on the task. In addition, they showed that it is essential, for the
performance of the model, to exploit features of the ECG signal by taking advantage of
specific characteristics of the signal’s morphology. In particular, they set the kernel size to
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span a complete ECG period, on average. To avoid the peak phase difference problem, they
used max-pooling operation, which guarantees that, at a specific pooling size, it can extract
the peaks regardless of the peak point position. Similar to their approach, our models
constitute a reduced number of layers, with respect to the related literature. Moreover,
we adopted their kernel size and pooling size, in one of our models. Another work that
utilizes a 1D CNN, based on the ECG signal, is DeepERNet [33]. However, it also combines
the respiration (RSP) signal of the subject, which can be measured as the rate or volume of
air exchange.

On the other hand, instead of using the one-dimensional input of the raw ECG
measurements, other approaches transform the signal to two dimensional images that
they later feed to 2D CNN models [34,35]. Kang et al. [36] have also used similar methods
to transform the signal to two dimensions, both in frequency and time, adding a Long-
Short Term Memory (LSTM) unit to their architecture so as to be able to exploit the
temporal features.

2.3. Available Stress Datasets

Although limited in number, some publicly available ECG stress-related datasets exist
and can be used to train ML models.

The DriveDB [14] contains a collection of multiparameter recordings from healthy
volunteers, taken while they were driving on a prescribed route including city streets and
highways in and around Boston, Massachusetts. The objective of the study for which these
data were collected was to investigate the feasibility of automated recognition of stress
on the basis of the recorded signals, which include ECG, QRS (right trapezius), and GSR
(galvanic skin resistance) signals measured on the hand and foot, as well as respiration data.

The Arachnophobia [20] dataset contains ECG, GSR, and respiration measures as
raw data (unfiltered, unprocessed) recorded from consented, spider-fearful individuals
with the sampling rate set to 100 Hz per channel having a 10-bit resolution. Specifically,
80 spider-fearful individuals aged between 18 and 40 years were exposed to several clips
that were all taken from television (TV) documentaries showing detailed shots of spiders.
The main focus of this randomized controlled trial was to investigate if the use of an HRV
biofeedback intervention could be a promising therapeutic add-on to exposure therapy for
specific phobias.

The two datasets above include the necessary information and provide a methodology
to annotate the data with three stress level labels (low, moderate, high) and they are
both part of the Physionet research resource [37]. Additional public datasets for stress
classification are the Wearable Stress and Affect Detection (WESAD) dataset [38] and the
SWELL Knowledge Work dataset for Stress and User Modeling Research [39]. However,
they do not consist of annotated ECG signals for 3-level stress classification, and were
therefore excluded from this study.

3. Methods

Two deep convolutional neural networks have been developed towards classifying
raw ultra-short ECG signals (3 seconds) to 2 (no stress, stress) and 3 classes (low, moderate,
high). The architectures were trained and validated using two pertinent publicly available
datasets, namely DriveDB and Arachnophobia. In the following sub-sections the overall
process of dataset pre-processing, model training, and evaluation is discussed.

3.1. Dataset Pre-Preprocessing

The datasets used in this work are the DriveDB and the Arachnophobia. To the best of
our knowledge, they are the only publicly available datasets that include annotated ECG
signals with three stress states (low, moderate, and high stress). Both follow the lead II
standard configuration to capture the ECG signal, which results in minimizing the motion
artifacts and producing a rhythm trace with sharp R-waves.
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Since the datasets do not directly provide the samples together with their correspond-
ing labels, they need to be converted to a label-sample form, following a dataset-specific
procedure. In the case of DriveDB, this procedure entails leveraging the marker signals that
were embedded in the ECG signals by the authors. The marker signal has distinguishable
peaks that separate the ECG signal segments, which are annotated with different stress
states. In the case of the Arachnophobia dataset, the annotation information was not
provided explicitly. In particular, the authors provide two annotation methodologies that
can be used, which leverage the observed relation between beats per minute (bpm) and
stress state, as described in detail in their paper [20]. The procedure followed for each
dataset is detailed in the next subsections, Sections 3.1.1 and 3.1.2.

3.1.1. DriveDB

This dataset provides data from 17 subjects that were recorded while they were
driving on a prescribed route including city streets and highways in and around Boston,
Massachusetts. In this work, we focus only on the ECG and marker signal data. To parse
and resample the data we used the waveform database (WFDB) software package [37].
To apply the annotations indicated by the marker signal, which was initially sampled at
the frequency of 15.5 Hz, we first had to upsample it to match the frequency of the ECG
signal (496 Hz) and then to locate its peaks. This was done with the find peaks method of
the SciPy python package [40]. Moreover, to acquire results from both datasets at the same
sampling frequency, in some of our experiments, we down-sampled the ECG signal of the
DriveDB dataset to match the sampling frequency of Arachnophobia (i.e., 100 Hz).

Figure 2. DriveDB driving event segments and peaks of the marker signal, created using a respira-
tion sensor.

As illustrated in Figure 2, the seven segments that are indicated from the 8 peaks
correspond to the seven driving events that are annotated with the corresponding stress
state. These events are respectively the initial resting phase (rest1), city road driving period
1 (city1), highway driving period 1 (hwy1), city2, hwy2, city3, and the final resting phase
(rest2). The data of the other driving events of the study were not included in the resulting
dataset. Due to the difficulty of those experiments, there were several errors and problems
with the ECG and marker signals of some subjects. Table 1 summarizes the comments and
the observations we have made during the dataset inspection.
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Table 1. DriveDB observations and errors.

Subject Used in This Work Comments/Observations

drive01 NO No marker signal is provided.
drive02 NO The marker signal has more than 8 peaks.
drive03 NO No marker signal is provided.
drive04 NO The peaks of the marker signal are not distinguishable.
drive05 PARTIALLY We discarded the first two events(invalid signal values).
drive06 YES N/A
drive07 YES N/A
drive08 YES N/A
drive09 NO The marker signal has less than 8 peaks.
drive10 YES N/A
drive11 YES N/A
drive12 NO Missing ECG signal data.
drive13 YES N/A
drive14 YES N/A
drive15 YES N/A
drive16 NO The marker signal has less than 8 peaks.
drive17 NO Was not used because it is split in two parts.

As a consequence, the number of the drives that were included in the resulting dataset
were 9. The duration of the 7 driving events per driver, in minutes, have already been
calculated by Akbas et al. [41]. The minimum event duration is 5.12 min; thus, as the
dataset authors did [14,42], we partitioned the data into segments of 5 min durations, so as
to create a dataset that is equally biased from each subject and to avoid any marginal signal
noise that is located at the borders of each segment. Moreover, the annotation of the driving
events was based on the task; for instance, city-driving was considered more stressful than
highway-driving. The task-based assumptions were also supported by questionnaires.
Table 2 illustrates the driving events and the corresponding annotations for two and three
classes of stress, respectively.

Table 2. DriveDB driver events and corresponding annotations for 2 and 3 classes of stress.

Classes Initial Rest City1 Hwy1 City2 Hwy2 City3 Final Rest

2 NO YES YES YES YES YES NO
3 LOW HIGH MODERATE HIGH MODERATE HIGH LOW

3.1.2. Arachnophobia

This dataset contains data recorded from spider-fearful individuals while they were
watching clips from documentaries that contained frames depicting spiders. The available
data result from 64 subjects. The data are organized in folders, one for each subject. Each
folder has the data from the sensor recordings specific to the subject. Although this dataset
does not provide a marker signal, for each subject, it provides a file (triggers.txt) that
includes timestamps for each clip. So, if the annotation per clip is known, the correct label
can be assigned to the data corresponding to these clips later. A methodology to annotate
the clips has been provided in the dataset’s paper [20]. The authors propose two approaches
that can be followed, namely the HR and EDA approach and the SB approach. The latter
cannot be followed because it is based on the subjective arousal ratings of the subjects,
which are not available in the dataset. The former leverages the assumed relation between
stress and the two physiological signals. This approach is subdivided in clip-based and
subject-based approaches. The clip-based approach establishes labels to the video clips by
sorting the average of the normalized signal of all the records. On the contrary, the subject-
based approach establishes labels to the video clips by considering individual responses
such that the clips were annotated using the individual normalized mean for HR and EDA.
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In our work, we followed the subject based approach and we used only the ECG signal
which was recorded at 100 Hz.

3.1.3. ECG Signal Sample Fragmentation

In accordance with similar DNN approaches, each ECG signal segment corresponding
to a stress level was further fragmented to time windows. The trade-off for the selection
of window size is information versus inference time. As the window size increases,
the more RR intervals (see Figure 1) it contains, which can be leveraged to establish a more
accurate prediction of the stress level. However, by expanding the window size not only
do we increase the inference latency, due to extra computational cost, but we also allocate
more memory resources. In this work, considering the requirement for our model to be
deployable on edge devices, we selected a window size of 3 s.

Table 3 summarizes the number of samples per dataset and per class, using a window
size of 3 s. We can observe that the class distribution is slightly unbalanced, with both
datasets having fewer samples in the ‘low stress’ class.

Table 3. Number of samples per dataset, using a window size of 3 s.

Dataset Low Moderate High Total

DriveDB 1800 (29.51%) 1700 (27.87%) 2600 (42.62%) 6100
Arachnophobia 5507 (23.67%) 8882 (38.17%) 8881 (38.17%) 23270

3.1.4. Baseline Normalization

Similar to works [14,16], we performed for both datasets a baseline normalization
procedure for the ECG signal recordings of each participant. In particular, for each subject
we considered the ECG signal labeled as ’low stress’ as the baseline, and subtracted each
mean from all other segments of the subject. The objective of this procedure was to help
reduce the individual bias, introduced in the measurements as a result of the difference
in age, posture, level of physical conditioning, breathing frequency, and other factors.
The pseudo-code of Algorithm 1 used for the baseline normalization is provided below:

Algorithm 1 Baseline Normalization

i← subjects_number
while i 6= 0 do

s← subjects[i]
m← mean(s[0]) . At index 0 the ECG signal labeled as ‘low stress’ is accessed.
for l ∈ ecg_labels do

s[l] = s[l]−m
end for
i← i− 1

end while

3.2. Dataset Augmentation

Due to the limited number of subjects, both datasets are relatively small for efficiently
training a deep neural network. To generate more data for the training sets, we tested a
data augmentation method following a sliding window approach. Through this method,
the training samples are generated from multiple window-sized crops of the initial 1D
signal segment, using a pre-defined stride. Figure 3 displays the procedure schematically.
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Figure 3. Sliding window dataset augmentation.

3.3. Stress Level Analysis Architectures
3.3.1. VGG Inspired Architecture

VGG is a well-established CNN architecture that is widely used for efficient large-
scale image recognition [43]. Inspired by this architecture, we employed a deep Convo-
lutional Neural Network (CNN), which increases the number of channels, as the input
dimensionality decreases in deeper layers. In particular, the number of channels starts
from 64 and then increases by a factor of 2 at each stage, until it reaches 512. Our archi-
tecture includes 5 stages of 1D layers, with each stage consisting of the following layers:
Convolution, Batch-Normalization, Activation, Max-Pooling and Drop-Out. The Batch
Normalization layers to each stage, along with the Drop-Out and leaky RELU activation
layers, which reduce overfitting and minimize the generalization error. After these 5 stages,
a Global Average Pooling layer and a Fully-connected layer conclude the model. Figure 4
illustrates the VGG inspired stress level analysis architecture.

Figure 4. VGG inspired stress level analysis architecture.

3.3.2. Single 1D CNN Architecture

This architecture is made up of one convolutional stage and two fully connected layers
(Figure 5) along with a Drop-Out layer for regularization purposes. The key idea of this
network is to set the lengths of the pooling and feature kernels to approximately span a
period of the ECG signal, taking advantage of the correlation between the stress state and
the morphology of the ECG signal RR interval. This was first observed by Hwang et al.
and explained in detail in their paper [32]. Therefore, to utilize this correlation effectively
we choose an appropriate pooling and feature length for our datasets. In particular, for a
sampling frequency of 100 Hz and an average heart beat duration of around 0.8 s, the pooling
length was set to span 80 raw ECG values. A pooling operation of that length is able to
overcome the peak phase difference problem, since the features of a signal will eventually
be extracted in a given pooling window regardless of the peak point. In addition, the feature
length was set to 60, spanning all the important characteristics of the ECG signal (P, Q, R, S,
and T waveforms) and without interfering with the next period of the signal. In case the
frequency is 496, the pooling length becomes 400 and the feature length 300 ECG values.

A comparative advantage of this network to the VGG-inspired one, is that it can
provide the required model capacity at a cost of just 28,866 parameters, as opposed to
1,554,819 parameters. This low model complexity reduces over-fitting and, at the same
time, minimizes memory requirements, being deployable on low computational devices
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(e.g., the DARLENE wearable edge computing nodes, which consist of an AR HUD and a
NVIDIA Jetson AGX Xavier micro-computer).

Figure 5. Single 1D CNN stress level analysis architecture.

4. Results

Our models were trained and evaluated on the pre-processed datasets originating
from the DriveDB and Arachnophobia datasets. To identify the best configuration for each
task, we tuned our hyperparameters using 4-fold cross-validation. Then, we evaluated the
models, trained using the best hyperparameters, on the test set. The train-validation-test
split of the data was 60% for the train set, 20% for the validation set and 20% for the test set.

We adopted the approach followed by Seo et al. [33] and the partitioning into folds
was carried out across subjects. More specifically, each fold can contain signal segments
of different drivers, and each driver can have segments in multiple folds, having shuffled
the collection of all driver segments before the split. Our hypothesis is that although the
ECG signal waveform can differ from subject to subject, as mentioned by Ravenswaaij-
Arts et al. [28], there might exist some global patterns—some features—of the ECG signal
that can be used by our model to map the signal to the respective stress label.

Table 4 displays the average cross-validation accuracy of models trained on the
DRIVEDB dataset, using different configurations with respect to the sampling frequency,
sliding window (SW), number of classes, and architecture. In the case where the sliding
window augmentation technique was employed (SW is Yes), the stride was 80 and 150,
for frequencies 100 and 496, respectively.

Table 4. Models’ cross-validation accuracy using different configurations.

Frequency (Hz) SW Classes VGG Inspired Single 1D CNN

100 No 2 0.939 ± 0.024 0.950 ± 0.012
100 No 3 0.764 ± 0.043 0.803 ± 0.009

100 Yes 2 0.963 ± 0.024 0.959 ± 0.018
100 Yes 3 0.804 ± 0.006 0.823 ± 0.008

496 No 2 0.972 ± 0.009 0.943 ± 0.019
496 No 3 0.802 ± 0.022 0.796 ± 0.023

496 Yes 2 0.983 ± 0.004 0.960 ± 0.008
496 Yes 3 0.822 ± 0.029 0.851 ± 0.016

As we can see in Table 4, our best-performing models for 2-level and 3-level stress
classification, with average accuracies 98.3% and 85.1% respectively, were both trained
using an ECG signal frequency of 496 Hz and employed the sliding window method. In the
case of 2 classes, the VGG Inspired architecture led to the best accuracy, whereas in the case
of 3 classes it was the single 1D CNN architecture. Furthermore, we can observe that in
most cases, a higher sampling frequency positively affects the validation accuracy, with the
exception of when we did not use the sliding window approach and the architecture
was the single 1D CNN. Finally, it is evident that the sliding window technique leads to
enhanced accuracy, in all cases.
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When using the Arachnophobia dataset, the validation accuracy in both architec-
tures decreases significantly. In particular, the average accuracy was 0.663 ± 0.013, using
the VGG Inspired architecture and 0.698 ± 0.004, using the single 1D CNN architecture.
The aforementioned results refer to the 3-level classification task and were acquired using
100 Hz ECG frequency and no sliding window. We attribute this reduced accuracy to the
annotation assumption of the dataset, i.e., the normalized mean HR relates linearly with
the stress level. This assumption might not always hold and, as a consequence, it causes
the model to underfit. Provided the above, the Arachnophobia dataset was discarded from
further experiments.

Having identified which hyperparameters lead to increased accuracy, we used them to
train and evaluate a model for each stress-classification task and each architecture. In Table 5,
the accuracy of the test set is depicted for each case. Similar to the validation average accuracy,
the VGG architecture performs best in the 2-class case, whereas the single 1D CNN in the
3-class case. In Figures 6 and 7 we can see the confusion matrix of the best model for each task,
while in Table 6, the number of samples of each class are mentioned. In the case of 2 classes
(stress detection), we can see that the true positive and true negative rate is very high (0.99%,
and 0.98% respectively), while the false negative rate is 2 times higher than the false positive
rate. Furthermore, in the case of 3-level stress classification, we can observe that, as expected,
the model can differentiate with higher accuracy between the low and high classes, than
between the moderate and high classes. More specifically, the highest miss-classification rate
occurs when the true label is moderate (33% in total), where the model predicts a high stress
level at 31%.

Table 5. Test set accuracy for each stress-classification task and architecture.

Classes VGG Inspired Single 1D CNN

2 98.77% 95.66%
3 83.09% 83.55%

Figure 6. The confusion matrix of the best model for the stress detection task (VGG inspired architecture).
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Figure 7. The confusion matrix of the best model for the 3-level stress classification task (single 1D
CNN architecture).

Table 6. Number of samples per class in test set of best models.

Class Samples Percentage

LOW 460 30.26%
MODERATE 340 22.37%

HIGH 720 47.37%

5. Discussion
5.1. Comparison with Previous Studies

Although accuracy is not the most informative metric, it is the most common across
related literature and thus it is the one we use to compare our results with those of
different approaches. We first compare our deep architectures’ performance on the 3-level
classification problem, with that of other two deep architectures, which were evaluated
on the DriveDB dataset in the work of Seo et al. [33]. These models are the state-of-the-art
DNN models on the DriveDB dataset, and among the best-performing for 2- and 3-class
stress classification, using heart related features. In Table 7, we can see that our models’
accuracies of 83.09% and 83.55% surpass that of the other models, while using a smaller
time window as input for making a prediction, significantly reducing the amount of
necessary memory resources. More specifically, our approach uses a time window of 3 s,
which corresponds to 1488 signal samples, in comparison to the 24,800 of other approaches.
Moreover, our approach achieves its accuracy while utilizing only one signal, the ECG
signal, in comparison to [33], which also uses RSP. Finally, our reported accuracy is the test
set accuracy, while the other accuracies are derived as the average validation accuracy of
5-fold cross validation [33].
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Table 7. Stress classification task with 3 stress labels (low, moderate, high).

Models DeepERNet DeepECGNet Single 1D Conv. VGG Insp.

Accuracy (%) 83.0 75.0 83.55 83.09
Window 24,800 24,800 1488 1488

Frequency (Hz) 496 496 496 496
Time (sec) 50 50 3 3

Augmentation no no yes yes
Signals ECG & RSP ECG ECG ECG

For DeepERNet refer to [33] and for DeepECGNet refer to [32].

Finally, in Table 8, we compare our results with those of other works, which use
heart related features to classify the stress state, independently of the evaluation dataset
choice (see Table 8). Regarding the 2-level stress classification, we can observe that our
best-performing model achieves state-of-the-art accuracy, while using a 3 s time window
instead of 10 s, and automatically learned representations instead of handcrafted ones.
With respect to the 3-level stress classification, our best-performing model exhibits a margin
of 9.25% from the works of [34,44]. Factors that lead to this difference are the fact that [44]
leverages multiple signals and [34] uses a much wider time window of 25 s, as well as the
fact that their models are being trained and evaluated on other (non-public) datasets.

Table 8. Stress classification using heart related features.

Method Accuracy (%) Method Data Window
Size Classes

VGG insp. 98.77 CNN ECG 3 s 2
[45] 98.69 CNN HRF 10 s 2
[36] 98.3 CNN-LSTM ECG - 2
[46] 95.67 CNN HR and other 30 s 2
[47] 90.19 CNN ECG 10 s 2
[16] 89.8 CNN ECG 60 s 2
[32] 87.39 CNN-RNN ECG 10 s 2
[33] 83.9 CNN ECG and RSP 50 s 2
[31] 82.7 CNN ECG 10 s 2

[44] 92.8 CNN-LSTM ECG and other 5 s 3
[34] 92.8 CNN ECG 25 s 3
[48] 86.5 CNN-BiLSTM ECG 10 s 3

single 1D Conv. 83.55 CNN ECG 3 s 3
[33] 83.0 CNN ECG and RSP 50 s 3

[49] 85.45 CNN ECG 30 s 5

5.2. Model Capacity

In this work we have implemented two divergent architectures in terms of the capacity
of the model. In particular, the single 1D CNN architecture has just 28,866 parameters as
opposed to the 1,554,819 parameters of the VGG-inspired one. In spite of it being more
lightweight, having considerably less parameters, our results indicate that the single 1D
CNN can achieve comparative accuracy for our classification task, even surpassing the
VGG-inspired architecture, in the more difficult 3-level stress classification. Considering its
combination of high accuracy and low resources allocation, it could be efficiently deployed
in mobile applications as well as wearable devices (e.g., the DARLENE wearable edge
computing nodes).

5.3. Limitations and Future Work

Although we have acquired state-of-the-art results, in terms of accuracy, in the 2- and
3-level stress classification task, using ultra-short samples of raw ECG signal, there were
some practical obstacles that we had to confront. These were the limited task-related open
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datasets available for training deep learning models and the fact that only a small minority
of them provide annotations for more than two classes of stress. The existence of datasets
providing multilevel stress annotations would allow for more accuracy and useful feedback
in practical domains, as mentioned by Ahmad et al. [49]. Furthermore, the open-available
stress related datasets are of limited size, hindering the effective evaluation of developed
models. Finally, another inherent limitation of such a Deep Learning approach is that the
model is a “black box”, providing no indication to the exact physiological process that
contributes to quantifying the level of stress.

To confront the aforementioned dataset limitations, we aim to create our own dataset,
which will be specific to our application domain, namely stress experienced by emergency
operators and LEAs during their work. This way we can train and evaluate our proposed
architectures more effectively, and on more representative target domain data. By collecting
a profusion of data from different individuals, we will investigate domain-adaptation
techniques, for the purpose of personalizing the stress-level predictions. Moreover, we plan
to utilize multiple physiological signals, such as EDA and RSP, and investigate whether
and which fusion leads to better performance. To gain a better understanding of the
learned representations, we also plan to apply different visualization approaches to our
models. This way, we could explore whether the trained convolution layer generates
feature patterns specific to the stress classification task.

6. Conclusions

Throughout this work, our aim was to design and implement CNN models that
are able to assess the user stress level through raw ECG signals. With that ability, it
could provide useful feedback to context-aware and personalised applications concerning
emergency operators and in particular LEAs, who can wield wearable devices of low
computational capacity. Our proposed architectures—one being simple and with low
memory footprint, and the other being deeper with greater model capacity—met that goal
by yielding state-of-the-art accuracy on the DriveDB dataset both for the binary and the
multi-class stress classification task. Specifically, our architectures and data processing
techniques reported an accuracy of 98.77% and 83.55%, respectively. Finally, we explored
two open-access datasets and provided insights regarding their problems and limitations.
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